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Dedication 

To my mother 
and to the memory of my father 

"For even as He loves the arrow that flies, so He 
loves also the bow that is stable." 



Preface to the Second Corrected Printing 

The material in the first volume of this book is standard and I have changed 
little in revising it for the second edition. My main task has been to correct the 
numerous errors that, having escaped detection in the original manuscript, 
were brought to my attention after the book came to print. My thanks to 
all those who have helped in this enterprise by informing me of an insidious 
misspelling, a mistake in an equation, or a mislabeled figure. A few other 
superficial changes have been made; I have reworked many of the figures and 
"prettied up" the typesetting in one or two spots. 

There is just one change of real substance. I have chosen to replace the 
designation "quantum regression theorem," which has been standard in quan­
tum optics circles for some three decades, with the more accurate "quantum 
regression formula." The replacement is perhaps not perfect, since the re­
gression procedure introduced by Lax is expressed by different formulas on 
different occasions. In some cases the procedure runs very much parallel to 
Onsager's classical regression hypothesis - i.e., when a linearized treatment 
of fluctuations is carried out. In others it does not. The point to be made, 
however, is that the formula used, whatever its specific form, is never the 
expression of a "theorem"; it is the expression of a Markovian open system 
dynamics, reached from a microscopic model in quantum optics by way of 
an approximation, the same Markov dynamics that one finds defined, more 
formally, in the semigroup approach to open quantum systems. Physicists, 
all too often, remain unworried about semantic accuracy in a matter like 
this; the common designation is historical and no doubt harmless enough. 
On the other hand, for some reason, which was always difficult for me to un­
derstand, the quantum regression formula has attracted an undeserved level 
of suspicion throughout its 30 years of use; it seems not to be appreciated 
that the formula for multi time averages enjoys precisely the same ground­
ing, Markov approximation and all, as the master equation itself - just as 
the master equation emerges in the Schrodinger picture, so, in the Heisenberg 
picture, emerges Lax's quantum regression. Given, then, what I perceive to 
be a background of misunderstanding, I think it wise to be as accurate and 
clear as possible. I have therefore avoided the word "theorem" in this second 
edition of Vol. 1, and also in Vol. 2. I have also added some commentary re-
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lating to this point in the section of Vol. 1 devoted to the quantum regression 
formula. 

Auckland 
May 2002 

Howard Carmichael 



Preface to the First Edition 

As a graduate student working in quantum optics I encountered the question 
that might be taken as the theme of this book. The question definitely arose 
at that time though it was not yet very clearly defined; there was simply some 
deep irritation caused by the work I was doing, something quite fundamental I 
did not understand. Of course, so many things are not understood when one is 
a graduate student. However, my nagging question was not a technical issue, 
not merely a mathematical concept that was difficult to grasp. It was a sense 
that certain elementary notions that are accepted as starting points for work 
in quantum optics somehow had no fundamental foundation, no identifiable 
root. My inclination was to mine physics vertically, and here was a subject 
whose tunnels were dug horizontally. There were branches, certainly, going up 
and going down. Nonetheless, something major in the downwards direction 
was missing-at least in my understanding; no doubt others understood the 
connections downwards very well. 

In retrospect I can identify the irritation. Quantum optics deals primarily 
with dynamics, quantum dynamics, and in doing so makes extensive use of 
words like "quantum fluctuations" and "quantum noise." The words seem 
harmless enough. Surely the ideas behind them are quite clear; after all, 
quantum mechanics is a statistical theory, and in its dynamical aspects it 
is therefore a theory of fluctuations. But there was my problem. Nothing in 
Schrodinger's equation fluctuates. What, then, is a quantum fluctuation? 

In reply one might explore one of the horizontal tunnels. Statistical ideas 
became established in thermal physics during the early period of the quantum 
revolution. Although the central notions in this context are things like equi­
librium ensembles, partition functions and the like, every graduate student 
is aware of the fluctuation aspect through the example of Brownian motion. 
Fluctuations are described using probability distributions, correlation func­
tions, Fokker-Planck and Langevin equations, and mathematical devices such 
as these. In many instances the quantum analogs of these things are obvious. 
So, are quantum fluctuations simply thermal fluctuations that occur in the 
quantum realm? Well, once again, nothing fluctuates in Schrodinger's equa­
tion; yet the standard interpretation for the state solving this equation is sta­
tistical, and speaks of fluctuations, even when the most elementary system is 
described. Quantum fluctuations are therefore more fundamental than ther-
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mal fluctuations. They are a fundamental part of quantum theory-though 
apparently absent from its fundamental equation-and unlike thermal fluctu­
ations, not comfortably accounted for by simply reflecting on the disorganized 
dynamics of a complex system. 

I now appreciate more clearly where my question was headed: Yes it does 
head downwards, and it goes very deep. What is less clear is that there 
is a path in that direction understood by anyone very well. The direction 
is towards the foundations of quantum mechanics, and here one must face 
those notorious issues of interpretation that stimulate much confusion and 
contention but few definitive answers. 

I must hasten to add that this book is not about the foundations of quan­
tum mechanics-at least not in the formal sense; the subject is mentioned 
directly in only one chapter, near the end of Volume II. It is helpful to know, 
though, that this subject is the inevitable attractor to which four decades 
of development in quantum optics have been drawn. The book's real theme 
is quantum fluctuations, tackled for the most part at a pragmatic level. It 
is about the methods developed in quantum optics for analyzing quantum 
fluctuations in terms of a visualizable evolution over time. The qualifier "vi­
sualizable" is carried through as an informal connection to foundations. In 
view of it, I emphasize the Schrodinger and interaction pictures over the 
Heisenberg picture since in these pictures appropriate representations of the 
time-varying states (Glauber-Sudarshan or Wigner representations for exam­
ple) can provide tangible access to something that fluctuates. Such mental 
props cannot be taken too literally, however, and the book is as much about 
their limitations as about their successes. I have written the book in a period 
when the demands for theoretical analyses of new experiments have required 
that the limitations be acknowledged and paid serious attention. The book 
meanders a bit in response to the proddings. Hopefully, though, there is 
always forwards momentum, towards methods of wider applicability and a 
more satisfying understanding of the foundations. 

Quantum optics has a unique slant on quantum fluctuations, different 
from that of statistical physics with its emphasis on thermal equilibrium, 
and also differing from relativistic field theory where fluctuations refer ei­
ther to virtual transitions-dressing stable objects--or little particle "explo­
sions" (collisions) with a well-defined beginning and end. Quantum optics 
is concerned with matter interacting with electromagnetic waves at optical 
frequencies. At such frequencies, in terrestrial laboratories, it meets with 
quantum fluctuations that are real, and ongoing, and not inevitably buried 
in thermal noise; at least the latter has been the case since the invention of 
the laser; and it is the laser, overwhelmingly, that gives quantum optics its 
special perspective. The laser is basically a convenient source of coherence. 
Thought of simply, this is the coherence of a classical wave, but it is readily 
written into material systems where it must ultimately be seen as quantum 
coherence. The mix of coherence (waves) with the particle counting used to 
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detect optical fields marks quantum optics for encounters with the difficult 
issues that arose around the ideas of Einstein and Bohr at the beginning of 
the century. Old issues are met with new clarity, but even more interesting 
are the entirely new dimensions. Seen as a quantum field, laser light is in a 
degenerate state, having a very large photon occupation number per mode. 
This property makes it easy to excite material systems far from thermal 
equilibrium, where simple perturbation theory is unable to account for the 
dynamics. In the classical limit one expects to encounter the gamut of non­
linear phenomena: instability, bifurcation, multistability, chaos. One might 
ask where quantum fluctuations fit in the scheme of such things; no doubt 
as a minor perturbation in the approach to the classical limit. But in recent 
years the drive in optics towards precision and application has opened up the 
area of cavity QED. Here the electromagnetic field is confined within such 
a small volume that just one photon can supply the energy density needed 
to excite a system far from equilibrium. Under conditions like this, quantum 
fluctuations overwhelm the classical nonlinear dynamics. How, then, does the 
latter emerge from the fluctuations as the cavity QED limit is relaxed? 

The book is divided into two volumes. This first volume deals with the 
statistical methods used in quantum optics up to the late 1970s. The ma­
terial included here is based on a series of lectures I gave at the University 
of Texas at Austin during the fall semester of 1984. In this early period, 
methods for treating open systems in quantum optics were developed around 
two principal examples: the laser and resonance fluorescence. The two ex­
amples represent two defining themes for the subject, each identified with 
an innovation that extended the ways of thinking in some more established 
field. The laser required thinking in QED to be extended, beyond its focus on 
few-particle scattering to the treatment of many particle fields approaching 
the classical limit. The innovation was Glauber's coherence theory and the 
phase-space methods based on coherent states. The revival of the old topic of 
resonance fluorescence moved in the opposite direction. At first its concern 
was strong excitation-the nonperturbative limit which had been inaccessible 
to experiments before the laser was invented. Soon, however, a second theme 
developed. Contrasting with laser light and its approximation to a classical 
field, resonance fluorescence is manifestly a quantum field; its intensity fluc­
tuations display features betraying their origin in particle scattering. The 
innovation here was in the theory of photoelectron counting-in the need to 
go beyond the semiclassical Mandel formula which holds only for statistical 
mixtures of coherent states. Thus, the study of resonance fluorescence began 
the preoccupation in quantum optics with the so-called nonclassical states of 
light. 

Resonance fluorescence is treated in Chap. 2 and there are two chapters 
in this volume, Chaps. 7 and 8, on the theory of the laser. My aim with the 
example of resonance fluorescence is to illustrate the utility of the master 
equation and the quantum regression theorem for solving a significant prob-
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lem, essentially exactly, with little more than some matrix algebra. Chapter 
1 and the beginning of Chap. 2 fill in the background to the calculations. 
Here I provide derivations of the master equation and the quantum regres­
sion theorem. I think it important to emphasize that the quantum regression 
theorem is a derived result, equal in the firmness of its foundations to the 
master equation itself, and indeed a necessary adjunct to that equation if it 
is to be used to calculate anything other than the most trivial things (i.e. 
one-time operator averages). 

Chapters 3-7 all lead up to a treatment of laser theory by the phase­
space methods in Chap. 8. My purpose in Chap. 8 has been to carry through 
a systematic application of the phase-space methods to a nonequilibrium 
system of historical importance. Some readers will find the treatment overly 
detailed and be satisfied to simply skim the calculations. I would recommend 
the option, in fact, when the book is used as the basis for a course. In taking 
it, nothing need be lost with regard to the physics since the more useful 
results in laser theory are presented in Chap. 7 in a more accessible way. The 
earlier chapters have wide relevance in quantum optics. They deal with the 
properties of coherent states and the Glauber-Sudarshan P representation 
(Chap. 3), the Q and Wigner representations (Chap. 4), and the extension of 
these phase-space representations to two-state atoms (Chap. 6). Chapter 5 
makes a short excursion to review those results from classical nonequilibrium 
statistical physics that are imported into quantum optics on the basis of the 
phase-space methods. 

Volume I ends with Chap. 8 and the phase-space treatment of the laser. 
The treatment provides a rigorous basis for the standard visualization of am­
plitude and phase fluctuations in laser light. The visualization, however, is 
essentially classical, and the story of quantum fluctuations cannot be ended 
here. Being aware of the approximations used to derive the laser Fokker­
Planck equation and having seen the example of resonance fluorescence, for 
which a similar simplification does not hold, it is clear that such classical 
visualizations cannot generally be sustained. Volume II will deal with the 
extension of the basic master equation approach to situations in which the 
naive phase-space visualization fails, where the quantum nature of the fluc­
tuations has manifestations in the actual form of the evolution over time. 
Modern topics such as squeezing, the positive P representation, cavity QED, 
and quantum trajectory theory will be covered there. 

I have sprinkled exercises throughout the book. In some cases they are 
included to excuse me from carrying through a calculation explicitly, or to 
repeat and generalize a calculation that has just been done. The exercises are 
integrated with the development of the subject matter and are intended, lit­
erally, as exercises, exercises for the practitioner, rather than an introduction 
to problems of topical interest. Their level varies. Some are quite difficult. The 
successful completion of the exercises will generally be aided by a detailed 
understanding of the calculations worked through in the book. 
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Numerous students and colleagues have read parts of this book as a 
manuscript and helped purge it of typographical errors or made other useful 
suggestions. I know I will not recall everyone, but I cannot overlook those 
whom I do remember. I am grateful for the interest and comments of Paul Als­
ing, Robert Ballagh, Young-Tak Chough, John Cooper, Rashed Haq, Wayne 
Itano, Jeff Kimble, Perry Rice, and Murray Wolinsky. 

Eugene, Oregon 
August 1998 

Howard Carmichael 
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1. Dissipation in Quantum Mechanics: 
The Master Equation Approach 

1.1 Introduction 

This book deals with various quantum-statistical methods and their appli­
cation to problems in quantum optics. The development of these methods 
arose out of the need to deal with dissipation in quantum optical systems. 
Thus, dissipation in quantized systems is a theme unifying the topics covered 
in the book. Two elementary systems provide the basic building blocks for 
a number of applications: the damped harmonic oscillator, which describes 
a single mode of the electromagnetic field in a lossy cavity (a cavity with 
imperfect mirrors), and the damped two-level atom. The need for a quan­
tized treatment for the damped field mode arose originally in the context 
of the quantum theory of the maser and the laser. The damped two-level 
atom is, of course, of very general and fundamental interest, since it is just 
the problem of spontaneous emission. The book is structured around these 
two illustrative examples and their use in building quantum-theoretic treat­
ments of resonance fluorescence and the single-mode laser. A second volume 
will extend the applications to the degenerate parametric oscillator and cav­
ity quantum electrodynamics (cavity QED.). Discussion of the examples will 
guide the development of fundamental formalism. When we meet such things 
as master equations, phase-space representations, Fokker-Planck equations 
and stochastic differential equations, and the related methods of analysis, we 
will always have a specific application at hand with which to illustrate the 
formalism. Although formal methods will be introduced essentially from first 
principles, in places the treatment will necessarily be rather cursory. Ample 
references to the literature will hopefully offset any deficiencies. 

Our objective in this book is to develop the background needed to gain ac­
cess to issues of current research. The statistical methods we will cover were 
introduced over approximately two decades beginning in the early 1960's, 
stimulated by the invention of the laser. They are characterized by an empha­
sis on the two extremes of statistical physics- the single particle (resonance 
fluorescence) and very many particles (the single-mode laser). Where possi­
ble, they exploit analogies with the methods of classical statistical physics, 
though the incompatibility of a classical description with quantum mechanics 
is, in principle, always present. In the second volume we will enter into some 
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of the modern research topics, The objective there will be to extend the meth­
ods discussed in this book, to move away from the one- and many-particle 
extremes and to face the quantum-classical incompatibility head on. 

1.2 Inadequacy of an Ad Hoc Approach 

In classical mechanics the essential features of dissipation, namely, the decay 
of oscillator amplitudes, particle velocities and energies, can be built into the 
theory by the simple addition of a velocity dependent force. For example, the 
harmonic oscillator, with Hamiltonian 

and equations of motion 

p2 
H = - + lmw2q2 

2m 2 

q =pfm, 

(1.1) 

(1.2) 

becomes a damped harmonic oscillator with the addition of the force -"(p to 
give 

q =p/m, 

or the familiar equation 

• 2 
p = -"(p- mw q, (1.3) 

(1.4) 

Can we simply transfer this approach to the quantized harmonic oscillator? 
For the quantized oscillator q and p become operators, {j and p, and (1.2) 
gives the Heisenberg equations of motion obtained from Hamiltonian ( 1.1) 
via the commutation relation 

[ij,p] =ilL (1.5) 

After adding -"(p to (1.3), the equations of motion remain linear; thus, the 
classical solution still holds when q and p become operators, and the expec­
tation values of {j and p will be damped in the same way as the classical 
variables. We seem to be in good shape. Consider, however, the evolution of 
the commutator [ij,p]. From (1.3) 

and 

! [ij,p] = qp + {jp- p{j- pq 
= -"([{j, p], 

(1.6) 

As a consequence of this decay of the commutator the Heisenberg uncertainty 
also decays; the Heisenberg uncertainty relation becomes 
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In the face of this difficulty there have been various attempts to con­
sistently incorporate dissipation into quantum mechanics. Some approaches 
based on novel quantization procedures remain controversial. We will not 
review these issues here. Of course, in many of the traditional domains of 
quantum mechanics dissipation plays no role: in the analysis of atomic struc­
ture, or the calculation of harmonic oscillator eigenstates and the like. The 
situation is quite different, though, in quantum optics. For example, the phe­
nomenon of laser action, which gave birth to this field, takes place in a lossy 
cavity. In fact, applications in quantum optics have played a central role in 
developing methods to treat quantum-mechanical dissipation. We follow the 
widely accepted approach pioneered by Senitzky [1.1] for describing lossy 
maser cavities. Some discussion of alternative points of view can be found in 
papers by Ray [1.2] and Caldeira and Leggett [1.3], and references therein. 

1.3 System Plus Reservoir Approach 

The system plus reservoir approach begins from a microscopic view of the 
mechanism underlying dissipation. Although the procedure leading to (1.3) 
and (1.4) is often adequate in classical mechanics, even there it provides an 
incomplete description. In particular, equations (1.2) are time-reversal invari­
ant, while in (1.3) this symmetry has been broken. If we want to understand 
the origin of this irreversibility we must begin by recognizing that the oscil­
lator is damped through interactions with a large and complex system - its 
environment. This recognition also leads us to the fundamental relationship 
between dissipation and fluctuations. If the environment is some large system 
in thermal equilibrium, it will exert a fluctuating force F(t) on an oscillator 
coupled to it, in addition to soaking up the oscillator's energy. Equation (1.4) 
must generally be replaced by a stochastic equation 

ij + 'YQ + w2 q = F(t)jm. (1.8) 

In many situations the added noise source cannot be overlooked- in electrical 
circuits, for example. 

We observe that damping takes place through the coupling of the damped 
system to its environment. Is there anything in this observation to suggest a 
resolution of our problem with commutators? Well, the interaction between 
systems mixes their operators in a way which certainly does play a role in pre­
serving commutators in time. Consider resonant harmonic oscillators coupled 
in the rotating-wave approximation. The Hamiltonian is 

(1.9) 
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where w is the frequency of the oscillators, K is a coupling constant, at and 
bt are creation operators, and a and b are the corresponding annihilation 
operators, satisfying commutation relations 

(1.10) 

Note 1.1 To understand the origin of the Hamiltonian (1.9) first note that 
the free oscillator Hamiltonian (1.1) becomes 

where ~nw is the zero-point energy, under the transformation 

Then (1.6) becomes 

1 
a= ~(mwij+ip), 

2fimw 

at= ~(mwij- ip). 

(1.11) 

(1.12a) 

(1.12b) 

(1.13) 

In the rotating-wave approximation an interaction energy proportional to iiaiib 
gives the interaction Hamiltonian fiK(atb + abt) after the highly oscillatory 
terms (energy nonconserving terms) ab and atbt are neglected. 

The solutions to the Heisenberg equations of motion following from (1.9) 
are 

Then 

a(t) = e-iwt[a(O) cos Kt- ib(O) sin Kt], 
b(t) = e-iwt[b(O) cos Kt- ia(O) sin Kt]. 

(1.14a) 

(1.14b) 

(1.15) 

We see that the commutator for a(t) and at(t) is preserved in time only by 
the presence of the operator b(O) mixed into the solution for a(t). Taking 
the environmental interaction into account in the treatment of dissipation, 
we might anticipate a similar mixing of environmental operators into the 
operators of the damped system in such a way as to preserve commutation 
relations. This is precisely what Senitzky found [1.1]. The fluctuating force 
in (1.8) becomes an operator in Senitzky's theory. Contributions from this 
environmental operator in the solutions for ij(t) and p(t) introduce thermal 
fluctuations, and also preserve the commutation relations. 

The master equation method we now discuss is essentially a Schrodinger 
picture version of Senitzky's theory. It is somewhat less transparent on this 
point about preserving commutation relations, so it is valuable to study Sen­
itzky's calculation in the Heisenberg picture as well as the following. In both 
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the philosophy is to model environmental interactions by coupling the un­
damped system S to a reservoir R, beginning with a Hamiltonian in the 
general form 

(1.16) 

where Hs and HR are Hamiltonians for Sand R, respectively, and HsR is 
an interaction Hamiltonian. The reservoir is only of indirect interest, and 
its properties need only be specified in very general terms; for example, by 
a temperature and an energy density of states. For illustrative purposes we 
will give HR and HsR an explicit form once we get a little further into the 
calculation. 

The derivation given here follows the treatments by Louisell [1.4] and 
Haken [1.5] fairly closely. There are some minor differences in the way ap­
proximations are introduced, and no attempt is made to follow either author's 
notation. A rather different and more specialized approach is taken by Sar­
gent, Scully and Lamb [1.6]. These authors get away without having to deal 
with the complicated frequency and time integrals we will meet in our cal­
culation. It is a useful exercise to study their calculation and try to find 
where they introduce the physical assumptions we will use to deal with these 
integrals. The physics must, of course, be the same. 

We are seeking information about the system S without requiring detailed 
information about the composite system SQ9R. We will let x(t) be the density 
operator for S@ R and define the reduced density operator p(t) by 

p(t) = trR[x(t)], (1.17) 

where the trace is taken over the reservoir states. Clearly, if 6 is an operator 
in the Hilbert space of S we can calculate its average in the Schrodinger 
picture if we have knowledge of p(t) alone, and not of the full x(t): 

(0) = trs®R[Ox(t)] = trs{OtrR[x(t)]} = trs[Op(t)]. (1.18) 

Our objective is to obtain an equation for p(t) with the properties of R 
entering only as parameters. 

1.3.1 The Schrodinger Equation in Integro-Differential Form 

The Schrodinger equation for x reads 

. 1 
x=in[H,x], (1.19) 

where His given by (1.16). We transform (1.19) into the interaction picture, 
separating the rapid motion generated by Hs + HR from the slow motion 
generated by the interaction HsR· Defining 

(1.20) 
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from (1.16) and (1.19), we obtain 

X= !:_(Hs + HR)X _ ix(Hs + HR) + e(i/li)(Hs+HR)txe-(i/li)(Hs+HR)t 
n n 
1 -

= in [HsR(t), xJ, (1.21) 

where HsR(t) is explicitly time-dependent: 

fisR(t) = e(i/li)(Hs+HR)t HsRe-(i/li)(Hs+HR)t. (1.22) 

We now integrate (1.21) formally to give 

1 r x(t) = x(O) + in}o dt' [HsR(t'), x(t')], (1.23) 

and substitute for x(t) inside the commutator in (1.21): 

. 1- 1r- -
X= in [HsR(t), x(O)]- n2 lo dt' [HsR(t), [HsR(t'), x(t')]]. (1.24) 

This equation is exact. Equation (1.19) has simply been cast into a convenient 
form which helps us identify reasonable approximations. 

1.3.2 Born and Markov Approximations 

We will assume that the interaction is turned on at t = 0 and that no correla­
tions exist between S and Rat this initial time. Then x(O) = x(O) factorizes 
as 

x(O) = p(O)Ro, (1.25) 

where R 0 is an initial reservoir density operator. Then, noting that 

(1.26) 

after tracing over the reservoir, (1.24) gives the master equation 

p =- ; 21t dt' trR{ [HsR(t), [HsR(t'), x(t')]J}, (1.27) 

where, for simplicity, we have eliminated the term (1/in)trR{[fisR(t), x(O)J} 
with the assumption 

(1.28) 

This is guaranteed if the reservoir operators coupling to S have zero mean in 
the state R 0 , a condition which can always be arranged by simply including 
trR(HsRRo) in the system Hamiltonian (see Sect. 2.2.4 and Note 8.8). 

We have stated that x factorizes at t = 0. At later times correlations 
between S and R will arise due to the coupling between the system and 
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the reservoir. We have assumed, however, that this coupling is very weak, 
and at all times x(t) should only show deviations of order HsR from an 
uncorrelated state. Furthermore, R is a large system whose state should be 
virtually unaffected by its coupling to S (of course, we expect the state of S 
to be significantly affected by R- we want it to be damped). We therefore 
write 

x(t) = p(t)Ro + O(HsR)· (1.29) 

Now we can make our first major approximation, a Bam approximation. 
Neglecting terms higher than second order in HsR, we write (1.27) as 

(1.30) 

A detailed discussion of this approximation can be found in the work of Haake 
[1.7, 1.8]. 

Equation (1.30) is still a complicated equation. In particular, it is not 
Markovian since the future evolution of p(t) depends on its past history 
through the integration over p(t') (the future behavior of a Markovian sys­
tem depends only on its present state). Our second major approximation, the 
Markov approximation, replaces p(t') by p(t) to obtain a master equation in 
the Bam-Markov approximation: 

(1.31) 

1.3.3 The Markov Approximation and Reservoir Correlations 

Markovian behavior seems reasonable on physical grounds. Potentially, S 
can depend on its past history because its earlier states become imprinted 
as changes in the reservoir state through the interaction HsR; earlier states 
are then reflected back on the future evolution of S as it interacts with the 
changed reservoir. If, however, the reservoir is a large system maintained 
in thermal equilibrium, we do not expect it to preserve the minor changes 
brought by its interaction with S for very long; not for long enough to sig­
nificantly affect the future evolution of S. It becomes a question of reservoir 
correlation time versus the time scale for significant change inS. By studying 
the integrand of (1.30) with this view in mind we can make the underlying 
assumption of the Markov approximation more explicit. 

Let us make our model a little more specific by writing 

(1.32) 

where the si are operators in the Hilbert space of S and the ri are reservoir 
operators, operators in the Hilbert space of R. Then 
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= fi L ( e(i/li)Hst Sie-(i/li)Hst) ( e(i/li)HRt rie-(i/li)HRt) 

i 

The master equation in the Born approximation [Eq. (1.30)] is now 

/5 =- 2: lot dt' trR{ [si(t)fi(t), [s1(t')f1(t'), jj(t')Ro]l} 
l,J 

=- 2: lot dt' { si(t)sj(t')jj(t') trR[fi(t)fj(t')Ro] 
l,J 

- si(t)jj(t')s1(t')trR[fi(t)Rof1(t')]- s1(t')jj(t')si(t) 

xtrR[f1(t')Rofi(t)] + jj(t')s1(t')si(t) trR[R0f 1(t')fi(t)]} 

=- 2: lot dt' {[si(t)s1(t')jj(t')- s1(t')jj(t')si(t)](fi(t)f1(t'))R 
l,J 

(1.33) 

+ [jj(t')s1(t')si(t)- si(t)jj(t')s1(t')](f1(t')fi(t))R }, (1.34) 

where we have used the cyclic property of the trace - tr( ABC) = tr( 6 AB) = 

tr(BCA) - and write 

(fi ( t)fj ( t') )R = trR[Rofi ( t)fj (t')], 

(fj(t')fi(t))R = trR[Rofj(t')fi(t)]. 

(1.35a) 

(1.35b) 

The properties of the reservoir enter (1.34) through the two correlation func­
tions (1.35a) and (1.35b). We can justify the replacement of jj(t') by jj(t) if 
these correlation functions decay very rapidly on the timescale on which jj(t) 
varies. Ideally, we might take 

(1.36) 

The Markov approximation then relies, as suggested, on the existence of two 
widely separated time scales: a slow time scale for the dynamics of the system 
S, and a fast time scale characterizing the decay of reservoir correlation func­
tions. Further discussion of this point is given by Schieve and Middleton [1.9]. 
We will look explicitly at reservoir correlation functions and the separation 
of time scales in our first example. 
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1.4 The Damped Harmonic Oscillator 

1.4.1 Master Equation for the Damped Harmonic Oscillator 

We now adopt an explicit model. For the Hamiltonian of the composite system 
S®R we write 

Hs = IU.voata, 

HR = '"""mv·r·tr· - L....t J J Jl 

j 

HsR = L n(K,jarj t + K,jatrj) = n(art +at r). 
j 

(1.37a) 

(1.37b) 

(1.37c) 

The system S is a harmonic oscillator with frequency w0 and creation and 
annihilation operators at and a, respectively; the reservoir R is modeled as 
a collection of harmonic oscillators with frequencies Wj, and corresponding 
creation and annihilation operators r j t and r j, respectively; the oscillator 
a couples to the jth reservoir oscillator via a coupling constant "'i in the 
rotating-wave approximation. We take the reservoir to be in thermal equilib­
rium at temperature T, with density operator 

Ro =II e-liwjrjtrj/kBT(l- e-liwj/kBT), 

j 

(1.38) 

where kB is Boltzmann's constant. It is not necessary to be so specific about 
the reservoir model. Haken [1.5], for example, keeps his discussion quite gen­
eral. Aside, however, from its pedagogical clarity, the oscillator model is phys­
ically reasonable in many circumstances. The reservoir oscillators might be 
the many modes of the vacuum radiation field into which an optical cavity 
mode decays through partially transmitting mirrors, or into which an excited 
atom decays via spontaneous emission; alternatively, they might represent 
phonon modes in a solid. 

The identification with (1.34) is made by setting 

j j 

(1.39a) 

(1.39b) 

and then from (1.33) and (1.37), the operators in the interaction picture are 

and 

(1.40a) 

(1.40b) 
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fHt) = ft(t) = exp~ ~Wnrntrnt) ~ K;jr/ exp (~i ~Wmrm trmt) 

= LK;jr/eiw1t, (1.41a) 
j 

f2(t) = f(t) = exp(i~wnrntrnt)~K;jrjexp(~i~wmrmtrmt) 
= L K;jrje-iwjt' 

j 

(1.41b) 

where in (1.41) we use the fact that operators for different reservoir oscillators 
commute. To show, for example, that eiwoatatae-iwoatat = ae-iwot, observe 

that the left hand side is just the formal solution to the Heisenberg equation 
of motion a= ~iw0 [a,ata] = ~iw0 a. Note that, from (1.38) and (1.41), 
(f1(t))R = (F2(t))R = 0, as required by the assumption (1.28). 

Now, since the summation in (1.34) runs over i = 1, 2 and j = 1, 2, the 
integrand involves sixteen terms. We write 

p =~fat dt' {[aap(t') ~ ap(t')a] e-iwo(t+t') (ft (t)ft (t'))R + h.c. 

+[at at p(t') ~at p(t')at] eiwo(t+t') (f(t)f(t'))R + h.c. 

+ [ aa t p( t') ~ at p( t')a] e-iwo(t-t') (ft (t)f( t') )R + h.c. 

+ [at ap(t') ~ ap(t')a t] eiwo(t-t') (f( t)ft (t') )R + h.cJ (1.42) 

where the reservoir correlation functions are explicitly: 

j,k 

j,k 

(ft (t)f(t'))R = L K;jK;keiw1te-iwd trR(Ror/ rk) 
j,k 

= L IK;j12eiwJ(t-t')n(wj, T), 
j 

(f(t)ft (t'))R = L K;jK;ke-iw1teiwkt' trR(Rorjrk t) 
j,k 

(1.45) 

= LIK;jl2e-iwJ(t-t'l[n(wj,T)+1], (1.46) 
j 
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with 
e-nw3/kBT 

n(wj,T) = trR(Rorjtrj) = -fiw /k T" (1.47) 1- e 1 B 

The correlation functions (1.43)-(1.46) follow quite readily by evaluating the 
trace using the multimode Fock states as a basis. n(wj, T) is the mean pho­
ton number for an oscillator with frequency Wj in thermal equilibrium at 
temperature T. 

The nonvanishing reservoir correlation functions (1.45) and (1.46) involve 
a summation over the reservoir oscillators. We change this summation to an 
integration by introducing a density of states g(w) such that g(w )dw gives the 
number of oscillators with frequencies in the interval w to w + dw. Making 
the change of variable 

T=t-t1 , (1.48) 

(1.42) can then be restated as 

p =-lot dT{[ aat p(t- T) -at jj(t- T)a] e-iwor (ft (t)f(t- T))R + h.c. 

+ [at ap(t- T) - ap(t- T)at J eiwor (f(t)ft (t- T))R + h.c. }, (1.49) 

where the nonzero reservoir correlation functions are 

with 

(ft (t)f(t- T))R = 100 dw eiwr g(w)IK(w)l 2n(w, T), 

(f(t)ft (t- T))R = 100 dw e-iwr g(w)IK(w)l 2 [n(w, T) + 1], 

(1.50) 

(1.51) 

(1.52) 

We can now argue more specifically about the Markov approximation. Are 
(1.50) and (1.51) approximately proportional to 8(T)? We can certainly see 
that for T "large enough" the oscillating exponential will average the "slowly 
varying" functions g(w), IK(w)l 2 , and n(w, T) essentially to zero. However, 
how large is large enough? Can we get some idea of the width of these cor­
relation functions? Let us look at (1.50), taking g(w)IK(w)l 2 = Cw, with 
C a constant. This correlation function may be evaluated in terms of the 
trigamma function [1.10]: 

100 -fiw/kBT 

(ft(t)f(t-T))R=C dweiwr we -fiw/k T 
o 1- e B 

100 xe-(1-ir/tn)x 
= CtR-2 dx ---,-----

0 1- e-x 

= CtR_2'!jJ'(1- iT/tR), (1.53) 
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where we have defined the reservoir correlation time tR = fijk8 T. A simple 
approximation gives some insight into the behavior of the trigamma function. 
Set 

(1.54) 

then 

(1.55) 

The approximation is accurate for low frequencies, but is not so good for 
w "" k8 T /fi = t[/; here the error is "" 40%. It is adequate, nevertheless, to 
give us a feel for the qualitative behavior of the reservoir correlation function. 
Actually, the exact result for the real part of the correlation function can be 
computed with little effort using the formula [1.10] 

(1.56) 

The exact result is plotted together with the real part of (1.55) for comparison 
in Fig. l.l(a). 

2.0 

6.0 
(a) (b) 

1.5 
~ ~ 4.0 ..., ..., 

-------.::-- I-.,. .,. 
' ' 1.0 ..... ..... 
~ .,._.. 
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~ (!) 

0.5 p:; 
0.0 \''<: 
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Fig. 1.1 (a) Real part of the reservoir correlation function for g(w)IK(w)l 2 = Cw 
plotted from (1.56) (solid line) and (1.55) (dashed line). (b) Real part of the reser­
voir correlation function for g(w)IK(w)l 2 = Cw3 plotted from (1.61) (solid line) and 
(1.60) (dashed line). 

Equation (1.55) indicates a correlation function peaked about T = 0 with 
a width tR = fijk8 T. In (1.49) the reservoir correlation functions are inte­
grated against two time-dependent terms: p(t- T) and e±iwor. Now at room 
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temperature n/kBT Rj 0.25 X 10-13s. If the oscillator a represents an opti­
cal cavity mode, we expect p(t- T) to vary on the time scale of a typical 
cavity decay time, ts "' 10-8s, and if w0 is an optical frequency, e±iwor os­
cillates on a time scale t0 "' 10-15s. Then since ts ftR "' 105 , it seems we 
can justify the Markov approximation and replace p(t- T) by p(t). But, with 
to/tR"' 10-2 , we cannot set T = 0 in the terms e±iwor. Rather, integrating 
the reservoir correlation functions against these oscillating terms will extract 
their w0 frequency components, just as in a Fourier transform. 

After taking a closer look we might worry a little about the imaginary 
part of (1.55). This has a long tail which decays as (T/tR)- 1 ; the integral 
of this tail is logarithmically divergent; far out in the tail the replacement 
of p(t - T) by p(t) will not be justified. It is, however, the wo frequency 
component of the product p(t-T)(ft(t)f(t-T))R that survives the integral 
in (1.49), and, with t0 < tR << ts, this frequency component is contributed 
by the short-time behavior of (1.55), where the replacement of p(t- T) by 
p(t) is justified. 

In fact, the divergent tail is a consequence of the form we have chosen for 
g(w)1b2 (w). More generally, if we take g(w)j,(w)j 2 = Cwn, with n a positive 
integer, 

dn-1 
(ft(t)f(t- T))R = (-i)n- 1 dTn- 1 [Ct:R27/J'(l- iT/tR)] 

= Ct~(n+l) ( -l)n-17/J(n)(l -iT /tR), (1.57) 

where the 'lj;(n) are the polygamma functions [2.10]. In the approximation 
(1.54) 

For T ftR > > 1 the asymptotic form of the polygamma function gives 

(ft(t)f(t- T))R "'- Ct~(n+ 1)[in+ 1 (n- l)!J[ ~n(T/tR)-(n+ 1 ) 

-i(TjtR)-n], (1.59) 

which has no (T/tR)- 1 tail for n > 1. 
The case n = 3 is of special interest since this corresponds to the form 

of g(w)i,(w)i2 that we will meet when we apply our theory to the damped 
two-level atom (Sect. 2.2). The approximate result (1.58) gives 

(1.60) 
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For comparison with the real part of this result, the real part of the exact 
correlation function can be computed from (1.57) using the formula 

Re[,p(3)(1- iT/tR)] = 1r4 [1- coth2(7rT/tR)] [1- 3coth2(7rT/tR)] 

- 3(T/tR)-4. (1.61) 

This formula is obtained by taking two derivatives of (1.56). The exact and 
approximate results for the real part of the correlation function are plotted 
in Fig. 1.1(b). Again the correlation function is peaked around T = 0 with 
a width "' tR. The approximate correlation function (1.60) explicitly shows 
the (T/tR)- 4 and (T/tR)- 3 dependence for the real and imaginary parts, 
respectively, in the large T limit, as given by (1.59). 

Exercise 1.1 Consider the correlation function (1.51). The second term in­
side the square bracket comes from quantum (vacuum) fluctuations. It arose 
from our use of the boson commutation relation in the derivation of (1.46). 
What contribution does this term make to the correlation function? 

Continuing our derivation now from (1.49), it is actually more straight­
forward to evaluate the time integral first, without performing the frequency 
integrals to obtain an explicit form for the reservoir correlation functions. 
This is possible now we are satisfied that the T integration is dominated by 
times that are much shorter than the time scale for the evolution of p. With 
p(t- T) replaced by p(t) (Markov approximation), (1.49) becomes 

(1.62) 

with 

a= 1t dT 1oo dw e-i(w-wo)r g(w)jii(wW' (1.63) 

{3 = 1t dT 100 dw e-i(w-wo)r g(w)jii(wWn(w, T). (1.64) 

Then, since t is of the order of ts and the T integration is dominated by much 
shorter times rv tR, we can extend the T integration to infinity and evaluate 
a and {3 using 

lim dTe-•(w-wo)r = 1r8(w- wo) + i---, 1t . p 

~00 0 ~-w 

where P indicates the Cauchy principal value. We find 

a= 7rg(wo)lii(woW +iLl, 
{3 = 1rg(wo) Jii(woWn(wo) +iLl', 

with 

(1.65) 

(1.66) 

(1.67) 
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i1 =- p [')() dw g(w)lr,;(w)l2' (1.68) 
lo wo-w 

11' =- P r= dw g(w)lr,;(w)l 2 n(w, T). (1.69) 
Jo wo-w 

Note 1.2 To obtain (1.65), we have 

l td -i(w-w )T sin(w- wa)t .1 - cos(w- wa)t 
Te 0 = -z . 

0 w- wo w- w0 

The limit as t tends to infinity is defined anticipating the role of the right­
hand side inside an integration over w, thus: 

lim J= dwf(w) sin(w- wa)t = f(wo) lim J= dw sin(w- wa)t 
t---+= -= w - w0 t---+= -= w - w0 

= 1r f(wo) 

= /_: dw1r8(w- wa)f(w); 

also 

lim 1= dwf(w) 1- cos(w- w0 )t 
t---+cxo -= w- Wo 

= 1= dw f(w) _ lim 1= dw f(w) cos(w- wa)t 
-= w - w0 t---+= -= w - w0 

= PJ= dw f(w) , 
-= w- wo 

where the term 
lim 1= dw f(w) cos(w- wo)t 

t---+cxo -= w- Wo 

subtracts the singularity at w = w0 to give the principal value integral [1.11]. 

We finally have our master equation for the damped harmonic oscillator. 
After defining 

1 =- 27rg(wo)lr,;(wo)l 2, 

n =- n(w0 , T), 

from (1.62), (1.66), and (1.67), we obtain 

p =- ii1[at a, p] + ~(2apat- at ap- pat a) 

+ rn(apat +at pa- at ap- paat). 

(1.70a) 

(1. 70b) 

(1. 71) 

Here p is still in the interaction picture. To transform back to the Schrodinger 
picture we use (1.26) to obtain 
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(1. 72) 

With Hs = liw0ata, we substitute for p and use (1.26) and (1.40) to write, 
for example, 

e -two a a apa e•woa a = e -two a a a e•woa at pe -two a a a e•woa at . tt t• tt . tt(" t . tt)t• t 

= (e-iw0 at ataeiwoat at) p (e-iw0 at at at eiw0 a tat) 

= apat. 

Each term can be treated similarly. We arrive at the master equation for the 
damped harmonic oscillator 

where 

p =- iwb[ata,p] + ~(2apat- atap- pat a) 

+ "(ft(apat +at pa- at ap- paat), 

wb = wo + L1. 

(1.73) 

(1.74) 

Note 1.3 An alternate, more compact, writing of the master equation (1.73) 
may be given in the form 

p =- iwb[at a, p] +~([a, pat]+ [ap, at]) 

+ ~n([ap,at] + [at,pa]). (1. 75) 

In both this form and (1.73) the damping terms are grouped according to 
whether they are proportional to n or not. This is a natural grouping from the 
point of view of the phase-space representations commonly used in quantum 
optics, which we meet in Chaps. 3 and 4 [see (3.47), for example, where the 
terms proportional and not proportional to n have distinct physical interpre­
tations]. Nowadays it is more usual to group the terms so that the Lindblad 
form of the master equation is explicit [1.12], writing 

p =- iwb[at a, p] + ~(n + 1)(2apat- at ap- pat a) 

+ 1n(2at pa- aat p- paat) 2 . (1. 76) 

Here the physical interpretation follows from the rate equations satisfied by 
the probabilities Pn = (nlpln) for the oscillator to be found in its nth energy 
eigenstate: 

Pn = "((ft + l)(n + l)Pn+l- "(ftnpn 

+ "(iinPn-1 - "(ft(n + l)Pn· (1. 77) 
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The terms on the right-hand side of (1.77) describe transition rates into and 
out of the nth energy level (see Fig. 7.4) and originate, respectively, in the 
terms proportional to 2apat, -(atap+pata), 2atpa, and -(aatp+paat) in 
(1.76) [also see the discussion below (2.27) and (2.36d)]. 

Note 1.4 There is a large literature on the treatment of dissipative quantum 
systems using semigroups, from which the work of Lindblad on the form of 
the generator for physical semigroup dynamics [1.12] is a result of particular 
relevance to quantum optics; thus, the master equations we met in this book 
are all of Lindblad form. The foundational work of Davies [1.13] has also 
been influential in quantum optics, particularly in relation to the theory of 
photon counting [1.14]. We will have more to say about this topic when we 
discuss quantum trajectories in Volume 2 (Chaps. 15 and 16). More gener­
ally, the orientation in the literature on semigroups is towards the proof of 
rigorous mathematical results and hence the connections to quantum optics 
applications are somewhat indirect. 

1.4.2 Some Limitations 

Equation ( 1. 73) is one of the central equations for future applications. Before 
proceeding we should note its limitations as a general equation for the damped 
harmonic oscillator. 

First, it is derived in the rotating-wave approximation (R.W.A.). We ex­
pect this to be a good approximation for oscillators at optical frequencies 
[1.15], but for low frequency oscillators (strong damping, where the decay 
time approaches the oscillator period) we would not expect the R.W.A. to 
work well. In fact, even at optical frequencies the R.W.A. brings one notable 
inaccuracy. The frequency shift Ll in (1.74) is small, and generally neglected. 
However, in the example of the damped two-level atom this is the Lamb shift, 
and it is therefore of fundamental importance. Of course, an accurate calcula­
tion of the Lamb shift must include many things that we do not discuss - for 
example, relativistic effects. Nevertheless, it is as well to know that the (two­
level) nonrelativistic contribution to the Lamb shift is not obtained correctly 
when the master equation is derived using the rotating-wave approximation. 
A derivation that does not use the R.W.A. is quite straightforward and pro­
ceeds along the same lines as the calculation in Sect. 1.4.1. The details are 
given by Agarwal [1.16, 1.17], who, in Ref. [1.17] in particular, discusses the 
question of the frequency shift. 

Secondly, (1.73) is not valid at low temperatures. At sufficiently low tem­
peratures the reservoir correlation functions can no longer be treated as 8-
functions. There is quite an active interest in this low temperature regime. 
Discussions can be found in recent papers by Caldeira and Leggett [1.3], 
Lindenberg and West [1.18], and Grabert et al. [1.19]. 
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1.4.3 Expectation Values and Commutation Relations 

Let us make some simple checks to see if (1. 73) predicts the behavior we 
expect from a damped harmonic oscillator. Since we have formulated our 
theory in the Schrodinger picture, we cannot obtain solutions for the oper­
ators themselves, but only for their expectation values. For example, if we 
multiply (1.73) on the left by a and take the trace (over the system S) we 
obtain an equation for (a) = tr(ap): 

(a)=- iw0tr(aatap- apata) + ~ tr(2a2pat- aatap- apata) 

+ 1n tr(a2pat + aat pa- aat ap- apaat) 

=- iw0 tr[(aat- ata)ap] + ~ tr[(ata- aat)ap] 

+ 1n tr [(ata- aat)ap + a(aat- at a)p] 

=- (~ + iwo) (a), (1.78) 

where we have used the cyclic property of the trace and the boson commu­
tation relation (1.10). From now on we assume that the frequency shift L1 is 
included in the resonance frequency of the oscillator and do not distinguish 
w~ from w0 . Equation (1.78) correctly describes the damped mean oscillator 
amplitude. 

As a second example consider (n) =(at a): 

(A)=- iw0tr(ataatap- atapata) + 1 tr(2ata2pat- ataatap 
2 

- atapat a)+ 1n tr(at a 2 pat+ at aat pa- at aatap- at apaat) 

= ltr[at2a2p- (ata)2p] 

+ 1n tr [ at2a2 p + (aat)2 p- (at a) 2 p- aat2ap] 

= -1((n)- n), (1. 79) 

with the solution 

(1.80) 

Notice how thermal fluctuations are fed into the oscillator from the reservoir; 
the mean energy does not decay to zero but to the mean energy for an 
oscillator with frequency wo in thermal equilibrium at temperature T. 

Exercise 1.2 Show that the thermal equilibrium density operator 

e-Hs/kBT 

Peq = 
tr ( e-Hs/kBT) 

satisfies (1.73) in the steady state. 

e-liwoata/kBT 

1 _ e-liwo/kBT 
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As a final observation we note that the boson commutation relation is 
preserved in time - at least in the mean, which is all we can say in the 
Schrodinger picture. Using the initial time commutator we find 

([a,at](t)) = tr{[a,at]p(t)} = tr{p(t)} = 1; 

it is readily shown that (1.73) preserves the trace of the density operator. 

1.5 Two-Time Averages 
and the Quantum Regression Formula 

We have developed a formalism which allows us, in principle, to solve for the 
density operator (reduced density operator) for a system interacting with a 
reservoir. From this density operator we can obtain time-dependent expec­
tation values for any operator acting in the Hilbert space of the system S. 
What, however, about products of operators evaluated at two different times? 
Of particular interest, for example, will be the first-order and second-order 
correlation functions of the electromagnetic field. For a single mode these are 
given by 

G(l)(t, t + T) ex (at(t)a(t + T)), 

Q(2)(t, t + T) ex (at(t)at(t + T)a(t + T)a(t)). 

The first-order correlation function is required for calculating the spectrum 
of the field. The second-order correlation function gives information about 
the photon statistics and describes photon bunching and antibunching. 

Note 1.4 It may seem a strange talking about the spectrum of a single 
mode field since we normally associate a single mode with a single frequency. 
Here we are dealing, however, with what should more correctly be called a 
quasimode - a mode defined in a lossy optical cavity, which therefore has a 
finite linewidth. 

Clearly, averages involving two times cannot be calculated directly from 
the master equation - at least, not without a little extra thought. We need to 
return to the microscopic picture of system plus reservoir. At this level two­
time averages are defined in the usual way in the Heisenberg representation. 
Our objective, then, is to derive a formula which allows us to calculate these 
averages at the macroscopic level using the master equation for the reduced 
density operator alone; thus, in some approximate way we wish to carry out 
the trace over reservoir variables explicitly, as we did in deriving the mas­
ter equation itself. The result we obtain is the so-called quantum regression 
theorem and is attributed to Lax [1.20, 1.21 J. The particular designation, as 
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a theorem, seems to begin with Mallow's classic paper on the spectrum of 
resonance fluorescence, where it appears in a footnote [1.22]. In a way the 
designation is unfortunate, since the so-called "theorem" is not a theorem 
at all, but a formula for two-time, or, more generally, multi-time averages, 
which follows from the Heisenberg equations of motion for S Q9 R under the 
Born-Markov approximation. Lax did not speak of a theorem in his original 
paper [1.20], and there he makes it clear that a Markov assumption is used 
to arrive at his principal result, that "even in the nonequilibrium case the re­
gression of fluctuations obeys the macroscopic equations." The focus on "the 
nonequilibrium case" contrasts the case of thermal equilibrium, for which 
Onsager was the first to suggest that the regression of fluctuations obeys the 
macroscopic equations of motion; Onsager used this hypothesis to arrive at 
his famous reciprocity relations [1.23]. We are certainly not in the business 
of proving theorems, and since an informal use of a word like "theorem" is 
hardly appropriate, we will drop the "theorem" and speak of the quantum 
regression formula - a formula that, as we will see, may take on different 
forms for different occasions. 

Note 1.5 Those interested in theorems might look at the literature on the 
semigroup approach to open quantum systems which develops its mathemat­
ics in a rigorous manner [1.12, 1.14]. That is not to suggest that the quantum 
regression formula of quantum optics is a theorem there either; it is, rather, 
a straightforward expression of the axiomatic definition of a Markovian open 
system dynamics. Our derivation of it, below, merely connects a microscopic 
model for S Q9 R to the mathematics of semigroups by introducing the Markov 
property through an approximation. Interestingly, the rigorous mathemati­
cal approach concerns itself with a question moving in the opposite direction: 
given a semigroup evolution for a system S, can this dynamics be rigorously 
embedded in some unitary evolution for a larger system S (>9 R? The answer 
turns out to be in the affirmative; the embedding is executed by what the 
mathematicians call a dilation; there is no assertion, however, that the S (>9 R 
so obtained is precisely that which a physicist would adopt as a fundamental 
model for the microscopic world. 

Note 1.6 In a recent series of papers, Ford and O'Connell have argued that 
"There is No Quantum Regression Theorem" [1.24]. These authors consider 
the case of a harmonic oscillator coupled to a reservoir of harmonic oscillators 
in thermal equilibrium. They identify weak coupling and resonance assump­
tions - used in quantum optics - which allow the frequency-dependent energy 
of the reservoir oscillators to be replaced by a constant; thus, they correctly 
recognize that quantum optics assumes a (locally) flat reservoir spectrum 
where the reservoir spectrum is strictly not flat. Ford and O'Connell then 
note that it is precisely the non-flatness of the quantum mechanical reser­
voir spectrum that reveals itself, at low temperatures, in corrections to the 
regression of fluctuations given by the classical Onsager hypothesis (where 
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the spectrum is kT per reservoir oscillator, independent of frequency - the 
equipartition result). The appearance, and the authors' suggestion from all of 
this is that having eliminated the quantum corrections, the approximations 
of quantum optics yield a regression formula that simply implements the 
classical Onsager hypothesis; nothing has been added to Onsager to justify 
the designation of a separate quantum regression formula. Their conclusion 
aside, Ford and O'Connell make a valid and fundamental point; we might 
recall, after all, that it is the same non-flat spectrum that underlies Ein­
stein's quantum mechanical explanation for the low temperature behavior of 
specific heats [1.25]. What then might be said to put Ford and O'Connell's 
observations in perspective? First, there can be no quibbling about the ap­
proximations. They are indeed used in quantum optics in order to arrive at a 
Markovian description [see the discussion following Eq. (1.52)]; there is also 
the rotating-wave approximation, which fails to give the correct frequency 
shifts (Sect. 1.4.2) [1.26, 1.27]. The approximations themselves are not the 
main point, though, since no one disputes that they are both appropriate 
and extremely accurate in quantum optical applications. Lax demonstrates 
this explicitly in his response to Ford and O'Connell [1.28]. The central ques­
tion is this: what is one left with after making the approximations? Does the 
quantum regression formula take us beyond the classical Onsager hypothesis? 
For Lax, the main thing was to establish the validity of a procedure for cal­
culating two-time correlation functions in "the nonequilibrium case" [1.28]. 
Onsager's hypothesis concerned fluctuations about equilibrium. This is also 
the focus of Ford and O'Connell; their quantum corrections are typical of the 
sort of thing found in equilibrium statistical physics. Quantum optics looks 
in a different direction, away from equilibrium, to the strong resonant, or 
near resonant, interactions made accessible by coherent light sources. Coher­
ence is very much the name of the game; it is established away from thermal 
equilibrium and generally has quantum mechanical consequences; the quan­
tum regression formula carries through those aspects of quantum mechanics 
dealing with things like coherence, probability amplitudes, entanglement and 
so on. This is clear from the more formal versions of the formula [Eqs. (1.97) 
and (1.98)] which are manifestly quantum mechanical expressions, respecting 
operator order and employing a quantum mechanical propagator. For those 
cases where a linearized treatment of fluctuations may be made, there is, it is 
true, a version of the formula much closer to Onsager, where one has a linear 
set of mean-value equations analogous to macroscopic transport equations 
[Eqs. (1.107) and (1.108)]. Even here, though, quantum mechanical features 
can turn up, such as antibunched or squeezed fluctuations. It is important to 
note, furthermore, that the quantum regression formula is not limited to the 
small fluctuation regime. It can treat large fluctuations, where a classical evo­
lution would necessarily be nonlinear. Of course quantum mechanics is linear, 
even in this case. There is a quantum mechanical substitute for nonlinearity, 
however, expressed through multiphoton processes, which prohibit a reduc-
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tion of the dynamics to a simple set of transport-like equations recognizable 
from a classical or semi-classical treatment. 

1.5.1 Formal Results 

We will not follow Lax in detail, but our method is fundamentally the same 
as his. Recall our microscopic formulation of system S coupled to reservoir 
R. The Hamiltonian for the composite system S ® R takes the form given 
in (1.16). The density operator is designated x(t) and satisfies Schrodinger's 
equation (1.19). Our derivation of the master equation has given us an equa­
tion for the reduced density operator (1.17), which we will now write formally 
as 

p=£p; (1.81) 

£ is a generalized Liouvillian, a "superoperator" in the language of the 
Brussells-Austin group [1.29]; £operates on operators rather than on states. 
For the damped harmonic oscillator, from (1.73), the action of£ on an arbi­
trary operator 6 is defined by the equation 

£0 =- iw0 [ata, 0] + ~(2a6at- ata6- 6ata) 

+ 1n(a6at + at6a- ata6- Oaat). (1.82) 

Within the microscopic formalism multi-time averages are straightfor­
wardly defined in the Heisenberg picture. In particular, the average of a 
product of operators evaluated at two different times is given by 

(1.83) 

where 01 and 02 are any two system operators. These operators satisfy the 
Heisenberg equations of motion 

with the formal solutions 

61 (t) = eCi/n)Ht61 (O)e-(i/n)Ht' 

02(t') = e(i/n)Ht' 62(0)e-(i/n)Ht'. 

From (1.19), the formal solution for X gives 

x(O) = e(i/n)Htx(t)e-(i/n)Ht_ 

(1.84a) 

(1.84b) 

(1.85a) 

(1.85b) 

(1.86) 

We substitute these formal solutions into (1.83) and use the cyclic property 
of the trace to obtain 
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(C\ ( t)62(t')) = trs®R [ e(i/n)Htx( t)6I (O)e(i/n)H(t' -t) 62 (O)e-(i/n)Ht'] 

= trs®R [ 62 (O)e-(i/n)H(t' -t) X( t)6I (O)e(i/n)H(t' -t)] 

= trs{ 62 (O)trR [ e-(i/n)H(t' -tlx( t)61 (O)e(i/n)H(t' -t) J}. 
(1.87) 

In the final step we have used the fact that 62 is an operator in the Hilbert 
space of S alone. 

We now specialize to the case t' 2: t and define 

T =: t'- t, 

Xo,(T) = e-(i/n)HTx(t)6I(O)e(ifn)HT. 

Clearly, x6 , satisfies the equation 

with 

(1.88) 

(1.89) 

(1.90) 

(1.91) 

If we are to eliminate explicit reference to the reservoir in (1.87), we need to 
evaluate the reservoir trace over Xo, ( T) to obtain the reduced operator 

(1.92) 

where 

(1.93) 

notice that p01(T) is just the term trR[· ··]inside the curly brackets in (1.87). 

If we then assume that x(t) factorizes as p(t)R0 , in the spirit of (1.29), from 
(1.91) and (1.93) we can write 

x 0 ,(0) = Ra[p(t)6I(O)] = Ro p0 ,(0). (1.94) 

Equations (1.90), (1.92), and (1.94) are now equivalent to (1.19), (1.17), and 
(1.25) - namely, to the starting equations in our derivation of the master 
equation. We can find an equation for p01(T) in the Born-Markov approxi­

mation following a completely analogous course to that followed in Sects. 1.3 
and 1.4. Since (1.19) and (1.90) contain the same Hamiltonian H, using the 
formal notation of (1.81), we arrive at the equation 

(1.95) 

with solution 
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P0 /T) = e.Cr [Pa1 (0)] = e.Cr[p(t)01(0)]. (1.96) 

When we substitute for p01(T) in (1.87), we have (T 2': 0) 

Exercise 1.3 Follow the same procedure to obtain ( T 2': 0) 

Equations (1.97) and (1.98) give formal statements of the quantum re­
gression formula for two-time averages. To calculate a correlation function 
(01(t)02(t')03(t)) we cannot use (1.97) and (1.98) because noncommuting 
operators do not allow the reordering necessary to bring 0 1 ( t) next to 0 3 ( t). 
We may, however, generalize the approach taken above. Specifically, we have 

(01 ( t)02 ( t')03(t)) 

Defining 

and 

= trs®R [ e(i/n)Htx( t)61 (O)e(ifn)H(t' -t) 02 (O)e-(i/n)H(t' -t) 

x63 (O)e-(i/n)Ht J 

= trs®R [ 62 (O)e-(i/n)H(t' -t) 63 (O)x(t)61 (O)e(i/n)H(t' -t) J 

= trs{02(0)trR [ e-(i/n)H(t' -t)63 (O)x( t)01 (O)e(i/n)H(t' -t)]}. 
(1.99) 

(1.100) 

(1.101) 

as analogs of (1.89) and (1.92), we can proceed as before to the result (T 2': 0) 

(1.102) 

Equations (1.97) and (1.98) are, in fact, just special cases of (1.102) with 
either 0 1(t) or 0 3(t) set equal to the unit operator. 
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1.5.2 Quantum Regression for a Complete Set of Operators 

It is possible to work directly with the rather formal expressions derived 
above. The formal expressions can also be reduced, however, to a more fa­
miliar form [1.20], which is often more convenient for doing calculations. 
Essentially, we will find that the equations of motion for expectation values 
of system operators (one-time averages) are also the equations of motion for 
correlation functions (two-time averages). 

We begin by assuming that there exists a complete set of system operators 
AIL, p, = 1, 2, ... , in the following sense: that for an arbitrary operator 6, and 

for each AIL, 
(1.103) 

>. 

where the MIL>. are constants. In particular, from this it follows that 

(AIL)= trs(AILp) = trs[AIL(.Cp)] 

= L MIL.xtrs(A.xp) 

(1.104) 

Thus, expectation values (AIL), p, = 1, 2, ... , obey a coupled set of linear 
equations with the evolution matrix M defined by the MIL>. that appear in 
(1.103). In vector notation, 

(A)= M(A), (1.105) 

where A is the column vector of operators AIL, p, = 1, 2, .... Now, using (1.97) 
and (1.103) ( 7 2:: 0): 

d~ (01(t)AIL(t + 7)) = trs{AIL(O)(.Ce£r[p(t)01(0)])} 

= L MIL.xtrs{A.x(O)e£r[p(t)01(0)]} 

= L MIL.x(01(t)A.x(t + 7)), (1.106) 
>. 

or, 

(1.107) 

where 0 1 can be any system operator, not necessarily one of the Aw This 
result is just what would be obtained by removing the angular brackets from 
(1.105) (written with t--+ t+7, and· = d/dt--+ d/d7), multiplying on the left 
by 0 1 ( t), and then replacing the angular brackets. Hence, for each operator 
0 1 , the set of correlation functions (01 ( t)AIL ( t + 7)), JL = 1, 2, ... , with 7 :;::: 0, 



26 1. Dissipation in Quantum Mechanics: The Master Equation Approach 

satisfies the same equations (as functions of r) as do the averages (A,.(t+r)). 
This is perhaps the more familiar statement of the content of the quantum 
regression formula. 

Exercise 1.4 For r ?: 0 show that 

d A A A A 

dr (A(t + r)02(t)) = M(A(t + r)02(t)). (1.108) 

Thus, we can also multiply (1.105) on the right by 02(t), inside the average. 
Also show that 

(1.109) 

It may appear that this form of the quantum regression formula is quite 
restricted, since its derivation relies on the existence of a set of operators A.,., 
J.l = 1, 2, ... , for which (1.103) holds. We can show that this is always so, 
however, if a discrete basis In), n = 1, 2, ... , exists; although, in general, the 
complete set of operators may be very large. Consider the operators 

Then 

with 

A,.= Anm = ln)(ml. 

trs[Anm(.CO)] = trs[ln)(mi(.CO)] 

= (mi(.CO)In) 

~ (m{ci, ln')(m'l(n'l61m'}n) 

= L (mi(.Cin')(m'l)ln)(n'IOim') 
n',m' 

= L (mi(.Cin')(m'l)ln)trs(lm')(n'IO) 
n',m' 

= L Mnm;n'm' trs(An'm'O), 
n',m' 

Mnm;n'm' = (ml ( .Cim')(n'l) In). 

(1.110) 

(1.111) 

(1.112) 

In the last step we have interchanged the indices n' and m'. Equation (1.111) 
gives an expansion in the form of (1.103). The complete set of operators 
includes all the outer products ln)(ml, n = 1, 2, ... , m = 1, 2, ... ; this may 
be a small number of operators, a large but finite number of operators, or a 
double infinity of operators in the case of the Fock state basis. 



1.5 Two-Time Averages and the Quantum Regression Formula 27 

1.5.3 Correlation Functions for the Damped Harmonic Oscillator 

We will conclude our discussion of two-time averages with two simple exam­
ples based on the equations for expectation values for the damped harmonic 
oscillator [Eqs. (1.78) and (1.79)]. We first calculate the first-order correlation 
function (at(t)a(t+r)). Equation (1.78) gives the equation of motion for the 
mean oscillator amplitude: 

(a)=- (i +iwo)(a). (1.113) 

Then, with A1 =a and 01 =at, from (1.105) and (1.107), we may write 

(1.114) 

Thus, 

(at(t)a(t + r)) = (at(t)a(t))e-('y/2+iwo)r 

= [(n(O))e--yt + n(l- e--yt)]e-('Y/2+iwo)r, (1.115) 

where the last line follows from (1.80). If the oscillator describes a lossy 
cavity mode, in the long-time limit the Fourier transform of the first-order 
correlation function 

(at(o)a(r))ss = lim (at(t)a(t + r)) = ne-('y/2+iwo)T 
t-+oo 

(1.116) 

gives the spectrum of the light at the cavity output. This is clearly a 
Lorentzian with width 'Y (full-width at half-maximum). 

Note 1. 7 This statement about the spectrum of the light at the cavity out­
put is not strictly correct for the lossy cavity model as we have described it. 
The reason is that we have taken the environment outside the cavity to be in 
thermal equilibrium at temperature T (it is the environment that is modeled 
by the reservoir). Given this, the light detected in the cavity output will be 
a sum of transmitted light - light that passes from inside the cavity, through 
the cavity output mirror, into the environment - and thermal radiation re­
flected from the outside of the output mirror. Calculating the spectrum at the 
cavity output for this situation is more involved (Sect. 7.3.4). Physically, how­
ever, the result is clear; the spectrum must be a blackbody spectrum. The 
Lorentzian spectrum obtained from (1.116) would be observed, as filtered 
thermal radiation, for a cavity coupled to two reservoirs, one at temperature 
T and the other at zero temperature. If the bandwidth for coupling to the 
reservoir at temperature T is much larger than for coupling to the zero tem­
perature reservoir, the master equation (1.73) is basically unchanged. Light 
emitted into the zero temperature reservoir then shows the Lorentzian spec­
trum obtained from the Fourier transform of (1.116). 
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For a second example we calculate the second-order correlation function 
(at(t)at(t + T)a(t + T)a(t)) = (at(t)n(t + T)a(t)). Writing (1.79) in the form 

:t c~)) = ( ~1 ~) c~)> (1.117) 

we set Al = n = ata and A2 = n (a constant). Then, from (1.105) and 
(1.109), with 6 1 =at and 62 =a, 

_!}__ ((at(t)n(t + T)a(t))) = (-1 1) ((at(t)n(t + T)a(t))) 
dT n(n(t)) o o n(n(t)) · 

(1.118) 

Thus, 

(at(t)n(t + T)a(t)) = (at(t)n(t)a(t))e-'"~7 + n(n(t))(1- e-'"~7 ). (1.119) 

We obtained an expression for (n(t)) in (1.80). The calculation of (at(t)n(t) 
a( t)) is left as an exercise: 

Exercise 1.5 Derive an equation of motion for the expectation value (at ( t) 
n(t)a(t)) = (at2(t)a2 (t)) from the master equation (1.73) and show that 

(at(t)n(t)a(t)) = [(n2 (0))- (n(O))] e-2-yt + 2n(1- e-'"~t) 

Now, substituting from (1.80) and (1.120) into (1.119), 

(at(t)at(t + T)a(t + T)a(t)) 

= {[(n2 (0))- (n(O))] e-2-yt + 2n(1- e-'"~t)[2(n(O))e--yt 

(1.120) 

+n(1- e-'"~t)]}e-'"~7 + n[(n(O))e--yt + n(1- e-'"~t)] (1- e-'"~7 ). 

(1.121) 

In the long-time limit, the second-order correlation function is 

(1.122) 

This expression describes the well-known Hanbury-Brown-Twiss effect, or 
photon bunching, for thermal light [1.30]; at zero delay the correlation func­
tion has twice the value it has for long delays (/'T » 1). 

Note 1.8 The correlation time, 1h, in (1.122) holds for filtered thermal 
light in accord with the comments in Note 1.7. 



2. Two-Level Atoms 
and Spontaneous Emission 

The damped harmonic oscillator provides our elementary description for the 
electromagnetic field in a lossy cavity. The damped two-level atom will pro­
vide our elementary description for the matter with which this field interacts. 
In an atomic vapor, loss of energy from an excited atom may take place via 
spontaneous emission or inelastic collisions. Elastic collisions can also play an 
important damping role; although, of course, they do not carry away energy; 
elastic collisions interrupt the phase of induced electronic oscillations and in 
this way damp the atomic polarization. We will first restrict our treatment to 
the case of purely radiative damping, assuming conditions in which collisions 
are unimportant. Such conditions are achieved, for example, in atomic beams. 
Later we will derive the terms that must be added to the master equation to 
describe additional phase destroying processes such as elastic collisions. 

We consider an atom with two states, designated 11) and 12), having en­
ergies E1 and E2 with E1 < E2. Radiative transitions between 11) and 12) 
are allowed in the dipole approximation. Our objective is to describe energy 
dissipation and polarization damping through the coupling of the 11) ~ 12) 
transition to the many modes of the vacuum radiation field (a reservoir of 
harmonic oscillators). For simplicity we assume that there are no transitions 
between 11) and 12) and any other states of the atom. The extension to mul­
tilevel atoms can be found in Louisell [2.1] and Haken [2.2]. A treatment 
for just two levels which corresponds closely to our own is given in Sargent, 
Scully and Lamb [2.3]. 

2.1 Two-Level Atom as a Pseudo-Spin System 

A two-state system can be described in terms of the Pauli spin operators. We 
will be using this description extensively and we therefore begin by briefly 
reviewing the relationship between these operators and quantities of physical 
interest, such as the atomic inversion and polarization. A more complete 
coverage of this subject is given by Allen and Eberly [2.4]. 

If we have a representation in terms of a complete set of states In), n = 
1, 2, ... , any operator 6 can be expanded as 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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6 = 2)n161m)ln)(ml. (2.1) 
n,m 

This follows after multiplying on the left and right by the identity operator 
f = I:n In) (nl. The (nl61m) define the matrix representation of 6 with 
respect to the basis In). If we adopt the energy eigenstates 11) and 12) as a 
basis for our two-level atom, the unperturbed atomic Hamiltonian HA can 
then be written in the form 

(2.2) 

where 
CYz = 12)(21 -11)(11. (2.3) 

The first term in (2.2) is a constant which may be eliminated by referring 
the atomic energies to the middle of the atomic transition, as in Fig. 2.1. We 
then write 

X) 

(2.4) 

Fig. 2.1 Energy levels for a two-level 
atom. 

Consider now the dipole moment operator eij, where e is the electronic 
charge and ij is the coordinate operator for the bound electron: 

2 

eij = e L (nl ij lm) In) (ml 
n,m=l 

= e((1lii.l2)11)(21 + (2lii.l1)12)(11) 

= d12CY- + d21CY+, (2.5) 

where we have set (1lql1) = (2lql2) = 0, assuming atomic states whose 
symmetry guarantees zero permanent dipole moment, and we have introduced 
the atomic dipole matrix elements 

(2.6) 

and atomic lowering and raising operators 
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a_= 11)(21, a+= 12)(11. (2.7) 

The matrix representations for the operators introduced in (2.3) and (2.7) 
are 

az = ( ~ ~1)' a_ = ( ~ ~), a+= ( ~ ~). (2.8) 

By writing 
a± = ~(ax ± iay), (2.9) 

with 

ax= ( ~ ~), ay = ( ~ ~i), (2.10) 

we see that ax, ay, and az are the Pauli spin matrices introduced initially 
in the context of magnetic transitions in spin-~ systems [2.5]. When applied 
to two-level atoms az, a_, and a+ are referred to as pseudo-spin operators, 
since, in this context the two levels are not associated with the states of a 
real spin. 

Exercise 2.1 From the relationships above, deduce the following: 

1. the commutation relations 

[a+, a-]= az, [a±, az] = =t=2a±; (2.11) 

2. the action on atomic states: 

azl1) = -11), azl2) = 12), (2.12a) 

a_l1) = 0, a_l2) = 11), (2.12b) 

a+l1) = 12), a+l2) = 0. (2.12c) 

From (2.12b) and (2.12c) the designation of a_ and a+ as atomic lowering 
and raising operators is clear. 

We will formulate our description of two-level atoms in terms of the op­
erators a z, a_, and a+. For an atomic state specified by a density operator 
p, expectation values of az, a_, and a+ are just the matrix elements of the 
density operator, and give the population difference 

(az) = tr(paz) = (2lpl2)- (1lpl1) = P22- pu, 

and the mean atomic polarization 

(eij) = d12tr(pa_) + d21tr(pa+) 

= dl2(2lpl1) + d21 (1lpl2) 

= d12 P21 + d21 Pl2· 

(2.13) 

(2.14) 
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2.2 Spontaneous Emission 
in the Master Equation Approach 

2.2.1 Master Equation for a Radiatively Damped Two-Level Atom 

We consider an atom that is radiatively damped by its interaction with the 
many modes of the radiation field taken in thermal equilibrium at temper­
ature T. This field acts as a reservoir of harmonic oscillators. Within the 
general formula for a system S interacting with a reservoir R, the Hamilto­
nian (1.16) is given in the rotating-wave and dipole approximations by [2.6, 
2.7] 

with 

Hs = ~!iwAO"z, 
HR = L liwkrk,;..rk,>.., 

k,>. 

HsR = L li("'k~>.rk,;..u- + "'k,>.rk,>.O"+), 
k,>. 

_ · ik·rA~k ' d "'k >. = -ze -- ek >. · 21· 
' 21iEo V ' 

(2.15a) 

(2.15b) 

(2.15c) 

(2.16) 

The summation extends over reservoir oscillators (modes of the electromag­
netic field) with wavevectors k and polarization states >., and corresponding 
frequencies Wk and unit polarization vectors ek,>... The atom is positioned at 
r A, and Vis the quantization volume. "'k,>. is the dipole coupling constant for 
the electromagnetic field mode with wavevector k and polarization >.. The 
general formalism from Sect. 1.3 now takes us directly to (1.34), where from 
(1.32) and (2.15) we must make the identification: 

r - rt - """' * rt 1 - = L.....t "'k,>.. k,>.' 
k,>.. 

r2 = r = 2:::: "'k,>.rk,>.· 
k,>. 

In the interaction picture, 

and 

r- (t) r- t (t) """' * t iwk t 
1 = = L.....t "'k,>..rk,>-e ' 

k,>.. 

f2(t) = f(t) = L K,k,>..rk,>.e-iwkt, 

k,>. 

S1 (t) = ei(WA'Tz/2)t(}_e-i(WA'Tz/2)t = (}_e-iWAt, 

S2(t) = ei(WA<7z/2)tO"+e-i(WA<7z/2)t = O"+eiWAt. 

(2.17a) 

(2.17b) 

(2.18a) 

(2.18b) 

(2.19a) 

(2.19b) 
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Note 2.1 To obtain (2.19), consider the Heisenberg equation of motion 

§1 = i~WAei(wAo-z/2)t(O'zO'- _ (T_O'z)e-i(WAO"z/2)t 

= -iWABI· 

This is trivially solved to give 

BI(t) = si(O)e-iWAt = (T_e-iwAt. 

Aside from the obvious notational differences, (2.18) and (2.19) are the 
same as (1.41) and (1.40), respectively, with the substitution a ----> 0'_, 
at ----> 0'+· The derivation of the master equation for a two-level atom then 
follows in complete analogy to the derivation of the master equation for the 
harmonic oscillator, aside from two minor differences: (1) The explicit evalu­
ation of the summation over reservoir oscillators now involves a summation 
over wavevector directions and polarization states. (2) The commutation re­
lations used to reduce the master equation to its simplest form are different. 
Neither of these steps are taken in passing from (1.34) to (1.62), or in eval­
uating the time integrals using (1.65). We can therefore simply make the 
substitution a----> 0'_, at----> 0'+ in (1.62) to write 

jJ = [~(17, + 1) + i(Ll' + Ll)J (0'-PO'+- 0'+0'-fJ) 

+ (~n +iLl') (O'+PO'-- pO'_O'+) + h.c., 

with n = n(wA, T) and 

1 = 27T L j d3k g(k)l"'(k, ..\)l 28(kc- WA), 
>. 

Ll = L Pjd3k g(k)IK,(k, >.W' 
>. WA- kc 

Ll' = L Pjd3k g(k)l"'(k~ >.W n(kc, T). 
>. WA- C 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

We have grouped the terms slightly differently in (2.20), but the corre­
spondence to (1.62) is clear when we note that, there, a = 1/2 + iLl and 
(3 = (r /2)n +iLl'. Equation (2.20) gives 

jJ = ~(n + 1)(20'_fJO'+- 0'+0'-P- PO'+O'-)- i(Ll' + Ll)[O'+O'-, JJ] 

+ ~n(20'+PO'-- O'_O'+P- fJO'_O'+) + iLl'[O'_O'+, fJ] 

= -i~(2Ll' + Ll)[O'z, p] + ~(n + 1)(20'_p0'+- 0'+0'-P- PO'+O'-) 

+ ~n(20'+PO'-- (T_O'+P- pO'_O'+), (2.24) 
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where we have used 

a+a- = I2)(III)(21 = 12)(21 =HI+ az), 

a_a+ = II)(212)(II = II)(II =~(I- az)· 

(2.25a) 

(2.25b) 

Finally, transforming back to the Schrodinger picture using (1.72), we obtain 
the master equation for a radiatively damped two-level atom: 

p =- i~w~[az, p] + ~(n + I)(2a_pa+- a+a_p- pa+a-) 

+ ~n(2a+pa-- a_a+p- pa_a+), (2.26) 

with 
W~ = WA + 2L1' + L1. (2.27) 

The symmetric grouping of terms we have adopted identifies a transition 
rate from 12)--+ II), described by the term proportional to b/2)(n+I), and a 
transition rate from II)--+ 12), described by the term proportional to ('y/2)n. 
The former contains a rate for spontaneous transitions, independent of n, and 
a rate for stimulated transitions induced by thermal photons, proportional 
to n; the latter gives a rate for absorptive transitions which take thermal 
photons from the equilibrium electromagnetic field. We will have more to say 
about this point later. Notice that the Lamb shift given by w~- WA includes 
a temperature-dependent contribution 2L1' which did not appear for the har­
monic oscillator. Its appearance here is a consequence of the commutator 
[a_, a+] = -az, in place of the corresponding [a, at] = I for the harmonic 
oscillator. From (2.22), (2.23), and (1.52) 

2L1' + L1 = L Pjd3k g(k)IK(k, ,\)12 [I+ 2n(kc, T)] 
A WA- kc 

= LP/d3k g(k)IK(k,T)I2 coth( nkc ), (2.28) 
A WA- kc 2kBT 

where kB is Boltzmann's constant. The temperature independent term in the 
square bracket gives the normal Lamb shift, while the term proportional to 2n 
gives the frequency shift induced via the ac Stark effect by the thermal reser­
voir field. We will discuss the ac Stark effect later in this chapter. It is only 
quite recently that attention has been paid to this temperature-dependent 
frequency shift, following the work of Gallagher and Cook [2.8]. A thorough 
discussion for real atoms is given by Farley and Wing [2.9]. Beautiful experi­
ments by Hollberg and Hall using highly stabilized lasers have measured the 
temperature-dependent shift in Rydberg atoms [2.10]. 

Note 2.2 Recall from Sect. 1.4.2 that the rotating-wave approximation does 
not give the correct nonrelativistic result for the Lamb shift [2.11]. Actually, 
(wA- kc)- 1 should read (wA- kc)- 1 + (wA + kc)- 1 in (2.28) (Exercise 2.2). 
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2.2.2 The Einstein A Coefficient 

If we have a correct description of spontaneous emission we must expect the 
damping constant "( appearing in (2.26) to give us the correct result for the 
Einstein A coefficient. We can check this by performing the integration over 
wavevectors and the polarization summation in (2.21). 

Adopting spherical coordinates in k-space, the density of states for each 
polarization state A is given by [2.12] 

w2V 
g(k)d3k = - 3 3 dwsineded¢. 

8?T c 

Substituting from (2.29) and (2.16) into (2.21), 

3 1"' 121r = :\ 3 2.: sinede d¢ (ek,)... d12)2. 
81r Eo c >-. o o 

(2.29) 

(2.30) 

Now, for each k we can choose polarization states .A1 and >.2 so that the first 
polarization state gives ek,>-., · d12 = 0 (taking d 12 real for simplicity). This 
is achieved with the geometry illustrated in Fig. 2.2. Then, for the second 
polarization state, we find 

A 2 2 2 2 [ A A 2] (ek,>-. 2 • d12) = dd1- cos a) = d12 1- (d12 · k) , (2.31) 

where d12 and k are unit vectors in the directions of d12 and k, respectively. 
The angular integrals are now easily performed if we choose the kz-axis to 
correspond to the d12 direction. We have 

(2.32) 

From (2.30) and (2.32) 

(2.33) 

This is the correct result for the Einstein A coefficient, as obtained from the 
Wigner-Weisskopf theory of naturallinewidth [2.13, 2.14]. 

Exercise 2.2 After replacing (wA - kc)- 1 by (wA - kc)- 1 + (wA + kc)-1 
in (2.23), show that this equation gives the formula for the temperature­
dependent shift derived in Ref. [2.9]: 
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k Fig. 2.2 Polarization states used in the 
evaluation of (2.30). 

2-Ll' = _1_ 4di2 p1oo dw w3 ( 1 + 1 ) 1 ( ) 
47rEo 3n7rc3 O WA - W WA + W efiw/kBT - 1' 2·34 

The corresponding formula for the Lamb shift is 

L1 = _1_ 2di2 p1oo dww3 ( 1 + 1 ) 
47rEO 3n7rc3 o WA - W WA + W . 

2.2.3 Matrix Element Equations, Correlation Functions, 
and Spontaneous Emission Spectrum 

(2.35) 

We mentioned earlier that (az), (a-), and (a+) are simply related to the 
matrix elements of p. We can derive equations of motion for these expectation 
values from (2.26) as we did for the harmonic oscillator, or, alternatively, we 
can simply take the matrix elements of (2.26) directly. Following the second 
approach, we use (2.12) to find 

P22 =- i~WA(2i(azp- paz)l2) 

and, similarly: 

+ ~(n + 1)(21(2a_pa+- a+a_p- pa+a-)12) 

+ ~n(21(2a+pa_- a_a+p- pa_a+)l2) 

=- 'Y(n + 1)P22 + ')'npn, 

Pn = -')'npn + !'(n + 1)P22, 

/J21 = -[~(2n+ 1) +iwA]P21> 

P12 =- [~(2n + 1)- iwA )P12-

(2.36a) 

(2.36b) 

(2.36c) 

(2.36d) 

We have dropped the distinction between WA and w.A. Equations (2.36a) and 
(2.36b) clearly illustrate our interpretation of the two terms - proportional 
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to (r/2)(n + 1) and (r/2)n- in the master equation; the former describes 
12) --+ 11) transitions at a rate r(n + 1), and the latter describes 11) --+ 12) 
transitions at a rate Iii. Of course, probability leaves and enters the two 
states in such a way that the total probability is preserved - Pll + P22 = 0. 
Equations (2.36a) and (2.36b) are in fact just the rate equations of Einstein 
A and B theory. 

Exercise 2.3 Show that in the steady state the balance between upwards and 
downwards transitions leads to a thermal equilibrium distribution between 
the states 11) and 12). 

Using the relations (uz) = P22- Pu, (u_) = P21, (u+) = p12, and Pu + 
p22 = 1, the matrix element equations can be written in the alternative form: 

(&z) = -l[(uz)(2n+ 1) + 1], 

(&_) =- [~(2n + 1) + iwAJ (u-), 

(&+) =- [~(2n + 1)- iwA J (u+). 

(2.37a) 

(2.37b) 

(2.37c) 

These provide us with a simple illustration of the use of the quantum re­
gression formula (Sect. 1.5). At optical frequencies and normal laboratory 
temperatures n is negligible, and for simplicity we drop it here. Then, using 
(2.25a), we may write the mean-value equations in vector form: 

(s) = M(s), (2.38) 

with 

s=( ~~ ), 
0"+0"-

(2.39) 

M = diag [- ( ~ + iw A) , - ( ~ - iw A) , -1 J. (2.40) 

For 7 ?: 0, equations for nine correlation functions are obtained from (1.107): 

d 
d7 (u_(t)s(t + 7)) = M(u_(t)s(t + 7)), (2.41a) 

d 
d7 (u+(t)s(t + 7)) = M(u+(t)s(t + 7)), (2.41b) 

d 
d7 (u+(t)u_(t)s(t + 7)) = M(u+(t)u_(t)s(t + 7)). (2.41c) 

Equations for a further nine correlation functions with reverse time order are 
obtained from (1.108); alternatively, this second set of correlation functions 
can be derived from the first, using 

(2.42) 

Equation (1.109) defines a further twenty-seven correlation functions. 
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Let us consider an atom prepared initially in its excited state. For this 
initial condition (a_) = (a+) = 0, (a+a-) = P22 = 1, and the solution to 
(2.38) is 

(s) = ( ~ ) . 
e-"~t 

Initial conditions for (2.41a)-(2.41c) are then, respectively, 

where we have used (2.25), together with the following: 

a!= 12)(112)(11 = 0, 

a~= 11)(211)(21 = 0, 

a+a_a+ = 12)(111)(212)(11 = 12)(11 =a+, 

a_a+a- = 11)(212)(111)(21 = 11)(21 =a_. 

(2.43) 

(2.44a) 

(2.44b) 

(2.44c) 

(2.45a) 

(2.45b) 

(2.45c) 

(2.45d) 

The nonzero correlation functions obtained from (2.41) with initial conditions 
(2.44) are ( T ;::: 0) 

(a_(t)a+(t + r)) = eiwAr e-hl2 )r (1- e-"~t), (2.46) 

(a+(t)a-(t+r)) = e-iwAre-hl2)re-"~t, (2.47) 

(a+(t)a_(t)a+(t + r)a_(t + r)) = e-'Yr e-"~t. (2.48) 

Equation (2.47) provides the result for the spontaneous emission spectrum. 
For an ideal detector, the probability of detecting a photon of frequency w 
during the interval t = 0 tot= T is given by [2.15] 

P(w) <X 1T dt 1T dt' e-iw(t-t')(a+(t)a_(t')). (2.49) 

We will see how the field at the detector is related to the atomic operators 
a_ and a+ shortly (Sect. 2.3.1); clearly, such a relationship is needed to write 
(2.49). Using (2.47) and 

(a+(t + r)a_(t)) = (a+(t)a_(t + r))*, (2.50) 
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we find, for all t and t', 

Then, 

(CJ+(t)CJ_(t')) = eiwA(t-t')e-h/2)(t+t'). 

P(w) ex faT dte-[h/2)+i(w-wA)]t faT dt' e-[h/2)-i(w-wA)]t' 

1 _ e-h/2)T e-i(w-wA)T 1 _ e-h/2)T ei(w-wA)T 
ex ----~--~----~--- ---~--~------~-

1 /2 + i(w- WA) I /2- i(w- WA) 

For long times, T > > 1 j 1, this gives the Lorentz ian lineshape 

2.2.4 Phase Destroying Processes 

(2.51) 

(2.52) 

(2.53) 

The interaction with the many mode electromagnetic field that gives rise to 
spontaneous emission causes both energy loss from the atom and damping 
of the atomic polarization. Polarization damping is described by the loss 
terms proportional to (J/2)(2n + 1) in (2.36c) and (2.36d). This damping 
results from a randomization of the phases of the atomic wavefunctions by 
thermal and vacuum fluctuations in the electromagnetic field, causing the 
overlap of the upper and lower state wavefunctions to decay in time. It is 
often necessary to account for additional dephasing interactions; these might 
arise from elastic collisions in an atomic vapor, or elastic phonon scattering 
in a solid. What terms must we add to the master equation (2.26) to describe 
such processes? 

A phenomenological model describing atomic dephasing can be obtained 
by adding two further reservoir interactions to the Hamiltonian (2.15). We 
add 

(2.54) 

with 

(2.55a) 
j j 

HsR1 +HsR2 = Lnl'i:IjkrLrlkCJ_CJ+ + Lnl'i:2jkrLr2kCT+CJ_. (2.55b) 
j,k j,k 

The complete reservoir seen by the atom is now composed of three subsys­
tems: R = R12 0 R1 0 R2, where R12 is the reservoir defined by (2.15b). 
These reservoir subsystems are assumed to be statistically independent, with 
the density operator R 0 given by the product of three thermal equilibrium 
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operators in the form of (1.38). The interactions HsR1 and HsR2 describe 
the scattering of quanta from the atom while it is in states ll) and 12), re­
spectively; they sum over virtual processes that scatter quanta with energies 
nwlk and /'iw2k into quanta with energies nw1i and l'iw2j while leaving the 
state of the atom unchanged. 

The terms that are added to the master equation by these new reservoir 
interactions follow in a rather straightforward manner from the general form 
(1.34) for the master equation in the Born approximation. In addition to the 
reservoir operators T1 ( t) and f 2 ( t) that are defined by the interaction with 
R12 [Eqs. (2.18)], we must introduce operators T3 (t) and T4(t) to account for 
the interactions with R1 and R2 . First, however, we have to take care of a 
problem, one which was not met in deriving master equations for the damped 
harmonic oscillator and the radiatively damped atom. Equation (1.34) was 
obtained using the assumption (1.28) that all reservoir operators coupling 
to the system S have zero mean in the state Ro. This is not true for the 
reservoir operators coupling to a_a+ and a+a- in (2.55b); terms with j = k 
in the summation over reservoir modes have nonzero averages proportional to 
mean thermal occupation numbers. To overcome this difficulty the interaction 
between Sand the mean reservoir "field" can be included in Hs rather than 
HsR· With the use of (2.25), in place of (2.55a) and (2.55b) we may write 

(2.56) 

and 

HsR1 + HsR2 

= L nKljk(rLrlk- 8jkThj)a_a+ + L nK2jk(r~jT2k- 8jkfi2j)a+a_, 
j,k j,k 

(2.57) 

with the frequency shift 8p given by 

8p = L(K2jjfi2j- Kljjfilj) 

j 

(2.58) 

n1i = n(w1j, T) and fi2j = n(w2j, T) are mean occupation numbers for reser­
voir modes with frequencies Wlj and W2j, respectively, and in (2.58) the sum­
mation over reservoir modes has been converted to an integration by intro­
ducing the densities of states g1(w) and 92(w). The sum of (2.56) and (2.57) 
gives the same Hamiltonian as the sum of (2.55a) and (2.55b); but now the 
reservoir operators that appear in HsR1 and HsR2 have zero mean. 

We may now proceed directly from (1.34). After transforming to the in­
teraction picture, the interaction Hamiltonian (2.57) is written in the form 
(1.33) with 
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s3(t) = a_a+, (2.59a) 

s4(t) = a+a_, (2.59b) 

F3(t) = L Kljk (rLrlk ei(wlj-wlk)t- 8jkfilj), 

j,k 

F4(t) = L K2jk (r~jr2k ei(w23 -w2k)t - 8jkfi2j). 

j,k 

(2.60a) 

(2.60b) 

These are to be substituted- together with s1 (t), s2 (t), f 1 (t), and f 2 (t) from 
(2.18) and (2.19)- into (1.34). Since the reservoir subsystems are statistically 
independent and all reservoir operators have zero mean, all of the cross terms 
involving correlation functions for products of operators from different reser­
voir subsystems will vanish. Thus, the spontaneous emission terms arising 
from the interaction with f 1 and f 2 are obtained exactly as in Sect. 2.2.1. 
The additional terms from the interaction with F3 and f 4 take the form 

( p) =- tdt'[a_a+a_a+p(t')- a_a+p(t')a_a+](f3(t)f3(t'))R1 
dephase Jo 

+ [p(t')a_a+a_a+- a_a+p(t')a_a+] (F3(t')F3(t))R1 

+[a+a_a+a-p(t')- a+a_p(t')a+a-](f4(t)f4(t'))R2 

+[p(t')a+a_a+a-- a+a-p(t')a+a_](f4(t')f4(t))R2 • 

(2.61) 

We will evaluate the first of the reservoir correlation functions appearing 
in (2.61); the others follow in a similar form. From (2.59a), 

(F3(t)F3(t'))R1 

= tr[ Rw L L Kljk Klj'k' (rLrlkei(w1rwlk)t- 8jkfilj) 

j,k j',k' 

( t i(w1 -t-wlk')t' 8 - )] x r 1j,r1k'e 3 - j'k'nlj' 

= tr[ Rw ( L L Kljk Klj'k' djrlk dj'rlk' ei(wlj-wlk)tei(wv-wlk' )t' 

j,k j',k' 

- L L Kljj Klj'k' fi1j rL,rlk' ei(w13'-w1k')t' 

j j',k' 

- L L Kljk Klj'j' rLrlk filj' ei(w13 -w1k)t) J 
j,k j' 

+ L L Kljj Ktj' j' filj filj'' 

j j' 
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where R10 is the thermal equilibrium density operator [Eq. (1.38)] for the 
reservoir subsystem R1. The nonvanishing contributions to the trace are. now 
obtained as follows: the first double sum contributes for j = k # j' = k', for 
j = k' # k = j', and for j = k = j' = k'; the second double sum contributes 
for j' = k'; and the third double sum for j = k. The correlation function 
becomes 

(T3(t)T3(t'))R1 

= L Kljj Klj'j' ii1j iilj' + L Kljj' Klj'j iilj(iilj' + 1)ei(w,J-wiJ')(t-t') 

j,j' 
j#.j' 

j,j' 
j#.j' 

+ L "'ijjnij - 2 L Kljj Klj'j' ii1j iilj' + L Kljj Klj'j' ii1j iilj', 

j j,j' j,j' 

where the first three terms come from the first double sum, and the fourth 
term comes from the second and third double sums. Noting that nL = nL + 
n 1j(ii1j + 1), we see that the sums for j # j' are completed for all j and j' 
by the third term in this expression; setting Kljj' Klj'j = 1Kljj'l 2 -required 
for (2.55b) to be Hermitian- we arrive at the result 

(T3(t)f3(t'))R1 = L 1Kljj'l 2nlj(ii1j' + 1)ei(w,J-wlJ')(t-t'l. (2.62a) 
j,j' 

Similar expressions follow for the other reservoir correlation functions: 

and 

(T4(t)T4(t'))R2 = L IK2jj'l 2 n 2j(ii2j' + 1)ei(w2 J-w2J')(t-t'l, 

j,j' 

(T3(t')T3(t))R1 = (\f3(t)f3(t'))R,)*, 

(T4(t')f4(t))R2 = (\f4(t)f4(t'))R2)*. 

(2.62b) 

(2.62c) 

(2.62d) 

If reservoir correlation times are very short compared to the timescale for 
the system dynamics, the time integral in (2.61) can be treated in the same 
fashion as in Sect. 1.4.1. After simplifying the operator products using (2.25), 
(2.61) then gives 

( 
.!. ) • 1 A [ -] '"'(p ( - -) p = -Z2LlP CTz, p + -2 CTzPCTz- p , 

de phase 
(2.63) 

with 
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"(p = 1r ~o=dw[g2(w)2 l"'2(w,wW + g1(w)l"'1(w,wW] 

x n(w, T) [ n(w, T) + 1 ], (2.64) 

Llp = p r=dw r= dw' g2(w)g2(w')l"'2(w,w')l 2 - g~(w)gl(w')l"'l(w,w')l 2 

h h w-w 
x n(w, T). (2.65) 

We add (2.63) to the terms describing radiative damping given by (2.24), and 
transform back to the Schrodinger picture using (1.72) and (2.56) to obtain 
the master equation for a radiatively damped two-level atom with non radiative 
dephasing: 

p =- i~wA_[a-z,p] + ~(n + 1)(2a-_pa-+- a-+a-_p- pa-+a--) 

+ ~n(2a-+pa-_- O"-O"+P- W-0"+) + ~ (a-zPO"z- p), (2.66) 

where the shifted atomic frequency is now 

(2.67) 

with 2.1' + .1, Dp, and ..dp given by (2.28), (2.58), and (2.65). 

2.3 Resonance Fluorescence 

The theory of resonance fluorescence provides a good illustration of the meth­
ods we have learned so far, and a simple situation in which to introduce some 
of the subtleties that arise in the treatment of damping for interacting atoms 
and fields. We are concerned here with a two-level atom irradiated by a 
strong monochromatic laser beam tuned to the atomic transition. Photons 
may be absorbed from this beam and emitted to the many modes of the vac­
uum electromagnetic field as fluorescent scattering. This scattering process 
is mediated by the reservoir interaction (2.15c) underlying our treatment of 
spontaneous emission. 

The phenomenon of fluorescence has fascinated physicists for over a cen­
tury [2.16, 2.17]. A simple classical picture can be given in terms of the 
Lorentz oscillator model which underlies the classical theory of dispersion 
[2.18-2.20]. In this picture, a harmonic electron oscillator is set into forced 
oscillation by the incident light and reradiates as a dipole source according 
to the laws of classical electrodynamics. Of course, in the absence of damp­
ing the amplitude of a resonantly forced oscillator grows without bound; to 
avoid this divergence some account of atomic damping must be given. In the 
classical theory this is achieved with the introduction of a velocity-dependent 
force derived from radiation reaction. The damping constant introduced in 
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this way ensures that the energy appearing in the reradiated field is matched 
by energy loss from the oscillator. This classical theory does pretty well 
at weak excitation. In particular, the relationship between the fluorescence 
spectrum and the spectrum of the excitation is correctly obtained; single­
frequency excitation produces a forced response of the electron oscillator and 
a reradiated field with the same frequency. A hastily drawn conclusion for a 
two-level atom might expect the fluorescence spectrum to show the natural 
linewidth [Eq. (2.53)]. This would follow if the atomic dynamics proceeded 
by independent absorption and spontaneous emission events. However, this 
is an incorrect view of the scattering process. A perturbative treatment of 
the quantum-mechanical problem is adequate to show that at weak intensi­
ties the classical result is correct [2.21]. We must view the scattering as an 
essentially coherent process, passing energy from the incident beam to the 
scattered field without lingering en route in the excited state [2.22]. 

Of course, a two-level atom is not a harmonic oscillator, and the classical 
theory fails at sufficiently high laser intensities - in fact, it fails even at weak 
intensities if we look more carefully at the statistics of the scattered photons. 
As we will see, a two-level atom responds nonlinearly to increasing intensity; 
also, while a harmonic oscillator can be excited ever higher up its ladder of 
Fock states, a two-level atom can only store a single quantum of energy. From 
a quantum treatment we will find the following: With increasing incident 
intensity, the fluorescence spectrum picks up an incoherent component having 
the natural linewidth. This incoherent spectrum splits into a three-peaked 
structure and eventually accounts for nearly all of the scattered intensity. 
This behavior was first predicted by Mollow [2.23] and has been observed 
in a number of experiments [2.24-2.26]. The incoherent spectral component 
arises from quantum fluctuations around the nonequilibrium steady state 
established by the balance between excitation and emission processes. These 
quantum fluctuations are inherent in the probabilistic character of quantum 
dynamics, and are not introduced by any external stochastic agent. 

Quantum mechanics makes its mark even at weak laser intensities if we 
ask the right question. We will find that there is zero probability of detecting 
two scattered photons emitted at the same time, independent of the inci­
dent intensity. This photon "antibunching" is a consequence of the fact that 
the atom can store just a single quantum of energy, and, after emitting this 
quantum, cannot produce a second until it is reexcited. It is the inverse of the 
photon "bunching" associated with the famous Hanbury-Brown-Twiss effect 
(Sect. 1.5.3)- there the probability for detecting two simultaneous photons is 
twice that expected for random photon arrivals [2.27]. Photon antibunching 
cannot be treated using a classical statistical description for the scattered 
field, and has therefore received special attention as a phenomenon requiring 
the quantized electromagnetic field [2.28-2.30]. The earliest reference to the 
vanishing probability for simultaneous photon detection in resonance fluores­
cence is contained in the work of Mallow [2.31]. Carmichael and Walls [2.32] 
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calculated the second-order correlation function for the scattered light, ex­
plicitly demonstrating antibunching in contrast to the bunching of Banbury­
Brown and Twiss. Shortly thereafter photon antibunching was observed by 
Kimble et al. [2.33] in the fluorescence from a dilute sodium atomic beam. 

We will obtain the fluorescence spectrum and a description of photon 
antibunching using the master equation methods we have developed. This 
is not the only approach to these problems and an extensive literature is 
available on this subject. A good review with complete references is given by 
Gresser et al. [2.34]. 

2.3.1 The Scattered Field 

The incident laser mode is in a highly excited state that is essentially un­
affected by its interaction with the single atom. We can treat this field as 
a classical driving force. Then the Hamiltonian for the resonantly driven 
two-level atom interacting with the many modes of the electromagnetic field 
separates into system and reservoir terms, as in (1.16), with 

Hs =~WAlTz- dE(e-iwAtlT+ + eiwAtlT_), 

HR = L,nwkrk,>.rk,>., 
k,>. 

HsR = L h( "'k~>.rk,>.lT- + r;,k,>.Tk,>.lT+); 
k,>. 

(2.68a) 

(2.68b) 

(2.68c) 

both interactions are written in the dipole and rotating-wave approximations. 
The laser field at the site of the atom is 

E(t) ==: e2E cos(wAt + ¢), (2.69) 

where e is a unit polarization vector, E is a real amplitude, and the phase ¢ 
is chosen so that d = e . d12eicf> is also real. 

The master equation approach focuses on the dynamics of the atom. We 
are ultimately interested, however, in the properties of the fluorescence. The 
scattered field is given in terms of the reservoir operators - in the Heisenberg 
picture 

A A(+) A(-) 
E(r, t) = E (r, t) + E (r, t), (2.70a) 

with 

(2.70b) 

(2.70c) 

We will need the correlation functions 
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(2.71) 

and 

(2.72) 

where the field operators are evaluated at the position of an idealized point­
like detector. Since we trace over the reservoir variables in deriving the master 
equation for S, our first task is to relate the scattered field to atomic source 
operators, so that (2.71) and (2.72) can be expressed in terms of operators 
of the system S. 

We begin with the Heisenberg equations of motion for the electromagnetic 
field modes: 

Writing 

rk,>. = rk,>.e-iwkt, 
Q'_ = a_e-iWAt, 

and integrating (2.73) formally, gives 

Tk,>.(t) = rk,>.(Q)- iKk,;. lot dt1 a_(t')ei(wk-WA)t'. 

(2.73) 

(2.74a) 

(2.74b) 

(2.75) 

The separation of the rapidly oscillating term in (2.74b) is motivated by the 
solution to the Heisenberg equations for the free atom [Eqs. (2.19)]. Now, 
substituting rk,>.(t) into (2.70a), and introducing the explicit form of the 
coupling constant from (2.16), the field operator becomes 

•(+) ·(+) ·(+) 
E (r, t) = E 1 (r, t) + E 8 (r, t), (2.76) 

with 

E.(+)( t)- ·" {'fiW;' (0) -i(wkt-k·r) f r, -~~v~ek,>.rk,>. e ' 
k,>. 0 

(2.77) 

and 

E.(+)( t) · 1 -iwAt" ' (' d ) ik·(r-rA) 
8 r, = ~2 ve ~wkek,>. ek,>.. 12 e 

Eo k,>. 

X latdt' a_(t')ei(wk-WA)(t'-t). (2.78) 

Here E>+\r, t) describes the free evolution of the electromagnetic field, in 

the absence of the atomic scatterer; E~+)(r, t) is the source field radiated by 
the atom. It remains to perform the summation and integration in (2.78). 
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The summation over k is performed by introducing the density of states 
(2.29) and converting the sum into an integration: 

E~+)(r, t) = i ; 3 e-iwAt L roo dw r sine dB r" d¢ 
16Jr Eoc .\ Jo Jo Jo 

X w3e (e 0 d )ei(wrfc)cosejtdt' a_(t')ei(W-WA)(t'-t). k,.\ k,.\ 12 ' 
0 

(2.79) 

we have chosen a geometry with the origin in r-space at the site of the atom 
and the kz-axis in the direction of r. One polarization state may be chosen 
perpendicular to both k and d12 , as in Fig. 2.2, and for the second we can 
write 

ek,.\ 2 (ek,.\2 • d12) = -ek,.\2 d12sino: = -(d12 X k) X k, 
where k is a unit vector in the direction of k. Setting 

k = f cos e + kx sine cos¢ + ky sine sin¢, 

(2.80) 

(2.81) 

where kx, ky, and f = r / r are unit vectors along the Cartesian axes in k­
space, the angular integrals are then readily evaluated to give 

E(+)(r, t) = 1 (d12 X f) X f roo dww2 [e-iwA(t+r/c) 
8 87r2Eoc2r } 0 

X lt dt' a- ( t')ei(w-wA)(t' -t-r/c) - e-iwA(t-r/c) 

Xltdt 1 a_(t')ei(W-WA)(t'-t+rjc)J. (2.82) 

Now, since the transformation ( 2. 7 4 b) removes the rapid oscillation at the 
atomic resonance frequency, a_ is expected to vary slowly in comparison with 
the optical period- on a time scale characterized by 1'-1 ~ w-8 s (for optical 
frequencies), compared with wA 1 ~ w- 15s. Thus, for frequencies outside the 
range -1001' ::; w - WA ::; 100/', say, the time integrals in (2.82) average 
to zero. This means that over the important range of the frequency integral 
w2 ;::;:; w~ +2(w-wA)WA varies by less than 0.01% from w2 = wl We therefore 
replace w2 by w~ and extend the frequency integral to -oo. We then find 

E~+\r, t) 
= W~ (d12 X f) X f [e-iwA(t+r/c) rtdt' a_(t1)0(t1 - t- rjc) 

4JrEoc2 r Jo 
- e-iwA(t-rjc) lt dt' a_ (t')o(t' - t + T' /c)] 

2 

=- WA 2 (d12 X f) X fa_(t- rjc). 
41fEQC T' 

(2.83) 
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This is precisely the familiar result for classical dipole radiation with the 
dipole moment operator d 12a _ in place of the classical dipole moment. 

Since thermal effects are negligible at optical frequencies (liwA >> k8T), 
we will take the reservoir state to correspond to the vacuum electromagnetic 
field - the thermal equilibrium state at T = 0. Then, the free field (2.77) 
makes no contribution to normal-ordered correlation functions such as (2.71) 
and (2.72); thus, from (2.83) we may now write 

a<1)(t + rjc, t + rjc + T) = f(r)(a+(t)a-(t + T)), (2.84) 

and 

f ( r) is the geometrical factor 

f(r) = (w~d12)2 sin2 (), 
47rt:oc2 r2 

(2.86) 

where () is the angle between d 12 and r. (Recall that r measures positions 
with respect to an origin at the location of the atom.) 

2.3.2 Master Equation for a Two-Level Atom 
Driven by a Classical Field 

In deriving the master equation for resonance fluorescence we may go directly 
to (1.34), with Sl, s2, n, and r2 identified as in (2.17). We meet only one 
minor difference from our treatment of spontaneous emission in proceeding 
from this equation to the final result: The reservoir operators in the interac­
tion picture are again given by (2.18); but the system operators 81 and 82 
are now given by 

s1 (t) = a_(t) = exp[(i/n) ltdt' H8 (t')] a_ exp[ -(i/n) ltdt' H8 (t')l 

(2.87a) 

s2(t) = a+(t) = exp[(i/n) ltdt'Hs(t')]a+exp[-(i/n) ltdt'Hs(t')l 

(2.87b) 

where Hs includes the interaction with the laser. What effect does this in­
teraction have on the atomic damping? It will turn out, in fact, that any 
changes in the treatment of the damping are negligible under normal condi­
tions. However, let us spend some time discussing this question anyway so 
that we have an idea of the approximation involved. The same approximation 
is made, often without mention, in laser theory and in cavity QED. 
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Equations (2.87) are just the formal solutions to the Heisenberg equations 
of motion for the atom-field interaction described by Hamiltonian (2.68a). 
These equations are given by 

and, similarly, 

Defining 

(2.88a)-(2.88c) become 

where 

Crx = O"+e-iWAt + (}_eiWAt, 

iCry = O"+e-iWAt _ (}_eiWAt, 

a. X = 0, 

fry= JlO"z, 

irz = -Dery, 

D=2(~E). 
In particular, from (2.90b) and· (2.90c), 

(2.88a) 

(2.88b) 

(2.88c) 

(2.89a) 

(2.89b) 

(2.90a) 

(2.90b) 

(2.90c) 

(2.91) 

(2.92) 

Then, for an atom initially in its lower state [ ( (r y ( 0)) = 0, ( O" z ( 0)) = -1], 

(O"z(t)) =-COS Jlt. (2.93) 

Dis the Rabi frequency [2.30]; the frequency at which the atom periodically 
cycles between its lower and upper states, following absorption from the laser 
field with stimulated emission, then again absorption, and so on. 
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The general solution to (2.90) is 

S1(t) = a_(t) = e-iwAt [a_+ ~(1- COS nt)(a+- a_)- ~i(sinf?t)az], 

(2.94a) 

S2(t) = a+(t) = eiWAt [a+- ~(1- COS f?t)(a+- a_)+ ~i(sinf?t)az], 
(2.94b) 

where a+ = a+(O), a_ = a_(O), and az = az(O) denote operators in the 
Schrodinger picture. Our derivation of the master equation for spontaneous 
emission proceeded from (1.34) with sl(t) and s2(t) given by the expression 
(2.94) taken in the limit !? __, 0. The interaction with the laser field has 
introduce terms modulated at the Rabi frequency. Now, there is no difficulty 
with substituting the full solutions (2.94) into (1.34) and continuing by per­
forming the time integrals as before. The number of terms to be considered 
is increased nine fold, however, and we do not want to churn through all of 
this algebra if it is not really necessary. A quick review of our calculation for 
the damped harmonic oscillator will show that the oscillatory terms in 81 ( t) 
and s2(t) only specify the frequencies at which the system interacts with the 
reservoir; they determine the frequencies at which we evaluate the reservoir 
coupling constant and density of states. The final result following from (2.94) 
will then be an equation that contains three terms, each proportional to one 
of the three damping constants ')'(wA), ')'(WA +!?),and ')'(WA -!?),where '"Y(wA) 
is given by (2.21), and ')'(WA + !?) and ')'(WA - !?) are similarly defined with 
the reservoir coupling constant and density of states evaluated at shifted fre­
quencies. At optical frequencies and reasonable laser intensities WA "' 1015 , 
and n < 1010 (this corresponds to 100 times the saturation intensity for 
sodium). Then, from (2.33), 

(2.95) 

Thus, '"Y(WA ± !?) differs from')'= '"Y(WA) by less than 0.01 %. We therefore ne­
glect n compared with WA· This is best done in (2.94) rather than at the end 
of a lot of tedious algebra. Setting!? to zero in (2.94) is equivalent to deriving 
the master equation in an interaction picture with Hs replaced by the free 
Hamiltonian ~ 1iw A a z. Then the damping terms in the master equation for 
resonance fluorescence are the same as those derived for spontaneous emis­
sion. Neglecting thermal effects (n = 0), the master equation for resonance 
fluorescence is then 

p = -i~wA[az, p] + i(!?/2) [e-iwAta+ + eiwAta_, p] 
')' 

+ 2(2a_pa+- a+a_p- pa+a-). (2.96) 

In fact, a similar approximation was made, without mention, in our derivation 
of the scattered field, where we assume a_ oscillates at the frequency WA 
[Eq. (2.74b)]. Further discussion of these issues, with specific consideration of 
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their relevance in the Scully-Lamb theory of the laser, is given by Carmichael 
and Walls [2.36, 2.37]. 

Note 2.3 Recent work by Lewenstein et al. [2.38, 2.39] describes a situation 
in which the near equality of the damping constants 'Y(wA), 'Y(WA + !!), and 
'Y(WA- Sl) does not hold. This happens for an atom inside an optical cavity 
when the interaction between the atom and the vacuum modes it sees through 
the cavity mirrors significantly perturbs the free-space interaction between 
the atom and the vacuum field. Under these conditions the vacuum modes 
which are filtered by the cavity have a Lorentzian density of states that can 
vary considerably at the frequencies WA, WA + Sl, and w A - Sl. The consequent 
changes in the three damping constants alter the widths of the peaks in the 
fluorescence spectrum. Lewenstein et al. formulate their treatment of this 
effect in terms of non-Markovian equations for the damped atom. This is 
not necessary, however, if the Lorentzian feature in the density of states is 
narrower than (or similar in width to) the Rabi frequency, but is still much 
broader than the linewidths 'Y(wA), 'Y(WA + Sl), and 'Y(WA- Sl) (computed 
with the altered density of states). The method of Carmichael and Walls 
[2.36, 2.37] is appropriate for these conditions and leads to a Markovian 
master equation; but one in which the variation of the density of reservoir 
modes at the three different atomic frequencies is taken into account. 

2.3.3 Optical Bloch Equations and Dressed States 

Using the quantum regression formula, our derivation of the correlation func­
tions appearing in (2.84) and (2.85) will follow directly from the equations of 
motion for the operator expectation values (a_), (a+), and (az)· From the 
master equation (2.96), the equations for expectation values are: 

(&_) = -iwA(a_)- i(Sl/2)e-iwAt(az)- ~(a-), 

(&+) = iwA(a+) +i(Sl/2)eiwAt(az)- ~(a+), 

(&z) = iS!e-iwAt(a+)- iS!eiwAt(a_)- 'Y( (az) + 1). 

(2.97a) 

(2.97b) 

(2.97c) 

These are the optical Bloch equations with radiative damping, so called for 
their relationship to the equations of a spin-~ particle in a magnetic field 
[2.40]. They combine the terms describing the atom-field interaction given by 
(2.88) with the spontaneous decay terms in (2.37). 

Note 2.4 When the phase destroying term ('Ypj2)(azpaz- p) in (2.66) is in­
cluded in the master equation, (2.97a) and (2.97b) have 'Y replaced by 'Y+2'Yp· 
The energy and phase decay times 1/'Y and 2/('Y+2'Yp), respectively, are often 
denoted by T1 and T2 in correspondence with the traditional terminology for 
magnetic systems. 
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If we neglect the effects of spontaneous decay, which is valid for short 
times, the optical Bloch equations are equivalent to the classical equations 
for a magnetic moment rn in a rotating magnetic field B. With (ux) and 
(uy) defined as in (2.9), we can write 

m = B X rn, (2.98) 

where 
(2.99) 

and 
(2.100) 

x, f), and z are orthogonal unit vectors. A strong intuition for the dynamics in 
resonance fluorescence can be drawn from this analogy. From (2.98) it follows 
that 

d 
-(rn · rn) = (B x rn) · rn+rn · (B x rn) 
dt 

= 0, (2.101) 

since rn and B x rn are perpendicular vectors. Thus, rn is a vector of constant 
length. In particular, for pure states, with 

we have 

and 

(u_) = P21 = crcz, 
(u+) = P12 = c1c;, 
(uz) = P22- Pu = lczl 2 -lc1l2 , 

rn · rn = (ux) 2 + (uy) 2 + (uz) 2 

= 4(u_)(u+) + (uz) 2 

= (lc1l 2 + lczl 2t 

(2.102) 

(2.103a) 

(2.103b) 

(2.103c) 

(2.104) 

Thus, for a pure state rn · rn = 1, and (2.101) expresses the requirement 
that probability be conserved. Here the state of the two-level atom can be 
represented by a point on the surface of the unit sphere (the Bloch sphere) 
as illustrated in Fig. 2.3(b ). Dynamics on the Bloch sphere give a simple 
interpretation for the solutions (2.93) and (2.94). We define a rotating frame 
of reference which follows the rotating magnetic field, writing 

( 
COSWAt sinwAt 0) 

m = Rz(wAt)rn = - sinwAt COSWAt 0 rn, 
0 0 1 

(2.105) 

where Rz generates rotations about the z-axis. The motion of m is then 
determined by a magnetic field frozen in the x direction: 
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,h = (B- WAZ) X ih, (2.106) 

(2.107) 

The modulation at the Rabi frequency shown by (2.93) and (2.94) simply 
corresponds to the precession of ih about the static magnetic field iJ- WAZ 
[Fig. 2.3(c)]. 

(a) (b) (c) 

Fig. 2.3 Representation of atomic dynamics on the Bloch sphere: (a) the rotating 
magnetic field (2.100), (b) the atomic state represented as a point on the Bloch 
sphere, (c) precession of the atomic state in the rotating frame (2.105). 

This simple view of the dynamics no longer provides the complete picture 
when the dissipative terms are reintroduced. Then (2.97a)-(2.97c) give 

! (m · m) = 2( (ax)(ax) + (ay)(ay) + (az)(az)) 

= -~ [ (ax) 2 + (a y) 2 + 2 (a z) ( (a z) + 1) J 

= -1(m · m -1) -!((az) + 1t (2.108) 

Now the length of m is not conserved. This is not inconsistent with (2.104). 
Probability is still conserved, but the atomic state has become a mixed state, 
rather than a pure state; therefore (2.104) no longer gives a valid interpreta­
tion for m · m. Dynamics cannot be formulated on the Bloch sphere. In fact, 
evolution proceeds to a steady state, with 

(2.109) 

which has the state m within the unit sphere. Since m · m must be greater 
than zero, it follows that p22 ::; ~ in the steady state. Thus, interaction with 
the laser field can at best give equal probability for finding the atom in its 
upper and lower states - it cannot produce population inversion. Of course, 
a higher probability of excitation is possible during transients, which for an 
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intense laser (large enough D) closely resemble the precession on the Bloch 
sphere which we have just described. 

Exercise 2.4 Solve the optical Bloch equations (2.97). Show that, for an 
atom initially in its lower state, 

e±iwAt(u=F(t)) = ± i_!__Y_ [1- e-(31'/4 )t (cosht5t + (31/ 4) sinht5t)] 
y'21 + y2 t5 

± iJ2Ye-(31'/4)t (r~4) sinht5t, (2.110) 

(u z( t)) = - 1 +
1 y 2 [ 1 + Y2e-(31' / 4 )t (cosh 6t + (31j 4) sinh 6t)], (2.111) 

where 

Y = v'2n, 
I 

t5 = J ( ~ f - f?2 = ~ vh - SY2. 

(2.112) 

(2.113) 

In the limit 1 « f?, 1t « 1, show that these solutions reproduce the dynamics 
on the Bloch sphere discussed above. 

A complementary view of the atomic dynamics is given by the dressed­
states formalism whose application to the problem of resonance fluorescence 
has been championed by Cohen-Tannoudji and Reynaud [2.41]. In this for­
malism we focus on the eigenstates of Hs, from which a full picture of the 
dynamics without damping can be constructed in the Schrodinger picture. It 
is usual to develop the dressed-states formalism around the fully quantized 
Hamiltonian 

(2.114) 

rather than the time-dependent (semiclassical) Hamiltonian (2.68a). Here at 
and a are creation and annihilation operators for the laser mode, and the free 
Hamiltonian liwAata generates the time dependence- a(t) = a(O)e-iwAt; to 
make the connection with (2.68a) we must take nK,(a) = -dE. 

Without the atom-field interaction the eigenvalues of Hs define the infi­
nite ladder of degenerate energy levels illustrated in Fig. 2.4(a). States ln)l2) 
and In+ 1)11) correspond to ann-photon Fock state plus an excited atom, 
and an (n + 1)-photon Fock state plus an unexcited atom, respectively; both 
have the energy ( n + ~) liw A. This degeneracy is lifted by the interaction. 
The size of the resulting level splitting may be found, together with the new 
energy eigenstates, by diagonalizing the coupled equations 

v:n+1 nK,*) ( In) 12) ) 
(n + ~)liwA In+ 1)11) . 

(2.115) 



(a) 

ln)l2) 
---- (n+~)hwA 

ln+l)ll) 

ln-1)12) 
---- (n-~)hwA 

ln)ll) 
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(b) 

---------<~~~ (n+~)hwA+~h.Q 
'', (n+~)hwA- ~h.Q 

~ (n-~)hwA + ~h.Q 
---------<""" 

' 1 1 ' (n- 2)hwA- 2h.a 

---------< 

Fig. 2.4 (a) Degenerate ladder of energy levels for the uncoupled atom-field system. 
(b) Level splitting due to the atom-field interaction. Reading from left to right, the 
illustrated transitions have frequencies WA, WA- [l, WA + [l, and WA. 

The new energy eigenvalues are 

(2.116) 

If the laser field is in a coherent state with mean photon number n > > 1, we 
may write 

and for all the populated eigenstates 

En,±~ (n + ~)nwA ± n(d~2 E) = (n + ~)nwA ± ~fi{l. (2.117) 

Transitions between the eigenstates of the interacting atom-field system iden­
tify the three frequencies WA, WA + {l, and WA - {l encountered in (2.94) 
[Fig. 2.4(b) ]. The three damping constants that arose in our treatment of the 
fluorescent decay process (Sect. 2.3.2) may now be associated with fluores­
cent transitions between the states of the coupled atom-field system - the 
so-called dressed states. If we suppress the nnwA which distinguishes states 
of the Fock hierarchy, the remaining four-level structure gives the dressed 
energies -~fi(wA =f D) and +~fi(wA ±D) for the atom. 

Exercise 2.5 Construct the eigenvectors corresponding to the eigenvalues 
(2.116) and hence find explicit expressions for the dressed states as linear 
combinations of the states ln)l2) and In+ 1)11). For large n the dressed 
states approximately factorize as the product of a Fock state for the field 
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and linear combinations of the states 12) and 11) for the atom (neglect the 
difference between In) and In+ 1) ). Locate the atomic states obtained after 
the factorization on the Bloch sphere. 

Note 2.5 The dressed states are often referred to as the dressed states of 
the atom. Clearly, the states obtained by diagonalizing (2.115) should not 
really be referred to in this way, since these states are vectors within the 
Hilbert space of the atom plus the field. There are, nonetheless, conditions 
under which it is appropriate to ascribe the "dressing" to states of the atom 
alone - in the large n limit mentioned in Exercise 2.5. There are a number 
of ways to give a mathematically well-defined meaning to this limit. If we 
start within the Hilbert space of the atom plus quantized field mode, we 
must define an approximation scheme that maps all the four-level structures 
in Fig. (2.4b) (with n ~ n) to a single four-level structure that does not 
distinguish between photon numbers, and in this way defines the levels of 
the dressed atom. Perhaps a more satisfactory approach is to begin from the 
semiclassical Hamiltonian (2.68a). This Hamiltonian is time dependent and 
does not, therefore, define a normal eigenvalue problem. But it is periodic 
in time. For such a Hamiltonian quasiperiodic solutions to the Schrodinger 
equation and their associated quasienergies play the role of energy eigenstates 
and eigenvalues [2.42, 2.43]. It is easy to find these quasiperiodic states and 
quasienergies for the Hamiltonian (2.68a): first transform to the interaction 
picture, diagonalize the resulting time-independent Hamiltonian, and then 
transform back to the Schrodinger picture. The frequencies of the quasiperi­
odic solutions found in this way, -~(wA =f il) and +~(wA ± il), are those 
given by the dressed energies of the atom. 

2.3.4 The Fluorescence Spectrum 

We might expect the spectrum of the fluorescent scattering to show features 
associated with the three transition frequencies between dressed states, WA, 

WA + il, and WA - il. Although this seems an obvious conclusion to draw 
from Fig. 2.4(b), there is really little basis for accepting it a priori. For weak 
excitation by monochromatic light, the fluorescence spectrum is shown by 
perturbation theory to also be monochromatic [2.21] -it does not have the 
linewidth of spontaneous emission. This teaches us that the scattering pro­
cess is not simply a sequence of absorption and emission events; there is 
some coherence involved; a view of the quantum dynamics based solely on 
discrete transitions between atomic energy levels is not to be trusted. More­
over, consider the mean scattered field given by (2.83) and (2.110). For strong 
excitation this does contain components at the shifted frequencies WA ± Q. 
These decay, however, as transients and in the long-time limit 

l. (EA (+)( t)) = _ w1 (d A) A (·-1 ~) -iwA(t-rfc) 1m 8 r, 2 12 x r x r z 10 1 y 2 e . 
t-+oo 41l'Eoc r y 2 + 

(2.118) 
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Equation (2.118) suggests monochromatic fluorescence, in agreement with 
the established weak-field result. The dynamical picture is one of coherent 
reradiation from an induced dipole oscillator, the excitation strength entering 
only to saturate the oscillator amplitude. 

Surely, however, this essentially classical picture is also incomplete. The 
quantum-mechanical dipole operator lives in a probabilistic world, and there­
fore we should allow our oscillator amplitude the opportunity to acquire a 
stochastic component. Then, in general, the fluorescence spectrum should not 
be calculated from the mean scattered field, but from the Fourier transform 
of the autocorrelation function (2.71). Using (2.84), for the long-time limit, 
this gives 

S(w) = f(r)- dTeiwr(o-+(O)o--(T))ss, 1100 

27r -oo 
(2.119) 

where (o-+(O)o-_(T))ss = limt--.oo(o-+(t)o-_(t + T)). Thus, in a rotating frame, 
the atomic scatterer decays to the steady state 

(2.120a) 

(2.120b) 

However, fluctuations about this steady state can occur, described by the 
operators 

LliJ-'f = 8-'f - (8-'f)ss, 

LliTz = O"z- (o-z)ss· 

(2.121a) 

(2.121b) 

These fluctuations are intrinsic to the quantum mechanics. Now the fluo­
rescence spectrum decomposes into a coherent component, corresponding to 
(2.118), and an incoherent component arising from quantum fluctuations: 

S(w) = Scoh(w) + Sinc(w), (2.122) 

with 

(2.123) 

and 

(2.124) 

Let leah and line denote the coherent and incoherent intensities obtained 
by integrating (2.123) and (2.124) over all frequencies: 
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and 

leah= f(r)(a+)ss(a_)ss 
1 y2 

= f(r)2 (1 + Y2)2' 

line= f(r)(Lla+Lla_)ss 

= f(r) ( (a+a-)ss- (a+)ss(a_)ss) 

= f(r) [!(1 + (az)ss)- (a+)ss(a_)ss] 
1 y4 

= f(r)2 (1 + Y2) 2 · 

(2.125) 

(2.126) 

We can now make a judgment about the qualitative form of the spectrum. 
At weak laser intensities, the ratio line/ leah = Y 2 = 2.Q2 /12 is very small, 
and coherent scattering dominates, in agreement with the results from per­
turbation theory. However, line/ leah increases with the laser intensity, and 
the incoherent spectral component will dominate at high laser intensities. 
Since the relaxation, or regression, of fluctuations around the steady state 
must surely follow a modulated decay similar to that shown by (2.110) and 
(2.111), we expect this incoherent spectrum to show sidebands at WA ± .Q. 
The general dynamical picture must then be constructed as something of a 
mixture, showing both elements of coherent reradiation and discrete quantum 
transitions. 

Note 2.6 The face the quantum dynamics shows to us depends on the ques­
tions we ask, as is generally the case in quantum mechanics. Illustrating this, 
we might note that the radiated intensity admits an interpretation in terms 
of discrete quantum transitions even at weak excitation, where leah ( r) domi­
nates. If l(r) = leoh(r) + line(r) = f(r)(a+a-)ss is the total intensity at the 
position r, we can integrate over a sphere of radius r (centered on the atom) 
to obtain the radiated power: 

P = 2Eoc 121r d¢ L" d(} sin(} r 2 l(r) 

= 2EoC ( ~:E~~~Y (12
7r d¢ 11r d(} sin3 o) (a+a -)ss 

= (4:Eo 4~~~~2) liwA (2JPssJ2) 

= "( liwA (2JPssJ2). (2.127) 

The radiated power is just the product of the atomic decay rate, the photon 
energy carried away per emission, and the probability that the atom is in 
its excited state. We have an interpretation in terms of discrete spontaneous 
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emission events, despite the fact that the weak-field spectrum is not consistent 
with these dynamics. 

The approach we have outlined for calculating the fluorescence spectrum 
is essentially the same as that followed by Mollow [2.23] in his original work. 
It certainly leads to a simple calculation compared to some of those that 
rederived Mallow's result (see Cresser et al. [2.34] for a review). We need 
only solve for (.:1iT + (0).:1iT _ ( T) )ss using the optical Bloch equations and the 
quantum regression formula. From (2.97), (2.120), and (2.121), 

dd (.:1iT_) = -i(fl/2)(.:1az)- 1pa-_), 
t 2 

dd (.:1iT+) = i(fl/2)(.:1az)- 1pa-+), 
t 2 
d 
dt (.:1a z) = ifl(.:1iT +) - ifl(.:1iT-) - r\.:1a z)' 

and the quantum regression formula gives 

where 

and 

( 
.:1iT_) 

.:1s = .:1iT + , 
.:1az 

0 
1 

-iV'iY 

iY/V'i ) 
-iYfV'i . 

(2.128a) 

(2.128b) 

(2.128c) 

(2.129) 

(2.130) 

(2.131) 

The desired correlation function is the first component of the vector (.:10"+(0) 
.:1s(T))ss· The initial conditions are given by 

(
(a+a-)ss- (a+)ss(a_)ss) 

(.:1a+.:1s)ss = _ (a+iT+)ss ~ (a+).7s 

(a+az)ss- (a+)ss(az)ss 

_ (H1 + (az)_:) _- ~+)ss(a_)ss) 
- (a+)ss ' 

-(a+)ss(1 + (az)ss) 

where we have used (2.25), (2.45), and 

a+az = 12)(11(12)(21-11)(11) = -12)(11 =-a+, 

CJ_(Jz = 11)(21(12)(21-11)(11) = 11)(21 =a_. 

From the steady-state averages (2.120) we obtain 

(2.132a) 

(2.132b) 
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1 y2 ( Y
2 ) (Lla+Lls)ss = - 2 1 . 

2 (1 + Y2) iJ2Y 
(2.133) 

Equation (2.129) can be solve by finding a matrix S to diagonalize M. 
Multiplying (2.129) on the left by S, 

!s(Ll&+(O)Lls(T))ss = (SMS- 1 )S(Lla+(O)Lls(T))ss, (2.134) 

and, formally, 

(2.135) 

where 

A=SMS =dmg -- --+8 ---8 - -1 . ( 'Y 3"( 3"( ) 
2' 4 ' 4 

(2.136) 

is formed from the eigenvalues of M, and the rows (columns) of S (S- 1) are 
the left (right) eigenvectors of M [2.44]; 8 is defined in (2.113). After some 
algebra we obtain the first-order correlation function for resonance fluores­
cence 

(Ll&+(O)LlcL (T))ss 

_ ~~ -('y/2)r 
- 41 + y2e 

- ~ y2 [1- y2 + (1- 5Y2) ('Y/4)] e-[(3-y/4)-o]r 
8 (1 + Y2)2 8 

- ~ y2 2 [1- y2- (1- 5Y2) ('Y/4)] e-[(3-y/4)+<\'Jr. 

8 (1 + Y 2 ) 8 (2.137) 

Explicit expressions for the incoherent spectrum can be calculated from 
(2.124) and (2.137) as an exercise. In general, the spectrum is given by a 
sum of three Lorentzian components. It is easy to see that in the strong­
field limit, Y 2 > > 1 ( il2 > > 1 2), where incoherent scattering dominates, 
this calculation gives the well-known Mollow, or Stark, triplet. Figure 2.5 
illustrates the dependence of the incoherent component of the fluorescence 
spectrum on the laser intensity. 

2.3.5 Second-Order Coherence 

We have identified "coherent" scattering with a monochromatic spectrum. 
More precisely, a monochromatic spectrum only implies first-order coherence 
- i.e. when (Ll&+(O)Lla_(T))ss vanishes the first-order correlation function 
factorizes: 
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(v1) 

-20 o -2!~0 o 20(v) 

(iv) 
0 20 

(iii) 
-20 () 20 

(ii) 
-20 0 20 

(i) 

Fig. 2.5 The incoherent fluorescence spectrum. Spectra are plotted as a function 
of 2(w -wA)h for (i) Y = 0.3, (ii) Y = 1.5, (iii) Y = 2.7, (iv) Y = 3.9, (v) Y = 5.1, 
andY= 6.3. 

where G~~)(T) = limt->oo cCil(t, t+T). This guarantees nothing about higher­
order correlation functions. Do they factorize in a similar fashion? Is the 
scattered light in the weak-field limit- where the spectrum is monochromatic 
- coherent to all orders, as would be the radiation from a classical dipole? 
It is not difficult to see that it is not. We need look no further than to the 
second-order correlation function; the scattered light does not have second­
order coherence. The lack of second-order coherence is associated with the 
phenomenon of photon antibunching. It tells us that the fluorescence from 
a two-level atom is nonclassical, even in the weak-field limit where a model 
based on classical dipole radiation gives the correct spectrum. 

The second-order correlation function is proportional to the probability 
for the detection of two photons separated by a delay time T. It is measured 
in delayed photon coincidence experiments [2.45, 2.46]. 

Note 2. 7 Actual photodetection probabilities depend on such things as the 
photon counting time and the collection and quantum efficiencies of the de­
tector. In (2.127) we saw that the photon emission rate into a 471" solid angle 
is 'Y(a+a-)ss (the radiated power is nwA'Y(a+a-)ss)- Consider a detector lo­
cated at position r which accepts photons over the small solid angle L1D, and 
has a detection efficiency 7]. The single-photon detection probability during 
a short counting interval L1T « 'Y-l is the product of the energy density 
2Eo(E(-) _E(+))ss, a factor c/nwA which convert this into a photon flux density, 
the detector area L1Dr2 , photon counting time L1T, and quantum efficiency 77: 
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p(1) = 77L1T(L1Dr2 )~;c~!>(o) 
Llfl sin2 () 

= 7]"(L1T / (0"+0"-)ss· 8n 3 
(2.138) 

After integration over all solid angles this gives p(1) = 7]"(L1T(O"+O"-)ss = 
7]"(L1T(21Pssl2), in agreement with (2.127). The probability for detecting a 
first photon and a second photon after a delay T is 

This result is proportional to the second-order correlation function (2.85). 

In the long-time limit, second-order coherence requires the second-order 

correlation function to factorize in the form 

this factorization must hold in addition to the requirement for first-order 

coherence stated above. It clearly never holds for T = 0, since (O"+);s and 
(0"_);8 are not zero [from (2.120a)] but O"~ = O":_ = 0. The latter simply 
states that a two-level atom cannot be sequentially raised or lowered twice; 
two photons cannot be absorbed or emitted simultaneously; the detection 
of one photon sets the atom in its lower state, after which a second photon 
cannot be detected until the atom has been reexcited. We might predict 
then that the probability for detecting two photons is just the probability for 
detecting the first photon, 

p(1) ex f(r)(O"+O"-)ss = f(r)(21Pssl2), 

multiplied by the probability for detecting a second photon at the timet= T, 

given that the atom was in its lower state at t = 0: 

p(2,TI1,0) ex f(r)((O"+O"-)(T))p(O)=Il)(ll = f(r)(2lp(T)I2)p(O)=Il)(ll· 

We are suggesting that the second-order correlation function may be factor­
ized as a product of photon detection probabilities, with 

(2.140) 

This is clearly zero for T = 0, and gives independent detection events for 
large T, as p( T) ..._, Pss. We will use the quantum regression formula to prove 
this result. (As with the calculation of the fluorescence spectrum, other ap­
proaches can be used to obtain the result; Kimble and Mandel, for example, 
derive (2.140) working entirely in the Heisenberg picture [2.47].) 
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First, let us consider the formal solution to the Bloch equations for time­
dependent expectation values. In a rotating frame, (2.97a)-(2.97c) can be 
written in the vector form 

(s) = M(s) + b, (2.141) 

where 

(2.142) 

M is the 3 x 3 matrix given by (2.131), and 

(2.143) 

Then 

(2.144) 

and 
(s(t)) = -M-1 b+exp(Mt)((s(O)) +M-1b). (2.145) 

Now 

G~;)(T) = f(r) 2 (a+(O)a+(T)a_(T)a_(O))ss 

= f(r) 2 ~ [(a+a-)ss + (a+(O)az(T)a_(O))ss], (2.146) 

where we have used (2.25a). We can calculate the correlation function 
(a+(O)az(T)a_(O))ss using the quantum regression formula. It is the third 
component of the vector (a+s(T)CJ_)ss· To find the equation of motion for 
this vector, the quantum regression formula applied to a complete set of op­
erators tells us to remove the angular brackets from (2.141) (b is a constant 
vector multiplied by the expectation of the identity operator), multiply on 
the left by a+(O) and on the right by a_(O), and replace the angular brackets; 
thus 

d 
dT (a+(O)s(T)a_(O))ss = M(a+(O)s(T)a-(O))ss + (a+a-)88 b 

= M [(a+(O)s(T)a_(O))ss + (a+a-)ssM- 1b]. 

(2.14 7) 

The formal solution to this equation is 

(a+(O)s(T)a_(O))ss = -(a+a-)ssM-1 b 

with initial conditions 

+ exp(MT) [ (a+s a- )ss + (a+a-)88 M -lb], 

(2.148) 
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(
(a+ir_a_)ss) 

(a+s a_)ss = (a+ir+a-)ss 

(a+aza-)ss 

~ (a+a-)~(JJ (2.149) 

where we have used (2.45) and (2.132). Now (2.148), (2.149), and (2.145) give 

(a+ (O)s( T )a- (0) )ss 

~ (a+a-)~{ -M-'b +exp(Mr)[ ( JJ + M-'b]} 

= (a+a-)ss(s(T))p(O)=Il)(ll· (2.150) 

He<e, we have noted that. ( JJ is 'imply the inWal condition (s(O)) fm an 

atom prepared in its lower state- i.e. with p(O) = 11)(11. Substituting the 
third component of (2.150) into (2.146) establishes our result: 

c~;>(T) = f(r) 2 (a+a-)ss H1 + (az(T))p(O)=Il)(ll) 

= f( T ) 2 (21Pss 12) (2lp( T) 12) p(O)=Il) (11· (2.151) 

Note that this calculation is independent of the form of M. Thus, while 
(2.131) only gives M for perfect resonance, (2.151) also holds for nonresonant 
excitation. 

Note 2.8 The factorized result we have obtained in (2.151) actually fol­
lows very simply, and quite generally, from the quantum regression formula 
(1.102): 

G~;l(T) = f(r) 2 (a+(O)a+(T)a_(T)a_(O))ss 

= f(r) 2tr{ et:T [a-(O)Pssa+(O)]a+(O)a_(O)} 

= f(r) 2tr{ eL:T [I1)(21Pssl2)(11]12)(21} 

= f(r) 2 (21Pssl2)(2le£T (11)(11) 12); 

(2lei:T(I1)(11)12) is just a formal expression for (2lp(T)I2)p(O)=Il)(ll· 

Equation (2.111) provides the solution for (az(t))p(O)=Il)(ll from which an 

explicit expression for c~;> ( T) may be written down. We normalize c~;> ( T) by 
its factorized form for independent photon detection in the large-delay limit, 
and write the second-order correlation function for resonance fluorescence as 
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g~;>(T) = [lim c~;>(T)]- 1 c~;>(T) 
T--+00 

= ((a+a-)ss)-1(1 + (az(T))p(O)=I1)(11) 

= 1- e-(J1 / 4 )T(cosh8T + 3'Yj4 sinh8T). (2.152) 

This expression is plotted in Fig. 2.6. For a field possessing second-order co­
herence g~;> ( T) = 1; the two photons are detected independently for all decay 
times; in this case a detector responds to the incident light by producing a 
completely random sequence of photopulses. This picture provides a refer­
ence against which the "antibunching" of photopulses is defined. The curves 
of Fig. 2.6 actually show two nonclassical features- features that are inadmis­
sible in a correlation function generated by a classical stationary stochastic 
process. Let us look at the definitions of photon antibunching that have been 
given in terms of each. 

2.0 ,..------------------., 

(iii) 

gs;> 1.0 

0.0 4.0 8.0 

Fig. 2.6 The normalized second-order correlation function (2.152): (i) 8Y2 

0.01 « 1 (8 ~ 'Y/4); (ii) 8Y2 = 1 (8 = 0); (iii) 8Y2 = 400 ~ 1 (8 ~ W). 

2.3.6 Photon Antibunching and Squeezing 

All of the curves in Fig. 2.6 satisfy the inequality 

g~;> (0) < 1. (2.153) 

This is the definition of photon antibunching given in Refs. [2.28-2.30, 2.32]. 
The sense of this definition is actually more clearly understood by considering 
a closely related quantity to g~;>(T). Imagine a photopulse sequence gener­
ated by a fast photodetector- response time much faster than min('Y- 1 , .n-1 ) 



66 2. Two-Level Atoms and Spontaneous Emission 

- monitoring the fluorescence. The quantity we will focus on is the proba­
bility density W 88 ( T) for a delay T between successive photopulses, a quan­
tity we refer to as the photoelectron waiting-time distribution. This can be 
calculated as the probability density that, given a photopulse at time t, 
there is also a photopulse at time t + T, conditioned on the requirement 
that there are no photopulses in the intervening interval; thus, the pho­
topulse at time t + T is the next photopulse in the sequence. For comparison, 
L1T-1 [p(2, T; 1, O)/p(1)] = L1T- 1p(1)g~;)(T) [Eqs. (2.138) and (2.139)] gives 
the probability density for a photopulse at t + T without any restriction on 
photopulses in the intervening interval. The distribution W88 (T) must satisfy 

100 dTW88 (T) = 1, (2.154) 

since the delay between photopulses must take some value between zero and 
infinity; L1T-1p(1 )g~;) ( T) does not have to satisfy such a condition. 

To clarify the notation we write 

L1T- 1p(1) = ry(8: J dfl sin2 0)"((a+a-)88 

solid 
angle 

= 'f/1"((a+a-)ss, (2.155) 

where we have allowed for detection over an arbitrary solid angle, and 
0 < r/ :::; 1 is the product of the collection and quantum efficiencies of 
the detector; 'Y(a+a-)ss is the photon emission rate. The functions W88 (T) 
and (ry'"((a+a-)ss)g~;)(T) approach each other for T « Tav, where Tav 

is the average time between photopulses, since the probability for inter­
vening photopulses becomes small in this limit. In particular, W 88 (0) = 
("'''Y(a+a-)ss)g~;)(O). For longer time intervals, coherent scattering would 
give the waiting-time distribution 

(2.156) 

In fact, a calculation of W88 (T) for ry' « 1 (which holds under the most readily 
achievable experimental conditions [2.48, 2.49]) produces the result [2.50] 

Wss(T) ~ 'f/1"((a+a-)ss [exp (- 'f/1"((a+a-)ssT)- e-(31'/4 )7 

x (cosh OT + 31/ 4 sinh OT)] (2.157) 

for the photoelectron waiting-time distribution of resonance fluorescence at 
low detection efficiency. This expression satisfies (2.154) to lowest order in 

ry'. It should be compared with the expression for (rJ''Y(a+a-)ss)g~;)(T) given 
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by (2.152). The two expressions agree forT« (r/")'(cr+cr-)ss) -l ~ Tav, but 
Wss(T) decays to zero forT> Tav as it becomes more and more unlikely that 
the next photopulse has not yet arrived. 

Note 2.9 Equation (2.156) can be derived by considering a random sequence 
of photopulses, with a probability r()'(cr +cr _ )ssl1t for finding a photopulse in 
any short intervaliJ.t and a probability 1- r/r(cr+cr-)ssl1t for not finding a 
photopulse in the same interval. The probability for finding no photopulses 
throughout an interval T = miJ.t, and then finding a photopulse in the interval 
from T to T + LJ.t, is just 

1]1')'(cr+cr-)ssl1t(1- r/r(cr+cr-)ssl1t)m 
m l 

= 1J1r(cr+cr-)ssl1t L ( ::· )' 1 ( -ry'r(cr+cr-)ssl1tr m n .n. 
n=O 

m 

n=O 

On taking the limit m ___, oo, LJ.t ___, 0, with miJ.t = T, this gives 

Wss( T )dt = 1]1 r(cr +CT- )ssdt exp (- 1]1 r(cr +CT- )ssT). 

Now, in what sense does (2.153) imply an "anti bunching" of photopulses? 
Figure 2.7 illustrates the behavior of Wss(T) for the light scattered in reso­
nance fluorescence compared with coherent light of the same intensity. There 
is unit area under both of the curves plotted in the figure [Eq. (2.154)], and 
both distributions give the same mean time Tav between photopulses. Note, 
now, that we have the equivalence 

Thus, (2.153) guarantees that Wss(O) falls below its value for coherent light of 
the same intensity. Then with increasing T, W 88 ( T) must first rise above the 
exponential curve for coherent light, ensuring that both distributions have 
unit area, and then fall below it once again to ensure that both distributions 
give the same Tav· We conclude that in comparison with coherent light of 
the same intensity, on the average, photopulse sequences are redistributed 
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Fig. 2.7 (a) Waiting-time distribution for resonance fluorescence [curve (i)] and 
coherent scattering of the same intensity [curve (ii)], for Y 2 = 1, and r/ = 1. 
(b) Rearrangement of a typical random photopulse sequence to account for the 
change in the waiting-time distribution shown in (a). 

as illustrated in Fig. 2.7: some photopulses are moved from positions where 
they separate two very short time intervals, to new positions where they di­
vide some of the very long time intervals into two. The result, as displayed 
in Fig. 2.7, is that the very shortest and very longest intervals between pho­
topulses become less likely, and the intervals of intermediate length become 
more likely. A move is made away from photopulse sequences showing bunches 
and gaps, towards more regimented, evenly spaced, sequences. 

Exercise 2.6 For perfect collection and detection efficiencies (r/ = 1) W 88 (T) 
can be calculated from [2.50, 2.51] 

where the action of the superoperator l on an operator 6 is given by 

with L defined by the right-hand-side of (2.96). For these conditions show 
that the photoelectron waiting-time distribution of resonance fluorescence at 
unit detection efficiency is given by 

yz 
w (T)="~e~('y/Z)r (1-cosht/T) 

ss I 2Y2- 1 ' (2.158) 

with 
(2.159) 
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Verify that (2.154) is satisfied and that the mean interval between photopulses 

is Tav = ,-12(1 + Y 2 )/Y2 = {r(a+a-)ss) - 1 = (photon emission rate)- 1 . 

Plot w88 (T) for 2Y2 = 1 and compare it with the exponential W 88 (T) 
(r/6)exp[-(r/6)T] obtained for coherent light of the same intensity. 

The central feature of this definition of photon antibunching is that it is 
made in comparison with coherent light of the same intensity. An alternative 
definition adopted by Mandel and co-workers [2.48, 2.49] does not make such 
a comparison. In addition to satisfying (2.153), the curves of Fig 2.6 also have 

g~;)' (0) = 0, g~;)" (0) > 0; (2.160) 

the prime denotes differentiation with respect to T. Classically, g~;) ( T) must 
decrease from its value at T = 0, or, of course, remain constant if the light 
is coherent. Stated in terms of W88 (T), no interval between photopulses may 
be more probable than T = 0. Mandel and co-workers identify photon an­
tibunching with an initially rising g~;) ( T). Since the most probable interval 
between photopulses is then some T -=/:. 0, photopulse sequences show a dirth 
of "tight" bunches in favor of somewhat larger photopulse separations, giving 
alternative definition to the term "antibunched." 

This concept is drawn entirely from a comparison made within the pho­
topulse sequences for the antibunched light - there are more slightly longer 
photopulse separation times than there are very short separation times. No 
comparison is made against the reference of coherent light of the same in­
tensity. It is actually possible for photopulse sequences to be bunched in the 
sense of our previous discussion- with increased probability for short and long 
photopulse separation times and decreased probability for intermediate sep­
aration times - and be antibunched according to this second definition. This 
possibility is illustrated by Fig. 2.8. The converse also occurs, with (2.153) 
satisfied and g~;) ( T) initially decreasing. Such behavior is seen in the forwards 
fluorescence from a single atom inside a resonant optical cavity [2.53]. 

The use of two definitions for photon antibunching might be a little con­
fusing; but it is not really a major problem. Both definitions identify non­
classical effects. We must remember, however, that strictly these are distinct 
nonclassical effects. Both effects have been demonstrated in experiments on 
resonance fluorescence [2.33, 2.48, 2.49]. Of course, whenever g~;) (0) = 0 [as 
in (2.152)], the two definitions will be satisfied together. For definiteness we 
will use "photon antibunching" in the sense of (2.153), which seems to be 
more in accord with the traditional interpretation of the photon bunching of 
Hanbury-Brown and Twiss. 

Note 2.10 The definition of photon antibunching given by (2.153) is equiv­
alent to the condition for sub-Poissonian photon counting statistics for short 
counting times. A single-mode field illustrates this point: 
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Fig. 2.8 Waiting-time distribution for light that is bunched in the sense of the 
discussion below (2.153) and antibunched according to the definition (2.160) [curve 
(i)]. An example of this behavior is shown in Ref. [2.52], Fig. ll(c). :F is the mean 
photon flux and curve (ii) is the waiting-time distribution for coherent light. 

9(2)(0) = (ata)-2(at2 a2) 

= (ata)-2[((ata)2)- (ata)] 

( (n2 ) - (n) 2 ) - (n) 
= 1 + (n)2 , 

where n =at a is the photon number operator. Then 

9(2) (0) - 1 = _.2._ 
(n)' 

where the Mandel Q parameter, 

_ ( (n2 ) - (n) 2 ) - (n) 
Q = (n) 

((Lln) 2 ) - (n) 
(n) 

(2.161) 

(2.162) 

measures the departure from Poissonian statistics. Clearly, (2.153) is equiva­
lent to the condition for sub-Poissonian statistics, Q < 1. On the other hand, 
when counting times are not short on the scale of the field correlation time, 
the definition of Q involves integrals over field correlation functions; then 
(2.153) is no longer equivalent to the condition Q < 1. 

Before we leave our discussion of photon anti bunching, now is a good time 
to introduce some of the ideas concerning "squeezed" states of the electromag­
netic field [2.54]. Walls and Zoller [2.55] pointed out that the light scattered 
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in resonance fluorescence is squeezed in the field quadrature that is in phase 
with the mean scattered field amplitude. This squeezing is closely related to 
photon antibunching. We do not want to make a diversion into a detailed 
discussion of squeezed states here, and anyone who is totally unfamiliar with 
the subject may find it helpful to refer to the introductory article by Walls 
[2.56]. We will return to the subject of squeezing in Volume 2 (Chap. 9) and 
the discussion of background material is postponed until then. 

When we write 

(2.163) 

it is quite obvious that g~;) (0) vanishes; we have discussed the simple reason 
for this above. There is something more to be learned, however, if we look at 
(2.163) in a slightly different way [2.57]. We may always regard the scattered 

field as the sum of a coherent component (E~+))88 , which is proportional 

to (0"-)88 , and a fluctuating component described by the operator LlEi+) = 

.Ei+)- (Ei+))88 , which is proportional to .dO"_ = Q"_ - (0"-)88 • Looked at in 
this way, (2.163) may be expanded along the same lines as the fluorescence 
spectrum [Eqs. (2.122)-(2.126)]; after transforming to a rotating frame, we 
may write 

g~;)(O) -1 = (A2 + (Lla+.da_)ss)-2 [A24(: .10"~) 2 : )ss 

+ 4ARe( ei~ ( (.10"+ )2 Lla- )ss) + ((Lla+ )2 (.10"- )2 )ss 

- ( (.1a+.1a_)ss) 2], (2.164) 

where ( : : ) denotes the normal-ordered average (with Lla+ to the left of 
Lla _ ); using (2.120a), we have defined 

A= l(a'f)ssl = ~ 1 :y2' (2.165) 

and 
(2.166) 

describes fluctuations in the quadrature of the scattered field that is in phase 
with the mean scattered field amplitude. What is to be gained from this 
decomposition? To answer this question we must first calculate the steady­
state correlations that appear in (2.164): 

Exercise 2. 7 Show that 

(2.167a) 

(2.167b) 



72 2. Two-Level Atoms and Spontaneous Emission 

(2.167c) 

(2.167l 

Now, when (2.165) and (2.167a)- (2.167d) are substituted into (2.164), the 

answer g~;)(O) = 0 must, of course, be recovered for all field strengths Y. The 

relative importance of the terms within the square bracket changes with Y, 

however, and it is here that the new insight lies. For weak fields (Y2 « 1), 
the dominant terms in (2.164) are 

A2 + (Lla+Lla_)ss ~ A2 ~ ~Y2 , 

A24(: (Lla1r;2)2 : )ss ~ -~Y4 , 

((Lla+)2(Lla_f)ss- (Pa+Lla_)ss) 2 ~ iY4 . 

(2.168a) 

(2.168b) 

(2.168c) 

For strong fields (Y2 > > 1) they are 

(a) 

(b) 

A2 + (Lla+Lla_)ss ~ (Lla+Lla_)ss ~ i, 
( (Lla + )2 (Lla _ )2)ss - ( (Lla +Lla _ )ss) 2 ~ - i. 

(2.169a) 

(2.169b) 

~(1 
A -~(1 - r) 

Fig. 2.9 Schematic illustration of the 
fluctuations in the two quadrature phase 
amplitudes of (a) a displaced weakly 
squeezed vacuum state (squeeze param­
eter r = A2 ) and (b) a one-photon 
Fock state. Both states have g<2 l (0) = 0 
(to lowest order in A 2 for the squeezed 
state) . The curves are contours of the 
Wigner distribution (see Chap. 4). 

Observe that the negative term, which is the source of the antibunching - it 

will produce the - 1 on the left-hand side of (2.164) [remember that the g~;) (0) 

on the left-hand side is zero] - comes from the first term inside t he square 
bracket on the right-hand side of (2.164) for weak fields, and from the third 
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term inside the square bracket for strong fields. These terms, respectively, 
describe self-homodyning between the incoherent and coherent components 
of the scattered field, and intensity fluctuations in the incoherent component 
of the scattered field. Thus, a different physical picture for the fluctuations 
in the antibunched field is suggested in the weak-field and strong-field limits. 
A negative value for ( : (.da1r;2?: )ss is the signature of squeezing; thus, at 
weak fields photon antibunching arises from the self-homodyning of squeezed 
fluorescence; here photon antibunching is associated with the nonclassical 
statistics of a phased oscillator. Phase information is destroyed in the strong­
field limit. For strong excitation the coherent component of the scattered field 
saturates and the homodyning term in (2.164) becomes unimportant. Photon 
antibunching in the strong-field limit arises from sub-Poissonian intensity 
fluctuations in an unphased scattered field. For a suggestive illustration we 
can compare a displaced squeezed vacuum state (weak fields) and a one­
photon Fock state (strong fields), as illustrated by Fig. 2.9. 

Note 2.11 One scheme for detecting squeezing, described by Mandel [2.58], 
involves homodyning the scattered light with a strong local oscillator and 
measuring photon-counting statistics as a function of the local oscillator 
phase. Squeezing is indicated by a phase dependent variation from super­
Poissonian statistics, when the unsqueezed quadrature is selected by the local 
oscillator phase, to sub-Poissonian statistics, when the squeezed quadrature 
is selected by the local oscillator phase. Equation (2.164) corresponds to a 
special case of this procedure where the local oscillator is the coherent flu­
orescent scattering itself. Under these conditions we do not, of course, have 
control over the local oscillator amplitude and phase. To convert the expres­
sions we have derived so that they describe a squeezing measurement for the 
fluorescence in accord with Mandel's scheme we simply replace A by a large 
local oscillator amplitude B, and replace -!f by an adjustable phase ¢. If the 
local oscillator intensity is much larger than the fluorescence intensity, the 
combined field of local oscillator plus fluorescent scattering then gives 

(2.170) 

Actually, B is not the local oscillator field amplitude, it is only proportional 
to this amplitude. The proportionality is the same as that between a_ and 
.Ei+); from (2.138), it is such that the mean number of photons counted 
during .:1T, for a detection efficiency rJ and solid angle .:15?, is 

( ') = .:1T.:1f?sin2 () B2 
n rJ'Y 8n-j3 (2.171) 

Substituting from (2.170) and (2.171) into (2.161), the photon counting dis­
tribution is characterized, as either super-Poissonian or sub-Poissonian, by 
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(2.172) 

When the oscillator phase is ~, 

(2.173) 

This gives sub-Poissonian counting statistics for Y2 < 1. An explicit expres­
sion for arbitrary ¢ can be calculated as an exercise. 



3. Quantum-Classical Correspondence 
for the Electromagnetic Field 1: 
The G lauber-Sudarshan P Representation 

In Chap. 1 we developed a formalism to handle dissipative problems in quan­
tum mechanics. The central result of this formalism was the operator master 
equation for the reduced density operator p of a dissipative system. This 
equation can be written formally as 

P = £p, (3.1) 

where ,C is a generalized Liouvillian, or "superoperator", which acts, not on 
the states, but on the operators of the system. In a specific application ,C is 
defined by an explicit expression in terms of various commutators involving 
system operators. While it is generally not possible to solve the operator 
master equation directly to find p(t) in operator form, we have seen that 
alternative methods of analysis are available to us. We can derive equations 
of motion for expectation values, and if these form a suitable closed set, 
solve these equations for time-dependent operator averages. Alternatively, 
we may choose a representation and take matrix elements of (3.1) to obtain 
equations of motion for the matrix elements of p. We have also seen how 
equations of motion for one-time operator averages can be used to obtain 
equations of motion for two-time averages (correlation functions) using the 
quantum regression formula. 

We are now going to meet an entirely new approach to the problem 
of solving the operator master equation and calculating operator averages 
and correlation functions. For the present we will only consider the elec­
tromagnetic field -i.e. the harmonic oscillator. In Chap. 6 we will general­
ize the techniques learned here to collections of two-level atoms. This new 
approach establishes a correspondence between quantum-mechanical opera­
tors and ordinary (classical) functions, such that quantities of interest in a 
quantum-mechanical problem can be calculated using the methods of classical 
statistical physics. Under this correspondence the operator master equation 
transforms into a partial differential equation for a quasidistribution function 
which corresponds to (represents) p. For the damped harmonic oscillator this 
quasidistribution function is a function of the classical phase-space variables 
q and p, or alternatively, the complex variables a = ( mwq + ip) I v'2!imw 
and a* = ( mwq - ip) I v'2!imw that correspond to the operators a and at. 
Operator averages, written in an appropriate order (e.g. normal order), are 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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calculated by integrating functions of these classical variables against the 
quasidistribution function, in the same manner in which we take classical 
phase-space averages. This quantum-classical correspondence is particularly 
appealing when the partial differential equation corresponding to the oper­
ator master equation is a Fokker-Planck equation. Fokker-Planck equations 
are familiar from classical statistical physics, and in this context they have 
been studied extensively [3.1]. When the operator master equation becomes 
a Fokker-Planck equation, analogies can be drawn between classical fluc­
tuation phenomena and fluctuations generated by the quantum dynamics. 
This helps us develop an intuition for the effects of quantum fluctuations. 
Also, mathematical techniques that were developed for analyzing Fokker­
Plank equations in their traditional setting can be sequestered to help solve 
a quantum-mechanical problem. 

There are, in fact, many ways in which to set up a quantum-classical 
correspondence. We will meet a number of these in this book and still more 
in Volume 2. The original ideas go back to the work of Wigner [3.2]. Wigner, 
however, was interested in general questions of quantum statistical mechanics, 
not specifically in quantum-optical applications; wide use of the methods of 
quantum-classical correspondence for problems in quantum optics only began 
with the work of Glauber [3.3] and Sudarshan [3.4]. These authors indepen­
dently developed what is now commonly known as the Glauber-Sudarshan P 
representation, or simply the P representation, for the electromagnetic field. 
The representation is based on a correspondence in which normal-ordered op­
erator averages are calculated as classical phase-space averages; it has been 
tailored for the special role played by normal-ordered averages in the theory of 
photodetection and quantum coherence [3.3, 3.5, 3.6]. The Wigner represen­
tation gives the averages of operators written in Weyl, or symmetric, order; 
other representations exist which use still different ordering conventions. 

3.1 The Glauber-Sudarshan P Representation 

The Glauber-Sudarshan P representation was introduced primarily for the 
description of statistical mixtures of coherent states - the closest approach 
within the quantum theory to the states of the electromagnetic field described 
by the classical statistical theory of optics. An understanding of this represen­
tation can therefore be built on a few simple properties of the coherent states. 
Formal definition of the P representation can, alternatively, be given without 
any mention of the coherent states; this is the more useful approach when we 
want to generalize the methods of quantum-classical correspondence to other 
representations for the field, and to representations for collections of two-level 
atoms. We will follow both routes in turn, to define the P representation and 
then illustrate its use by deriving a Fokker-Planck equation for the damped 
harmonic oscillator. We first follow the route based on coherent states, where 
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we begin with a review of some of the more important properties of these 
states. Further discussion of the coherent states can be found in Louisell [3. 7] 
and Sargent, Scully and Lamb [3.8]. 

3.1.1 Coherent States 

The coherent state Ia) is the right eigenstate of the annihilation operator a 
with complex eigenvalue a: 

ala)= ala), (3.2) 

From this definition we may prove the following properties of the coherent 
states: 

Proposition 3.1 If a harmonic oscillator, with Hamiltonian H = nwata, 
has as its initial state the coherent state lao), then it remains in a coherent 
state for all times with the oscillating complex amplitude a(t) = a 0e-iwt -
i.e. the time-dependent state of the oscillator is given by 

Proof. We show that llli(t)) is the right eigenstate of a with eigenvalue a(t): 

allli(t)) = ae-iwatatlao) 
. t t ( . t t . t t) = e-•wa a e•wa a ae-•wa a lao) 

= ( e-iwtao) ( e-iwat at lao)) 

= a(t)llli(t)), 

where we have used (1.40a) and (3.2). D 

Proposition 3.2 The coherent states are minimum uncertainty states: for 
a mechanical oscillator with position and momentum operators q and p, re­
spectively, 

LlqLlp= v\(fi- (q))2)V((fJ- (P))2) = ~h, 
where the averages are taken with respect to a coherent state. 

Proof. From (1.12a) and (1.12b), 

q = {fi(a +at), 
v~ 

, ·fif-mw( t) p= -z --a-a 2 . 

(3.4) 

(3.5a) 

(3.5b) 
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Then, for an oscillator in the state Ia), 

( (q - (q) )2) = (q2)- (q)2 

= _n_(al(a2 + aat +at a+ at2)1a)- (q)2 
2mw 

= -2 1l, [(al(aat- ata)la) +(a+ a*)2]- (q) 2 
mw 

= -2 1'i (al[a,at]la) 
mw 
1'i 

2mw' 
(3.6a) 

where we have used (3.2) and the commutation relation (1.10); we assume 
that the state Ia) is normalized. Similarly, 

(3.6b) 

Thus, 

D 

Proposition 3.3 A normalized coherent state can be expanded in terms of 
the Fock states In), n = 0, 1, 2, ... , as 

(3.7) 

Proof. We write 
00 

n=O 

and substitute this expansion into (3.2). Using aln) = .Jriln- 1), this gives 
the relationship 

00 00 

n=l n=O 

Multiplying on the left by (ml and using the orthogonality of the Fock states, 
we have 

00 00 

L Cn Vn Dm,n-1 = a L CnDm,n ' 

n=l n=O 

or 

thus, 
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an 
Cn = ~Co. 

vn! 

c0 is determined by the normalization condition (ala) = 1: 

thus, 

where the arbitrary phase has been chosen so that c0 is real. D 

Proposition 3.4 The coherent states are not orthogonal; the overlap of the 
states Ia) and I.B) is given by 

(3.8) 

Note that Ia) and I.B) are approximately orthogonal when Ia- .812 becomes 
large. 

Proof. Using (3.7) 

Then 
l(ai,B)12 = e-la12 e-1/312 ea'f3eaf3* 

= e-la-/312. 

Proposition 3.5 The coherent states are complete: 

the integration being taken over the entire complex plane. 

D 

(3.9) 
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or, in polar coordinates, 

where a = reicf>. The integration over ¢ gives zero unless n is equal to m. 
Thus, 

After integrating by parts n times, 

The final step follows from the completeness of the Fock states. D 

Proposition 3.6 The coherent states can be generated from the vacuum state 
by the action of the creation operator at: 

Proof. Using atln) = vn +lin+ 1), we have 

oo n 
1 I 12 t 1 I 12 L a tn e-2 o: eo:a IO) = e-2 o: -a IO) 

n! 
n=O 

1 2 00 an 
= e-21o:l L -, Vnlln) 

n=O n. 
oo n 

= e-!lo:1 2 L ~In). 
n=O v'nf 

(3.10) 

This is the expression (3. 7) for the Fock state expansion of the coherent state 
Ia). D 
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3.1.2 Diagonal Representation for the Density Operator 
Using Coherent States 

Using the completeness of the Fock states, a representation for the density 
operator p in terms of these states is obtained by multiplying on the left and 
right by the unit operator expressed as a sum of outer products: 

00 

L Pn,mln)(mJ, (3.11) 
n,m=O 

with Pn,m = (nJpJm). The Fock states are orthogonal as well as being com­
plete, as is the common situation for a set of basis states. The coherent states 
are not orthogonal (Proposition 3.4). However, they are complete (Proposi­
tion 3.5), and this is all we need to define a representation for p analogous to 
(3.11). From (3.9), we may write 

p = (~ J d2 a Ja)(ai) p(~ J d2~ I~)(~~ 
= : 2 Jd2a /d2~Ja)(~J(aJpJ~). (3.12) 

Glauber has defined what he calls the R representation, expanding the density 
operator in the form [3.3] 

p = :2 J d2a J d2~ Ja)(~J e-!la12 e-!1!312 R(a*, m, (3.13) 

where 

00 a*nf3m 
= L VI 1 Pn,m· 

n,m=O n.m. 
(3.14) 

Clearly, this representation follows the familiar methods for specifying an 
operator in terms of its matrix elements; the exponential factors appearing 
in (3.13) merely simplify the relationship between the function R(a*, ~) and 
the Fock state matrix elements Pn,m· The P representation is rather different. 

The Glauber-Sudarshan P representation relies on the fact that the co­
herent states are not orthogonal. In technical terms they then form an over­
complete basis, and, as a consequence, it is possible to expand p as a diagonal 
sum over coherent states: 
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(3.15) 

This representation for p is appealing because the function P( a) plays a role 

rather analogous to that of a classical probability distribution. First, note 

that 

J d2a P(a) = J d2a (ala)P(a) 

= tr (! d2a la)(aiP(a)) 

= tr(p) 

= 1, (3.16) 

where we have inserted (ala) = 1 and used the cyclic property of the trace. 

Thus, P(a) is normalized like a classical probability distribution. Note also 

that for the expectation values of operators written in normal order (creation 

operators to the left and annihilation operators to the right), on substituting 

the expansion (3.15) for p, 

(atPaq) = tr(patPaq) 

= tr (! d2a la)(aiP(a)atPaq) 

= J d2a P(a)(alatPaqla) 

= J d2a P(a)a*Paq. (3.17) 

Normal-ordered averages are therefore calculated in the way that averages are 

calculated in classical statistics, with P( a) playing the role of the probability 

distribution [(3.16) is a special case of this result with p = q = 0]. We will 

introduce the notation 

(3.18) 

and write 
(3.19) 

As mentioned earlier, obtaining normal-ordered averages in this way is par­

ticularly useful because measurements in quantum optics have a direct re­

lationship to such normal-ordered quantities, a consequence of the fact that 

photoelectric detectors work by the absorption of photons. 
The analogy between P( a) and a classical probability distribution over 

coherent states must be made with reservation, however. In the Fock-state 

representation Pn,n = (nlpln) is an actual probability; it is the probability 

that the oscillator will be found in the state In) - the probability that the 
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field mode will be found to contain n photons. But because of the orthogo­
nality of the Fock states, only a limited class of states can be represented by 
the diagonal matrix elements Pn,n alone. There exist states whose complete 
representation requires that at least some nonzero numbers Pn,m = (nlplm), 
n =I m, be specified in addition to the probabilities Pn,n- The coherent states 
are not orthogonal, and it is therefore possible to make a diagonal expansion 
for p that is not restricted in the same way; the expansion (3.15) does not 
automatically require that the off-diagonal coherent state matrix elements 
vanish. With the help of (3.8), from (3.15) we obtain 

(alpl,8) = j d2 >.. (ai>..)(>..I,B)P(>..) 

= f d2>-.e-HX-al2 e-H>·-.812 P(>..). (3.20) 

There is no need for this to vanish when a =I ,8. There is a price to pay 
for this versatility, however. We must now accept that P(a) is not strictly a 
probability. When a = ,8, (3.20) gives 

(alpla) = f d2).. e-l>.-ai2 P(>..). (3.21) 

Since e-l>.-al2 is not a 8-function, (alpla) =I P(a). Only when P(>..) is suffi­
ciently broad compared to the Gaussian filter inside the integral in (3.21) does 
it approximate a probability. Also, although the probability (alpla) must be 
positive, (3.21) does not require P(a) to be so. Thus, unlike a classical prob­
ability, P(a) can take negative values over a limited range [although (3.16) 
must still be satisfied]. P(a) is not, therefore, a probability distribution, and 
for this reason it is often referred to as a quasidistribution function. We will 
simply use the word "distribution". In fact, this is quite correct usage if "dis­
tribution" is interpreted in the sense of generalized functions. We will see 
shortly that P(a) is, most generally, a generalized function. 

3.1.3 Examples: Coherent States, Thermal States, and Fock States 

It is clear from (3.15) that the coherent state lao) - density operator p = 
lao)(aol- is represented by the P distribution 

P(a) = 8(2l(a- ao) = 8(x- xo)8(y- Yo), (3.22) 

where a= x+iy and ao = xo+iyo. Can we find a diagonal representation for 
any density operator? To answer this question we must try to invert (3.15). 
This is made possible using the relationship 



84 3. The Glauber-Sudarshan P Representation 

tr(peiz*at eiza) = tr{[/ d2a la)(aiP(a)] eiz*at eiza} 

= J d2a P(a)(aleiz*at eizala) 

= Jd2aP(a)eiz*a*eiza. (3.23) 

Equation (3.23) is just a two-dimensional Fourier transform. The inverse 
transform gives 

(3.24) 

Thus, if the Fourier transform of the function defined by the trace in (3.24) 
exists for a given density operator p, we have our P distribution representing 
that density operator. A general expression for P(a) in terms of the Fock­
state representation of p follows by substituting (3.11) into (3.24) and using 
the cyclic property of the trace: 

= 2_fd2 ( ~ ~ ( I (iz*at)m' (izat' I )) 
2 Z L L Pn,m m ,1 , 1 n n m. n. 

n,m=O n',m'=O 

( iz t n! -iz* a* -iza '~ ) X---:;:;:;"! (n _ n')! 8n-n',m-m' e e . 

Noting that 

oon oo m 00 00 00 00 

n=O n'=O m=O m'=O n'=O n-n'=O m'=O m-m'=O 

and changing the summation indices, with n' --+ n, m' --+ m, and n - n' = 

m - m' --+ k, we find 

( ) _ 2_! 2 (~ ~ ~ J(n+k)!J(m+k)! 
P a - 2 d z L L L Pn+k,m+k k' 

n n=Om=Ok=O . 

(iz*)m (izt) -iz*a* -iza x--1---1- e e . 
m. n. 

(3.25) 
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Exercise 3.1 Substitute p = lo:o)(o:ol into (3.24) and the Fock-state rep­
resentation for this density operator into (3.25); show that both of these 
equations reproduce the P distribution (3.22) for the coherent state. For the 
thermal state 

p = (1- e-fiw/kBT)e-nwata/kBT
1 

show that (3.25) gives 

1 J 2 I 12 (A) . * * . P(o:) = _ d z e- z n e-u a e-zza 
7r2 

1 ( lo:l 2
) 

= 7r(n) exp - (n) ' 

where 

(3.26) 

(3.27) 

(3.28) 

Now, consider the P distribution representing a Fock state. We will take 
p = ll)(ll where l can be any non-negative integer. From (3.25), 

1 J 2 ( = = = l! (iz*)m (izt) 
P(o:) = 2 d Z L L Lbn+k,lbm+k,lki--I---1-

Jr n=O m=O k=O . m. n. 
X e -iz* o:* e -iza 

(3.29) 

where we have changed the summation index, with l - k --+ k. Since the 
summation in (3.29) does not extend to infinity, the expression inside the 
bracket is a polynomial, and it clearly diverges for lzl --+ oo. Thus, this 
Fourier transform does not exist in the ordinary sense; it would appear that 
we cannot represent a Fock state using only a diagonal expansion in coherent 
states. If, however, we write 

(3.30) 

and use the ordinary rules of differentiation inside the integral in (3.29), we 
may evaluate the integral in terms of derivatives of the 8-function. This gives 
the P distribution 

l [I 1 fJ2k 
( ) -"' . (2) 

p 0: - L.., k!(l- k)! k! fJo:kfJo:*k 8 (o:). 
k=O 

(3.31) 
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Note 3.1 We will have many occasions to take derivatives with respect to 
complex conjugate variables. It is convenient to do this by reading the com­
plex variable and its conjugate as two independent variables. This is allowed 
because 

a * (a \* 1 (a . a) . 1 (a a ) a(/1! = ao:* 0:) = 2 ax - z ay (x- zy) = 2 ax X- ayy = Q, 

(3.32a) 

and, of course, 

The mathematical theory that gives precise meaning to (3.31) is the 
theory of generalized functions [3.9-3.11] or distributions (in the technical 
sense of "Schwartz distributions" and "tempered distributions" [3.12, 3.13]). 
Within this theory the Fourier transform can be formally generalized to cover 
nonintegrable functions such as polynomials. Such Fourier transforms are not 
functions in the usual sense; (3.31) does not tell us how to associate a number, 
P(o:), with each value of the variable o:. There is certainly no way, then, to 
interpret P(o:) as a probability distribution. It is, however, a "distribution" 
in the sense defined by the theory of generalized functions. There is no need 
for us to get deeply involved with the formal theory of generalized functions. 
Those interested can study this in the books by Lighthill [3.11] and Bremer­
mann [3.13]. Nevertheless, in order to appreciate the sense in which (3.31) 
provides a diagonal representation for the Fock states we should spend just 
a little time refreshing our memories about some of the basic properties of 
generalized functions. 

Generalized functions "live" inside integrals. There, they are integrated 
against some ordinary function from a space of test functions. The value of 
the integral for a given test function is defined as the limit of a sequence 
of integrals obtained by replacing the generalized function by a sequence of 
ordinary well-behaved functions. The generalized function is then, in this 
sense, the limit of a sequence of ordinary functions. Of course, the sequence 
of functions defining a given generalized function is not unique. For example, 
for a suitable class of test functions, the 8-function acts inside an integral as 
the limit of a sequence of Gaussians: 

(3.33) 

where the strict sense of this statement is 
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100 100 ~ 2 dxt5(x)¢(x) = lim dx -e-nx ¢(x) = ¢(0). 
-~ n~~ -oo ~ 

(3.34) 

Here, the test function ¢(x) must be continuous and grow more slowly at 
infinity than Cealxl, with C and a constants. A sequence of functions that 
decrease faster than Gaussians at infinity would allow us to define the b­
function on a larger space of test functions; most generally, for all continuous 
functions. Thus, in formal language, generalized functions operate as func­
tionals; they associate a number (the limiting value of a sequence of ordinary 
integrals) with each function from a space of test functions. 

The derivative of a generalized function is also a generalized function, 
defined via the rules of partial integration. Taking ¢(x) = '1/J'(x) in (3.34), we 
can write 

Then, if {5' ( x) is the generalized function defined by the sequence of functions 
obtained as the derivative of the sequence defining t5 ( x) - the functions inside 
the bracket in (3.35) -the formula for partial integration is preserved: 

I: dxt5'(x)'I/J(x) =-I: dxt5(x)'I/J'(x) = -'1/J'(O). (3.36) 

More generally, for the nth derivative of the t5-function, {j( n) ( x), we have 

where 'ljJ(n)(x) is the nth derivative of '1/J(x). [Do not confuse the notation 
for the nth derivative of the b-function with the notation {5(2l(a) for the 
two-dimensional t5-function.] 

Let us now use (3.37) to see explicitly how (3.31) provides a diagonal 
representation for the Fock states. We will consider the one-photon state, the 
simplest example; the general case can be done as an exercise. For l = 1, 
from (3.31), 

Substituting into the diagonal expansion (3.15), and using (3.37) (twice for 
the two-dimensional t5-function), 
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From this we must recover p = 11)(11. Using (3.10), we note that 

~la)(al = ~ (e-1<>12 eaat IO)(Oiea*a) 
8a 8a 

=(at- a*)la)(al, 

8 8 ( I 12 t • ) -la)(al =- e- a eaa IO)(Oiea a 
8a* 8a* 

= la)(al(a- a). 

Then (3.38) readily gives the required result: 

P = IO)(OI + :a [la)(al(a- a)] la=O 

= IO)(OI + [(at- a*)la)(al(a- a) -la)(al] la=O 

= IO)(OI + (atlo)(Oia -10)(01) 

= 11)(11. 

(3.38) 

(3.39a) 

(3.39b) 

Exercise 3.2 Equation (3.31) is not always the most convenient form to use 
in calculations. Show that P(a) for the Fock state ll) takes the alternate 
forms 

P(a) = ~ ela12 821 8(2l(a) 
l! 8al8a*1 ' 

(3.40) 

and in polar coordinates, with a = reiiJ, 

(3.41) 

Show that both of these expressions give p = ll) (ll when substituted into the 
diagonal expansion for p [Eq. (3.15)]. 

Applications of the P representation in quantum optics have largely been 
restricted to situations in which P(a) exists as an ordinary function, as it 
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does, for example, for a thermal state [Eq. (3.27)]. With the use of generalized 
functions it is actually possible to give any density operator a diagonal repre­
sentation [3.14, 3.15]. As we stated earlier, however, our main objective when 
introducing the quantum-classical correspondence is to cast the quantum­
mechanical theory into a form closely analogous to a classical statistical the­
ory. P(a) is never strictly a probability for observing the coherent state Ia), 
but it can take the form of a probability distribution, and when it does, 
this can be used to aid our intuition- as an example, the phase-independent 
distribution given by (3.27) essentially corresponds to the classical picture 
of a field mode subject to thermal fluctuations. Our intuition finds little as­
sistance from a representation in terms of a generalized function. The value 
of preserving the analogy with a classical statistical system will be further 
underlined as we now use the P representation to describe the dynamics of 
the damped harmonic oscillator. 

3.1.4 Fokker~Planck Equation 
for the Damped Harmonic Oscillator 

In Sect. 1.4.1 we derived the master equation for the damped harmonic os­
cillator: 

p = ~iw0 [at a, p] + ~(2apat ~at ap ~pat a) 

+!'n(apat +atpa~atap~paat). (3.42) 

Our goal in this section is to substitute the diagonal representation (3.15) for 
p, and convert the operator master equation into an equation of motion for P. 
Obviously, we must assume the existence of a time-dependent P distribution, 
P(a, t), to represent pat each instant t. 

After substituting for p, (3.42) becomes 

J d2 a la)(al :t P(a, t) 

= J d2a P(a, t) [- iwo (at ala) (a I ~ Ia) (alat a) 

+ ~ (2ala)(ala t ~at ala) (a I ~ Ia) (alat a) 

+ ')'ii(ala)(alat + atla)(ala ~ atala)(al ~ la)(alaat)]. (3.43) 

The central step in our derivation is to replace the action of the operators 
a and at on la)(al (both to the right and to the left) by multiplication by 
the complex variables a and a*, and the action of partial derivatives with 
respect to these variables. This can be accomplished using (3.2) and (3.39): 
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aia)(alat = aia)(ala* = lal 2 la)(al, (3.44a) 

at aia)(al =at ala)(al = aatla)(al =a (:a + a*}a)(al, (3.44b) 

la)(alata = la)(ala*a = a*la)(ala =a* (a~*+ a}a)(al, (3.44c) 

la)(alaat =(a~* +a}a)(alat =(a~* +a)a*la)(al, (3.44d) 

atla)(ala= (:a +a*}a)(ala= (:a +a*)(a~* +a}a)(al. 
(3.44e) 

Using these results in (3.43), after some cancelation, we find 

It is a short step to an equation of motion for P. The partial derivatives which 
now act to the right on la)(al can be transferred to the distribution P(a, t) by 
integrating by parts. We will assume that P(a, t) vanishes sufficiently rapidly 
at infinity to allow us to drop the boundary terms. Then (3.45) becomes 

Note 3.2 When integrating by parts a and a* may be read as independent 
variables, as in differentiation (Note 3.1). Explicitly, for given functions f(a) 
and g(a) (whose product vanishes at infinity), 

J d2a f(a) :ag(a) 

100 100 1 ( a a ) = dx dy f(x, y)2 a- ia g(x, y) 
-oo -oo X Y 

= ~I:dy[f(x,y)g(x,y)[=-oo- I:dxg(x,y):xf(x,y)] 

-i~I: dx [t(x, y)g(x, y)C=-oo-I: dy g(x, y) :yf(x, y)] 
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100 100 1 ( a a ) =- dx dy g(x, y)- -- i- f(x, y) 
-oo -oo 2 ax ay 

=-J d2ag(a) :af(a). 

Similarly, 

A sufficient condition for (3.46) to be satisfied is that the P distribution 
obeys the equation of motion 

aP [("~ . ) a ("~ . ) a * _ a2 J P - = -+zwo -a+ - -zwo --a +"'n--- . 
at 2 aa 2 aa* aaaa* 

(3.47) 

We have replaced the operator equation (3.42) by a partial differential equa­
tion for P. This is the Fokker-Planck equation for the damped harmonic 
oscillator in the P representation. 

Exercise 3.3 The question arises as to whether (3.47) is a necessary con­
dition for (3.46) to be satisfied. Multiply both sides of (3.46) on the left by 

. * t . 
e•z a e•za and take the trace to show that the necessary condition is that the 
Fourier transforms of both sides of (3.47) are equal. 

3.1.5 Solution of the Fokker-Planck Equation 

We will discuss the properties of Fokker-Planck equations in detail in Chap. 5. 
For the present let us simply illustrate how (3.47) describes the damped har­
monic oscillator. We will solve this equation for an initial coherent state la0 ). 

Thus, we seek the Green function P(a, a*, tlao, a0, 0), with initial condition 

P(a, a*, Olao, a0, 0) = 8(2l(a- ao) = 8(x- xo)8(y- Yo). (3.48) 

From now on we display P with two complex conjugate arguments consistent 
with the interpretation of derivatives and integrals explained below (3.31) 
and (3.46). 

It is convenient to transform to a frame rotating at the frequency w0 , with 

(3.49) 

and 
P(a, a*, t) = F(ii, ii*, t). (3.50) 

We have 
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aP aP aP aa aP aa* 
8t = 8t + aa 8t + aa* 8t 

= aP _ iwo (a aP _a* aP) 
at aa aa* 

= aP - iwo (!!_a- _!!_a*) P. 
at aa aa* 

After substituting for aP I at from (3.4 7)' 

or, in terms of the real and imaginary parts of a, 

(3.51) 

(3.52) 

(3.53) 

where a = x +if}. Solutions can now be sought using separation of variables. 
We write 

P(x, iJ, t) = x(x, t)Y(iJ, t), 

where the functions X and Y satisfy the independent equations 

8 X ('Y 8 _ "(fi 82 ) X 
8t = 2 ax x + 4 ax2 ' 

aY _ ( 1 .!!_ _ 1 n a2 ) Y 
at - 2 aiJ Y + 4 aiJ2 · 

(3.54) 

(3.55a) 

(3.55b) 

These are to be solved for X(x, tlx0 , 0) and Y(fj, tifJo, 0), subject to the initial 
conditions 

X(x, Olxo, O) = 8(x- xo), 

Y(iJ, OliJo, 0) = 8(i}- iJo). 

(3.56a) 

(3.56b) 

Consider (3.55a). Its solution is found by taking the Fourier transform on 
both sides of the equation. We find 

where 

U(u,tlxo,O) = j_: dxX(x,tlx0 ,0)eixu, 

and, from (3.56a), the initial condition for U is 

U(u,Oixo,O) = eixau. 

(3.57) 

(3.58) 

(3.59) 
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We then solve (3.57) by the method of characteristics [3.16]. The subsidiary 
equations are 

with solutions 

dt du dU 
1 ('"y/2)u -(1n/4)u2U' 

ue-bl2)t =constant' 

ue<nf4)u2 =constant. 

Thus, U must have the general form 

(3.60) 

(3.61a) 

(3.61b) 

(3.62) 

where ¢ is an arbitrary function. Choosing ¢ to match the initial condition 
(3.59), 

U(u, tlxo, 0) = exp[ixoue-b/2lt] exp[- (n/4)u2(1- e-7 t)]. (3.63) 

Taking the inverse Fourier transform, we have 

X(x, tixo, o) 

= 2_100 duU(u,tlxa,O)e-ixu 
27r -oo 

1100 =- du exp[ -iu(x- x0e-hl2lt)] 
27r -oo 

x exp[- (n/4)u2(1- e-~'t)] 

Equation (3.55b) can be solved in a similar fashion, whence, 

F(x, y, tlxo, iJo, O) 

(3.64) 

1 [ (x- x0e-b/2lt) 2 + (iJ _ y0 e-h/2lt) 2] 
= exp -

1rn(l - e-~'t) n(l - e-~'t) ' 

(3.65) 

or, equivalently, 

(3.66) 

Then the P distribution for a damped coherent state is given by 



94 3. The Glauber-Sudarshan P Representation 

P(a, a*, tja0, a(;, 0) is a two-dimensional Gaussian distribution. Thus, for 
this example the P distribution has all the properties of a probability dis­
tribution. The mean of the Gaussian gives the oscillating and decaying os­
cillator amplitude calculated previously directly from the master equation 
[Eq. (1.78)]: 

(3.68) 

The phase-independent variance describes the thermal fluctuations added to 
the coherent amplitude by the oscillator's interaction with the reservoir: 

((ata)(t))- (at(t))(a(t)) = ((a*a)(t))p- (a*(t))p(a(t))p 

= [(x2(t))p+ (y2(t))p J - [ (x(t))~+ (y(t))~] 
= fi(1- e-7 t). (3.69) 

For an initial coherent state, (at(t))(a(t)) = ja0j2e--yt = ((ata)(O))e-'Yt, and 
therefore (3.69) also agrees with our previous calculation [Eq. (1.80)]. In the 
long-time limit the coherent amplitude decays to zero and the variance of 
the fluctuations in each quadrature of the complex amplitude grows to n/2. 
A comparison of (3.67) with (3.27) shows that the oscillator reaches ather­
mal state with mean photon number fi equal to the mean photon number 
for a reservoir oscillator of frequency wo. Figure 3.1 illustrates these dynam­
ics with P(a, a*, tja0, a(;, 0) represented by a single circular contour of ra­
dius J(n/2)(1- e--yt). For a Gaussian, the mean and variance determine all 
higher-order moments. Hence, (3.68) and (3.69) determine all of the normal­
ordered operator averages for the damped oscillator [Eq. (3.19)]. Using the 
P representation we have put the statistical properties of the quantum­
mechanical oscillator into a correspondence with a classical statistical de­
scription in terms of the phase-space variables x and y. (For a mechanical 
oscillator the coordinate and momentum variables are q = xJ2njmw and 
p = y)2nmw, respectively.) 

3.2 The Characteristic Function 
for Normal-Ordered Averages 

We now look at an alternative way of defining the P representation and 
deriving an equation of motion for the P distribution. This second approach 
leaves the relationship to coherent states somewhat hidden, but introduces a 
method that can readily be generalized - to define representations based on 
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0 

X 

Fig. 3.1 Time evolution of P(a, a*, tl ao, a0, 0) 
[Eq. (3.67)]. The center of the Gaussian distri­
bution follows the spiral curve while the width 
of the distribution increases with time, as il­
lustrated by the filled circular contours Ct(B) = 
aoe-h/2)t e-iw0 t + eieJ(n/2)(l _ e--rt). 

different operator orderings, and to define representations for collections of 
two-level atoms. 

We have recently met two relationships that might suggest the new ap­
proach to us. In (3.23) and (3.24), and in Exercise 3.3, we saw that the 
Fourier transform of P(a, a*) played an important role. Why not begin from 
the function appearing on the left-hand side of (3.23) and define P(a, a*) to 
be its Fourier transform. Indeed, this approach is suggested on the following, 
more general grounds. 

3.2.1 Operator Averages and the Characteristic Function 

The function 
(3. 70) 

appearing on the left-hand side of (3.23) is a characteristic function in the 
usual sense of statistical physics [3.17]; it determines all normal-ordered op­
erator averages via the prescription 

(3.71) 

The definition of a distribution for calculating normal-ordered averages fol­
lows quite naturally from this result. If we define P(a, a*) to be the two­
dimensional Fourier transform of xN(z, z*): 

P(a, a*)= :2 J d2z xN(z, z*)e-iz*a* e-iza 

1 != !00 
. = 7r2 -oo df.l -oo dv XN(J..l + iv, J..L- iv)e-2t(J1x-vy)' (3. 72) 

with the inverse relationship 
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xN(z, z*) = J d2a P(a, a*)eiz*a* eiza 

= i: dx i: dy P(x + iy, x- iy)e2i(f-<x-vy), 

then, from (3.71) and (3.73), 

with 

(3. 73) 

(3.74a) 

(a*Paq)P = J d2a P(a, a*)a*Paq. (3.74b) 

Equation (3.73) is the same as (3.23), and (3.74) reproduces (3.19); the 
P(a, a*) defined in this way is the distribution introduced in (3.15) to give a 
diagonal expansion in terms of coherent states. Let us see how the Fokker­
Planck equation for the damped harmonic oscillator can be derived by start­
ing from this new definition of P( a, a*). 

3.2.2 Derivation of the Fokker-Planck Equation 
Using the Characteristic Function 

We will derive an equation of motion for the characteristic function and then 
use the relationship between xN(z,z*,t) and P(a,a*,t) to convert this into 

an equation of motion for P(a, a*, t). 
From the definition of XN, 

axN a ( . • t . ) ( . • t . -- = -tr pe'z a e2Za =tr pe'Z a e'za). 
at at 

(3.75) 

Then, the master equation (3.42) gives 

axN =tr{[-iw0(atap- pat a)+ J':(2apat- atap- pat a) 
at 2 

+rn(apat +at pa- a tap- paat)] eiz*at eiza }· (3. 76) 

Our aim is to express each of the nine terms on the right-hand side of (3.76) 
in terms of XN and its derivatives with respect to (iz*) and (iz). For two of 
the nine terms this can be achieved directly; we may write 

tr ( apa t eiz* at eiza) = tr (pat eiz* at eiza a) 

az 
= a(iz*)a(iz) XN' 

(3.77) 
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where we have simply used the cyclic property of the trace. The remaining 
seven terms require a little more algebraic manipulation; but the goal is 
always the same - to rearrange the terms inside the trace so that at is to 
the left of eiz* at and a is to the right of eiza. Then, at and a can be brought 
down from the exponentials by differentiation with respect to ( iz*) and ( iz), 
respectively. Generally, the rearrangement may require us to pass at through 

. . * t 
the exponential e•za, or a through the exponential e•z a . For this purpose 
we use 

eizaate-iza =at +iz, 
. * t . * t e-•z a ae•z a =a+ iz*. 

(3.78a) 

(3.78b) 

Equation (3.78a) follows by writing at(iz) = eizaate-iza, with at(o) =at; 
then differentiate with respect to ( iz): 

Thus, 

~at(iz) = eiza(aat- ata)e-iza = 1. 
d(zz) 

at(iz) = at(o) + iz =at+ iz. 

Equation (3.78b) is obtained as the Hermitian conjugate of (3.78a) and the 
replacement z* -+ - z*. 

Now, using (3. 78) and the cyclic property of the trace, the remaining 
terms in (3.76) are: 

tr(atapeiz*at eiza) = tr(peiz*at eizaata) 

= tr [peiz*at ( eizaat e-iza) eizaa] 

= tr[p(at + iz)eiz*at eizaa] 

= -.- + iz tr pe'z a e•zaa ( 8 )(·•t·) 
8(zz*) 

=(a(~*)+ iz) 8(~z) XN' (3.79) 

(3.80) 
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tr(paat eiz*at eiza) = tr[p(ata + 1)eiz*at eizal 

= [ (a(~z) + iz*) a(~*) + 1 J XN' (3.81) 

which follows from (3.80); the last term is left as an exercise: 

Exercise 3.4 Show that 

( I 12 . a . * a a2 ) ( ) 
= 1 - z + zz a(iz) + zz a(iz*) + a(iz)a(iz*) XN" 3"82 

After substituting (3.77) and (3.79)-(3.82) into (3.76) the equation of 
motion for XN(z,z*,t) is given by 

ax N [ ( 1 . ) a ( 1 . ) * a _ *] 8t = - 2 + ZWo z az- 2- ZWo z az* - "(nZZ XN" (3.83) 

To pass to an equation of motion for P(a, a*, t) we use the Fourier transform 
relation (3.73) and exchange the differential operator in the variables z and 
z* for one in the variables a and a*: 

Jd2 aP(a,a*,t) iz*a* iza 
a at e e 

= J d2a P(a, a*, t) [- (~ + iw0 ) z :z - (~ - iwo) z* a~* 
- "(fizz*] eiz* a* eiza 

= J d2a P(a, a*, t) [- (~ + iw0 ) (ia) a(~a) - (~ - iwo) (ia*) a(i~*) 

-"(n a(ia~;(ia*)] eiz*a* eiza. (3.84) 

The action of the derivatives on the right-hand side of (3.84) can be moved 
from the product of exponentials, eiz*a* eiza, to P(a, a*, t) by integrating by 
parts; we took the same step in passing from (3.45) to (3.46). Once again we 
assume that P(a, a*, t) vanishes sufficiently fast at infinity to justify dropping 
the boundary terms. Then, (3.84) becomes 

d aen a e'za_ = d aen a eua - +iw -a J 2 . • • . aP j 2 . • • . [("Y ) a 
at 2 ° aa 

( 1 ) a a2 
] + - - iwo -a* + "(n--- P. 

2 aa* aaaa* 
(3.85) 
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This is the Fourier transform of the Fokker-Planck equation derived in 
Sect. 3.1.4. It is precisely the equation derived from (3.46) in Exercise 3.3. 
Thus, after inverting the Fourier transform we arrive once again at the 
Fokker-Planck equation (3.4 7). 



4. Quantum-Classical Correspondence 
for the Electromagnetic Field II: 
P, Q, and Wigner Representations 

The definition of the P representation as the Fourier transform of the normal­
ordered characteristic function can be generalized by simply taking different 
characteristic functions - characteristic functions that give operator averages 
in other than normal order. Here we will look at two new representations: the 
Q representation, which is defined in terms of the characteristic function that 
gives operator averages in antinormal order, and the Wigner representation, 
defined in terms of the characteristic function that gives operator averages 
in symmetric, or Weyl, order. This is not a comprehensive list. Cahill and 
Glauber [4.1], and Agarwal and Wolf [4.2] have introduced formalisms in 
which whole classes of different representations are defined. In particular, 
Agarwal and Wolf take the possibilities to their ultimate extreme and de­
velop a very general and elegant formalism which they call the phase-space 
calculus. These general formalisms are not of much interest, however, when 
it comes to applications. The P, Q, and Wigner representations are the only 
examples that have traditionally seen any use in quantum optics. They are 
special cases within the classes defined by Cahill and Glauber, and Agarwal 
and Wolf. In Volume 2 we will meet one recent addition to the list which has 
been used quite extensively, particularly in the treatment of squeezing and 
related nonclassical effects. This is the positive P representation introduced 
by Drummond and Gardiner [4.3]. As the name suggests, the positive Prep­
resentation is closely related to the Glauber-Sudarshan P representation. 
We postpone its discussion, however, until we have acquired the background 
needed to appreciate its special purpose and application. Certain properties 
of the positive P representation are still only partly understood; this repre­
sentation therefore belongs with the modern research topics that are taken 
up in Volume 2. 

For additional reading on the Q and Wigner representations reference 
may be made to Louisell [4.4] and Haken [4.5]. Also, Hillery et al. provide a 
comprehensive review with numerous references [4.6]. 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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4.1 The Q and Wigner Representations 

4.1.1 Antinormal-Ordered Averages and the Q Representation 

If we wish to calculate antinormal-ordered averages, the rather obvious gen­

eralization from (3. 70) is to define the characteristic function 

( 4.1) 

Then in place of (3.71), antinormal-ordered operator averages are given by 

(aqatP) = tr(paqatP) 

()P+q I 
= ,:::.(· *)P,:::.(· )qXA(z,z*) . 

u ZZ u ZZ z=z*=O 
( 4.2) 

If we define the distribution Q(a,a*) as the Fourier transform of xA(z,z*): 

Q(a, a*)= :2 J d2z XA(z, z*)e-iz*a* e-iza 

1 100 100 . = 7r2 -oodJ.L -oodvxA(J.L+iv,J.L-iv)e-2•(11-x-vy), ( 4.3) 

with the inverse relationship 

XA(z,z*) = Jd2aQ(a,a*)eiz*a*eiza 

=I: dx I: dy Q(x + iy, x- iy)e2i(11-x-vy), (4.4) 

corresponding to (3.74), we now have 

( q tP) _ d2 Q( *) iz a iza ()P+q J . * I 
a a - o(iz*)Pa(iz)q a a,a e e z=z*=O 

= (a*Paq)Q, (4.5a) 

with 
(4.5b) 

The Q distribution, so defined, has a very simple relationship to the co­

herent states. Consider (4.3) with xA(z, z*) substituted explicitly from (4.1) 
and the unit operator judiciously introduced in the form (3.9). We find 

Q(a, a*) = : 2 J d2 z tr [peiza (~ J d2 AlA.) (A. I) eiz*at] e-iz*a* e-iza 

= : 3 J d2z J d2 A (A.Ieiz*at peizaiA.)e-iz*a* e-iza 

= ~ J d2 A (A.IpiA.)[:2 J d2zeiz*(,\*-a*)eiz(-\-a)] 
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= ~/d2 >.(>.lpl>.)8(2)(>..-a) 
1 

= -(alpla). (4.6) 
7r 

Thus, 1rQ(a, a*) is the diagonal matrix element of the density operator taken 
with respect to the coherent state Ia). It is therefore strictly a probability -
the probability for observing the coherent state Ia). This immediately gives 
us the relationship between Q and P. 

From (3.21) and (4.6), 

Q(a, a*)= ~ J d2 A e-1>-.-n/ 2 P(>., >.*). (4.7) 

Note 4.1 It can be shown that the diagonal matrix elements (alpla) specify 
the density operator completely. Then the convolution ( 4. 7) forms the basis 
of formal proofs that every density operator may be given a diagonal repre­
sentation if Pis allowed to be a generalized function. See [4.7] and [4.8] for 
the details. 

Another useful result is the relationship between the characteristic func­
tions XA (z, z*) and xN(z, z*). We will make use of this shortly to derive the 
Fokker-Planck equation for the damped harmonic oscillator in the Q repre­
sentation. The relationship follows from a special case of the Baker-Hausdorff 
theorem [4.9]: If 6 1 and 62 are two noncommuting operators that both com­
mute with their commutator, then 

(4.8) 

Since the commutator of a and at is a constant, this result can clearly be 
applied to the exponentials in the definitions of xN(z, z*) and xA (z, z*). It 
follows from (3.70) and (4.1) that 

XA(z, z*) =: tr(peizaeiz*at) 

= tr(peiza+iz* at) e- ~ iz/ 2 

= tr(peiz*at eiza)e-lz/ 2 

= e-iz/2 XN(z, z*). (4.9) 

Exercise 4.1 Use (4.9) to derive (4.7) directly from the definitions of the Q 
and P distributions [Eqs. (4.3) and (3.72)]. Also, use both (3.40) and (3.41) 
to show that (4.7) gives the correct Q distribution for the Fock state ll) -
namely; 
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(4.10) 

An alternative relationship between the Q and P distributions follows 

from (4.9). Using (4.3) and (4.9), 

Then, writing xN(z, z*) as the Fourier transform of P(>.., )...*), we have 

Q(a,a*) 

= : 2 j d2z e-lzl 2 J d2)... P(>.., )...*)eiz* .A* eiz.Ae-iz*c<* e-iza 

= :2 J d2z J d2 >.. P(>..,)... *) [ exp (a:;)...*) eiz* .A* eiz>-] e-iz*a* e-iza 

= :2 J d2z J d2)... [exp (a:;)...*) P(>.., >..*)] eiz*(.A*-a*)eiz(.A-a)' 

where the last line follows after integrating by parts. The integral with respect 
to z gives a 6-function and we find 

Q(a, a*) = exp ( a:;a*) P(a, a*). (4.11) 

Note 4.2 If (4.11) is to hold for the coherent state Ja0 ), (4.7) and (3.22) 

require that we prove the rather unlikely looking result 

exp --- b(2l(a- ao) = -e-la-aol . ( a2 ) 1 2 

aaaa* H 

In spite of its unlikely appearance, this result follows from the limit defining 

the b-function [Eq. (3.33)] and 

( 4.12) 

Equation (4.12) can be proved using the identity (4.46): 
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ex (~) e-nla12 = e-nlal2~ (nlo:l)2k 1 
p oo:oo:* ~ k! (1 + n)k+l 

k=O 

= _1_e-nl<>l2 en21<>12 /(l+n) 
1+n 

= _1_e-nla12 /(l+n). 
1+n 

4.1.2 The Damped Harmonic Oscillator in the Q Representation 

A Fokker-Planck equation for the damped harmonic oscillator can be derived 
in the Q representation by following the same steps as in Sect. 3.2.2. A 
convenient shortcut is available, however; we can use the relationship ( 4.9) 
between xN(z,z*) and xA(z,z*) and the equation of motion (3.83) for XN to 
quickly arrive at the equation of motion for x A: 

OXA - -lzl2 OXN 
7ft- e fit 

-lzl 2 [ (' · ) [) (' · ) * [) - *] = e - - + ZWo Z-- -- ZWo Z -- rnzz X 2 OZ 2 oz* N 

=[-(~+iwo)z(:z +z*)-(~-iwo)z*(o~* +z) 

- rnzz*] e-lzl2 XN 

= [- (1 + iwo) z.!!_ - (1 - iwo) z* _!!___ - r( n + 1 )zz*] x . 
2 OZ 2 oz* A 

(4.13) 

This is the same as the equation of motion for XN, except for the replacement 
n ---+ n+ 1. We can therefore write down the corresponding equation of motion 
for Q directly from (3.47): 

8Q [( / . ) [) ( / . ) [) * (- ) [)2 ] - = - + ZWQ -O: + - - ZWQ --0: + / n + 1 --- Q. at 2 ao: 2 oo:* ao:oo:* (4.14) 

This is the Fokker-Planck equation for the damped harmonic oscillator in the 
Q representation. 

We exploit the relationship between the Fokker-Planck equations in 
the P and Q representations further to solve (4.14). The Green function 
Q(o:, o:*, tio:o, o:0, 0), which has initial condition 

Q( o:, o:*, Olo:o, o:0, 0) = b(2) ( o: - o:o) = b(x - xo)b(y- Yo), ( 4.15) 

follows directly from (3.67) in the form 
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It is important to realize that while the Green function in the P rep­
resentation describes an oscillator that is initially in a coherent state -
P(a, a*, tlao, a0, 0) = P(a, a*, t)p(O)=Iao)(aol -the Green function in the Q 
representation does not describe an oscillator initially in a coherent state; a 
8-function in the Q representation does not correspond to a coherent state. In­
deed, (4.6) tells us that the Q distribution for an initial state p(O) = lao)(aol 
is 

Q( a, a*, 0) p(O)=Iao) (ao 1 = ~(a I (lao) (ao I) Ia) 
7f 

= ~I (alao) 12 
7f 

= ~e-la-aol 2 
' 7f 

(4.17) 

where we have used (3.8). The time evolution of the Q distribution for this 
initial state is then calculated using 

Q(a, a*, t)p(O)=Iao)(aol 

= J d2 A Q( a, a*, ti.A, A*, O)Q(>., A*, 0) p(O)=Iao) (ao 1· ( 4.18) 

Substituting (4.16) and (4.17) into (4.18), and making the change of variable 
>.e-("y/2)te-iwot --+ >., we have 

(4.19) 

This integral is a two-dimensional convolution; therefore, the Fourier trans­
form of the left-hand side is given by the product of the Fourier transforms 
of the bracketed terms in the integrand; of course, the Fourier transform of 
the left-hand side is the characteristic function xA(z, z*, t)p(O)=Iao)(aol· Thus, 
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XA(z, z*, t)p(O)=I<>o)(<>ol = exp [ -lzl2(n + 1)(1- e--yt)] 

X { exp [ -1z12e--yt] e2iz*a~(t)e2iza0 (t) }, ( 4.20) 

with o:0 (t) = o:0e-hl2)te-iwot. The inverse transform gives the Q distribution 
for a damped coherent state: 

Q(o:, a:*, t)p(O)=I<>o)(<>ol 

1 [ Ia: _ o:oe-b/2)te-iwot12J 
= 1r[1 + n(1- e-"Yt)] exp - 1 + n(1- e-"Yt) · (4·21) 

Compared with the solution for the P distribution [Eq. (3.67)], the 
solution ( 4.21) for the Q distribution shows one simple difference - the 
phase-independent variance [variance of x = Re(o:) or y = Im(o:)] is now 
(n/2)(1 - e--yt) + 1/2 rather than (n/2)(1- e--yt). Thus, the time evolution 
of the Q distribution can be represented as in Fig. 3.1, but with a circular 
contour of somewhat larger radius; in particular, the Q distribution has a 
width at t = 0 given by the initial condition (4.17), whereas the P distribu­
tion begins as a 8-function; when n = 0, this initial width is preserved for all 
times. We find then that the Q distribution has a width even in the absence 
of thermal fluctuations. We have again set up a correspondence with a clas­
sical statistical process; but now there is noise where before there was none. 
What can this mean? The answer to this question illustrates an important 
point about the fluctuations at the "classical" end of the quantum-classical 
correspondence. Although thermal fluctuations from the reservoir are not 
too quantum mechanical - they should be present in a classical theory of 
damping also - in general, the fluctuations observed in the distributions de­
rived via the quantum-classical correspondence have a quantum-mechanical 
origin. They are manifestations of the probabilistic character of quantum me­
chanics, and arise through the noncommutation of the quantum-mechanical 
operators. Therefore, the fluctuations that appear in the classical stochastic 
processes that correspond to a quantum-mechanical system via different op­
erator orderings are different. In our present example, the difference in the 
variances of the P distribution and the Q distribution arises to preserve the 
boson commutation relation. From (3.74) and (3.67), we calculate 

((ata)(t))- (at(t))(a(t)) = ((o:*o:)(t))p- (o:*(t))p(o:(t))p 

= n(1 - e--yt), 

while from (4.5) and (4.21) we calculate 

((aat)(t))- (at(t))(a(t)) = ((o:*o:)(t))Q- (o:*(t))Q(o:(t))Q 

= n(1 - e--yt) + 1. 

(4.22a) 

(4.22b) 

The extra fluctuations in the Q representation, which give the "+ 1" in 
(4.22b), are just what are needed to preserve the expectation of the com­
mutator- ([a, at](t)) = 1. 
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4.1.3 Antinormal-Ordered Averages Using the P Representation 

We should not be misled into thinking that the P and Q distributions are 
inadequate on their own for calculating operator averages in arbitrary order. 
Of course, an average in antinormal order can first be normal ordered so 
that moments of the P distribution can be used to calculate the average of 
the resulting normal-ordered object. Antinormal-ordered averages can also be 
evaluated, however, directly from the P distribution, without first reordering 
the operators. Consider (4.2) with xA(z, z*) written in terms of xN(z, z*) 
using (4.9). An arbitrary antinormal-average can be calculated from there­
lationship 

- 8P -JzJ2 (· * _!__)q ( *)I 
- 8(iz*)Pe tZ + 8(iz) XN z,z z=z*=O 

_ -lzJ 2 (· _8 )P(· * _!__)q ( *)I 
- e tZ + 8(iz*) ~z + 8(iz) XN z, z z=z*=O 

8P (· * 8 )q ( *)I 
= 8(iz*t tZ + 8(iz) XN z, Z z=z*=O. 

Substituting for xN(z, z*) from (3.73), we have 

t I 2 8P ( 8 )q 0 • • • I (aqap)= daP(a,a*) ·*P iz*+-.- e'z"'e'z"' 
8( tz ) 8( ~z) z=z• =0 

I 2 
( 

8 )q . . . . I = d a P(a, a*) -* +a a*P e•z "' e•za . 
8a z=z*=O 

We now integrate by parts, setting P(z, z*) and its derivatives to zero at 
infinity, to arrive at the result 

(aqatP) = ld2aa*P(a- 8~*rP(a,a*). 
Exercise 4.2 Prove also that 

and 

(aqatP) = J d2a aq (a*- :a r P(a, a*), 

(atPaQ) = J d2a a*P (a+ 8~*r Q(a, a*), 

(atPaq) = jd2aaq(a* + :ar Q(a,a*). 

(4.23a) 

(4.23b) 

(4.24a) 

(4.24b) 
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As an illustration, let us calculate ((aat)(t)) for the damped harmonic 
oscillator using (4.23a) and the Green function solution for the P distribution 
[Eq. (3.67)]. We set a 0 (t)equive-hf2)te-iwot and then 

Jd2 *[ a- ao(t) J{ 1 [ !a- ao(t)! 2
]} = a a a + exp - .:......,. _ ___;_..:....:,-

n(1 - e-"Yt) 1I'n(1 - e-"Yt) n(1 - e-"Yt) 

= j d2a {a*[a- ao(t)][1 + n(1 _1e_"Yt)] + a*ao(t)} 

x { 1I'n(1 ~ e-"Yt) exp [-~; _a~~~l;] }· 

If A is a constant, 

We can therefore replace a* by a* - a0(t) in the first term in the integrand 
(this adds zero to the integral) and perform the resulting integrals to obtain 

= n(1- e-"Yt) + 1 + !ao(tW 

= ((ata)(t)) + 1, 

where the last line follows from (3.68) and (3.69). We have arrived at the 
result that would be obtained by first writing aa t in normal order and then 
using moments of the P distribution to evaluate the normal-ordered operator 
average. 



110 4. P, Q, and Wigner Representations 

4.1.4 The Wigner Representation 

The Wigner representation is introduced by defining a third characteristic 
function: 

Xs(z,z*) = tr(peiz*at+iza). (4.25) 

The Wigner distribution W(o:, o:*) is the Fourier transform of x8 (z, z*): 

W(o:, o:*) = :2 J d2z Xs(z, z*)e-iz*a* e-iza 

1 1CXl 1CXl . = 7r2 -= dJL -= dv x8 (JL + iv, JL- iv)e-2'(1-'x-vy), (4.26) 

with the inverse relationship 

Xs(z, z*) = J d2o: W(o:, o:*)eiz*a* eiza 

= i: dx i: dy W(x + iy, X- iy)e2i(,.x-vy). (4.27) 

The relationship between the Wigner distribution and operator averages 
is a little more complicated than the relationships that connect the P and 
Q distributions with operator averages. In terms of position and momentum 
variables (proportional to x andy respectively) the moments of W(o:, o:*) give 
the averages of operators written in Weyl order [4.10]. Details can be found in 
the review by Hillery et al. [4.6]. The relevant quantities for quantum optics 
are operator averages corresponding to moments of the complex variables o: 
and o:*. These can be found as follows. The exponential in (4.25) has the 
expansion 

·•t· CXl 1 e•z a +•za = ~ -(iz*at + iza)m 
L.... m! 
m=O 

= ~ ~ (iz*)n(iz)m ( tn m) 
L.... L.... 1 1 a a 8 , n.m. n=Om=O 

(4.28) 

where (atnam)s denotes the operator product written in symmetric order­
the average of ( n + m)! / ( n!m!) possible orderings of n creation operators and 
m annihilation operators: 
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(at a) 8 = ~ (at a + a at), 

( at2a )8 = ~ (at2a +at aat + aat2), 

(ata2)8 = ~(ata2 + aata + a2at), 
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(4.29a) 

(4.29b) 

( 4.29c) 

(at2a 2)8 = i(at2a2 + ataata + ata2at + aat2a + aataat + a2at2), 
: (4.29d) 

Then, from (4.28) and the definition of x8 (z, z*) [Eq. (4.25)], symmetric­
ordered operator averages are given by 

(4.30) 

substituting for x8 (z, z*) in terms of W(a, a*) [Eq. (4.27)] gives 

tP q _ 2 * iz <> iza (]PH J * * I 
((a a )s)- o(iz*)PfJ(iz)q d aW(a,a )e e z=z*=O 

(4.31a) 

with 

(4.31b) 

Note 4.3 We have defined the Wigner distribution W(a, a*) to be normal­
ized such that J d2a W(a, a*) = 1. The Wigner distribution is often defined 
with a different normalization, such that J d2a W(a, a*) = 1r. This is the 
case in [4.4] and [4.6]. With the alternative definition W(a, a*) is the classi­
cal function associated with the density operator p by writing it as a power 
series in symmetric-ordered operators (atPaq)s and replacing each term in 
this series by a*Paq (see Sect. 4.3.1). 

The quantum-classical correspondence defined in terms of symmetric­
ordered operators (also antinormal-ordered operators) is not really the most 
convenient for applications in quantum optics because it is normal-ordered 
averages that relate directly to quantities measured with detectors that ab­
sorb photons. However, often only low-order moments are of interest and the 
symmetric ordering is then easily untangled using ( 4.29a)-( 4.29d). More gen­
erally, a symmetric-ordered operator can be written in normal order in the 
following way. With the help of the Baker-Hausdorff theorem [Eq. ( 4.8)] we 
write 
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(atpaq) = e•z a +•za [)P+q .• t . I 
8 8(iz*)P8(iz)q z=z*=O 

[)P+q -.!lzl2 iz*at izal = e 2 e e . 
8(iz*l(iz)q z=z*=O 

It can then be proved by induction that 

[)P+q -.!lzl2 iz*at iza 
~~~~~e 2 e e 
8( iz*)P 8(iz )q 

min(p,q) 1 1 p! q! ( t 1 . )p-k 
~ 2k k! (p- k)! (q- k)! a + 2zz 

1 2 . • t . ( 1 )q-k 
X e-21zl e•z a e•za a+ 2iz* , (4.32) 

and hence, that 

min(p,q) I I 

( tP q) _ ""' 1 p. q. tp-k q-k 
a as- ~ 2k(p-k)!(q-k)!a a . 

k=O 
(4.33) 

The Baker-Hausdorff theorem also yields the relationship between the 
characteristic functions Xs(z, z*) and xN(z, z*), and Xs(z, z*) and xA(z, z*): 

Xs(z, z*) = tr (peiz*at +iza) = tr (peiz*at eiza) e-! lzl2 = e-! lzl2 xN(z, z*), 

(4.34a) 

Xs(z, z*) =: tr(peiz*at +iza) = tr(peizaeiz*at)e!lz12 = e!lzi\A(z, z*). 

(4.34b) 

From these results relationships between the distributions W(a, a*) and 
P(a, a*), and W(a, a*) and Q(a, a*), analogous to those given in (4.7) and 
(4.11), can be obtained. The derivations are left as an exercise: 

Exercise 4.3 Show that 

and that 

W(a, a*)= ~ J d2 A e-21A-a12 P(A, A*), 

Q(a, a*)=~ J d2 Ae-21A-a12W(A, A*), 

W(a, a*)= exp G 0:;a*) P(a, a*), 

Q(a, a*)= exp G 0:;a*) W(a, a*). 

(4.35a) 

(4.35b) 

(4.36a) 

(4.36b) 
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From the relationships (4.7) and (4.35), (4.9) and (4.34), and (4.11) and 
(4.6), the Wigner distribution appears to fall in some sense in between the P 
and Q distributions. This observation is illustrated explicitly by the example 
of the damped harmonic oscillator. There is no need for a new calculation to 
treat this example in the Wigner representation. From a comparison of (4.9) 
and (4.34a), we immediately conclude that the method of Sect. 4.1.2 will 
bring us to the following Fokker-Planck equation for the damped harmonic 
oscillator in the Wigner representation: 

aw [(' . ) a (' . ) a * (- 1 ) a2 ]w - = - + zwo -a+ - - zwo -a + 1 n + - --- . at 2 aa 2 aa* 2 aaaa* 
(4.37) 

Thus, where n appears in the Fokker-Planck equation in the P representa­
tion [Eq. (3.47)], and n + 1 appears in the Fokker-Planck equation in the Q 
representation [Eq. (4.14)], now n+ ~appears in the Fokker-Planck equation 
in the Wigner representation. The factor of ~ carries over into the solution 
for a damped coherent state. By referring to (3.67) and ( 4.16) we see that 
the Green function W(a, a*, tlao, a 0, 0), which has initial condition 

W(a, a*, Olao, a 0, 0) = 8(2)(a- ao) = 8(x- xo)8(y- Yo), (4.38) 

is given by 

Then, using (4.35a) and the P distribution for a coherent state [Eq. (3.22)], 
an initial coherent state (p(O) = lao)(aol) is represented by the distribution 

W( * 0) _ ~ -21<>-<>ol 2 
a, a ' p(O)=I<>o)(<>ol - e . 

1f 
(4.40) 

By following the steps used to derive (4.21) we find that the Wigner distri­
bution for a damped coherent state is given by 

W(a, a*, t)p(O)=I<>o)(<>ol 

1 [ Ia _ aoe-(r/2)te-iwot12J 
= exp- . 

n [.! + n(1 - e--rt)] .! + n(1 - e--rt) 
2 2 (4.41) 

We have now constructed a third correspondence with a classical statisti­
cal process. Here the phase-independent variance lies in between those given 
by the solutions (3.67) and (4.21); the picture of Fig. 3.1 still applies, but 
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now with a circular contour of radius J1/2 + n(1 - e-l't) representing the 
distribution. As we observed for the Q distribution, the quantum fluctuations 
added over and above those coming from the reservoir are required by the 
commutation relations and the ordering convention underlying the represen­
tation. From (4.29a), (4.31), and (4.41), we have 

~ [((ata)(t)) + ((aat)(t))]- (at(t))(a(t)) 

= ((ata) 8 (t))- ((at) 8 (t))((a)s(t)) 

= ((a*a)(t))w- (a*(t))w(a(t))w 

= n(1- e-~'t) + ~· ( 4.42) 

This is the average of the expressions in (4.22a) and (4.22b). The factor"+~" 
is the contribution obtained from the boson commutation relation by normal 
ordering the operator (ata) 8 = ~(ata + aat). 

4.2 Fun with Fock States 

We have followed the treatment of the damped harmonic oscillator prepared 
in a coherent state throughout our discussions of the P, Q, and Wigner rep­
resentations. For this example, each of the three distributions has all the 
properties of a probability distribution, and we can therefore associate the 
quantum-mechanical problem with each of three classical statistical descrip­
tions. We should remember, however, that the distributions obtained from the 
quantum-classical correspondence are not guaranteed to have all the proper­
ties of a probability distribution. We have already seen in Sect. 3.1.3 that the 
P distribution for a Fock state is a generalized function, involving derivatives 
of the 8-function. We now explore the representation of Fock states a little 
further. 

4.2.1 Wigner Distribution for a Fock State 

Let us derive the Wigner distribution for the Fock state \l) using (4.35a) and 
the form of the P distribution given in (3.40). We have 

W(a a*)= ~~d2 .X e-2IA-<>12 ..!_eiAI2 ()2l 8(2)(.X) 
' 7f l! f),Xl{),X*l 

~ ..!_ ()2l e-2IA-<>12 eiAI21 
7f l! {),Xl{),X*l A=A*=O 

2 1 -21<>12 ()2l -2IAI2 2A<>* 2A*<> I --e e e e . 
7f [! {)_xl{),X* 1 A=A*=O 

(4.43) 
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To evaluate the right-hand side of ( 4.43) we consider the more general ex­
pression (for any complex constants A, B, and C) 

For n :::; l, it can be proved by induction that 

( 4.45) 

Using this result, with n = l, we obtain 

( 8 )l-k 
X B + a>. e-AI.\12 

( 4.46) 

where in the last line we have changed the summation index, with l - k --> k. 
The right-hand side of ( 4.43) may now be evaluated using ( 4.46): setting 
A = 1 and B* = C = 2a, the Wigner distribution for the Fock state ll) is 
given by 

l 
* - ~~ -21<>1 2 "'""" - l-k l! ~ 2k W(a,a )-1rl!e L.) 1) k!(l-k)!k!l2al . 

k=O 

( 4.47) 

The distribution ( 4.4 7) is an ordinary, well-behaved, function. Neverthe­
less, it can clearly violate one of the conditions required of a probability 
distribution - it need not be positive. The one-photon Fock state illustrates 
this point; for l = 1, 
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(4.48) 

which is negative for lad < ~. 

Note 4.4 It can be shown that x 8 (z, z*) is square integrable and, hence, 
that its Fourier transform W(a, a*) is always a well-behaved function; there 
is no need for generalized functions in the Wigner representation. To prove 
this result we use (4.34) and (4.1) to write 

~ J d2z lx8 (z, z*)l 2 = ~ J d2z xN(z, z*)xA(z, z*)* 

1 [/ 2 .• t . ] = ;tr d Z XN(z, z*)e-•z a pe-•za . 

Then, introducing the identity in the form (3.9) and using the cyclic property 
of the trace, and the relationship between xN(z, z*) and P(a, a*) [Eq. (3.72)], 
we find 

~ f d2z lx8 (z, z*W = : 2 tr [/ d2a f d2z xN(z, z*)(ale-iz*at pe-izala)] 

= :2 tr [! d2a (alpla) f d2z XN(z, z*)e-iz*a* e-iza] 

= tr [p J d2 a la)(aiP(a,a*)] 

= tr(p2 ). 

The last line follows from (3.15). The square integrability of x 8 (z, z*) follows 
because tr (p2 ) :<.:; 1. 

As a simple check on our result for the Fock state Wigner distribution, let 
us evaluate (a* a )w and show that it gives the symmetric-ordered average 

~(ata + aat) = H2(ata) + 1) = H2l + 1). (4.49) 

From (4.47) we obtain 

(a*a)w = J d2a W(a, a*)a*a 

= ~.!_ ~(-1)!-k l! E_Jd2ae-2fof212al2kla12 
7r l! ~ k!(l- k)! k! 

2 l l' 100 1211" =-L(-1)!-k 2 . 22k dr d¢e-2r2r2{k+l)+l 
7r k=O (k!) (l- k)! 0 0 

=~~(-1)!-k l! 22k27r(k+1)!_ 
7r~ (k!)2(l- k)! 2k+3 
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The integral over r has been executed by performing k + 1 integrations by 
parts. The summation on the right-hand side may now be split into two pieces 
by writing 

l (k + 1)! l 1 l 1 
L · · · (k!)2 = L · · · (k _ 1)! + L · · · k! · 
k=O k=1 k=O 

Then, changing the first summation index, with k- 1--+ k, we arrive at the 
result 

( -* ) - ~ [ ~ - (l-1)-k (l- 1)! k ~ - l-k l! kl 
a a w- 2 2lf::'o( 1) k![(l-1)- k]!2 + f::'o( 1) k!(l- k)!2 

= ~ [2l(2 -1)1- 1 + (2- 1)1] 

= ~(2l + 1). 

Thus, we recover the symmetric-ordered operator average (4.49) for a Fock 
state. 

4.2.2 Damped Fock State in the P Representation 

Nothing in the derivation of the Fokker-Planck equation for the damped 
harmonic oscillator precludes its use in situations where the distribution is 
a generalized function, or takes negative values. We certainly lose the corre­
spondence with a classical statistical description under such circumstances, 
but the mathematics works just fine. The Green function for the appropriate 
Fokker-Planck equation provides all we need to find the time evolution from 
an arbitrary initial state; we simply integrate the Green function against the 
representation for the initial state. This will work even if the initial state is 
represented by a distribution that is more singular than a 6-function. For 
an interesting illustration we will calculate the P distribution for a damped 
harmonic oscillator prepared in the Fock state ll). Recall that a Fock state 
is represented by a distribution involving derivatives of a two-dimensional 
8-function. 

The Green function solution to the Fokker-Planck equation in the P 
representation is given by (3.67). Using this result and the distribution for 
an initial Fock state [Eq. (3.40)], we have 
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where the integration is performed using (3.37). Expanding the function in­
side the curly bracket, 

P(a, a*, t)p(O)=Il)(ll 

= 1 exp [- lal2 ] 
1rn(1 - e-~'t) n(1 - e-~'t) 

1 821 { [ 12 e-~'t - n(1 - e-~'t) J 
x lf 8)...l8).,*l exp -1>. n(1- e-'Yt) 

[ a*e-h/2)te-iwot] [ *ae-h/2)teiwot]}l 
x exp >. ( _ t) exp >. ( _ t) · n 1 - e I' n 1 - e I' .A=.A. =O 

The derivatives can be evaluated using (4.46), with 

the P distribution for a damped Fock state is then 

P(a, a*, t)p(O)=Il)(ll 

1 [ lal2 ] 1 [e-~'t - n(1 - e-~'t)] 1 
= exp- -

7rn(1 - e-~'t) n(1 - e-~'t) l! n(1 - e-'Yt) 

l l' l' { I 12 -')'t }k l-k · · a e 
x ~(-1) k!(l- k)! k! n(1- e-~'t)[e-l't- n(1- e-~'t)] 

k-O (4.50) 

In the long-time limit this expression clearly approaches the Gaussian 
describing a thermal state with mean photon number n. This asymptotic 
solution is, of course, independent of the oscillator's initial state. To follow 
the evolution of P(a, a*, t)p(O)=Il)(ll for short times, it is helpful to rewrite 
(4.50) in an alternative form. We define 
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e-"~t - n(1 - e-"~t) 
A=----~----~~ n(1 - e-"~t) 

and 

and then ( 4.50) reads 

P(a, a*, t)p(D)=Il)(ll 

- 1 ex [- iai2 ] ~ ~ -1 l-k l! 
- nn(1- e-"~t) P n(1- e-"~t) l! 6( ) k!(l- k)! 

X !',Al-k( -A>.*)k( -A>.)k. 

Equation ( 4.46) may now be used a second time, with B = C = 0, to obtain 

After resubstituting the explicit expressions for A and >., we have an alter­
native form for the P distribution for a damped Fock state: 

From this expression 

( * ) 1 1<>12 (J2l { • ( 1 -1<>12/n~t)} P a, a, 0 (O)=Il)(ll = -e hm -_ -e ' . 
P l! fJalfJa* 1 t--->0+ nwyt 

(4.52) 

Equation ( 4.52) shows explicitly the time-reversed approach ( t ---+ 0+) of 
P(a, a*, t) to its initial form in terms of derivatives of a two-dimensional 
8-function. 

Note that if n =/= 0, P(a, a*, t) is actually a well-behaved function for all 
times t > 0. Thermal fluctuations destroy the singular character of the initial 
Fock state as soon as the interaction with the reservoir is turned on: for short 
times the singular distribution representing the initial Fock state is replaced 
by a derivative (of order 2l) of a very narrow Gaussian whose variance is 
growing linearly with time. Nonetheless, P(a, a*, t) remains unacceptable as 
a classical probability distribution for a finite time after t = 0. During the 
early part of its evolution it takes on negative values- for example, for l = 1, 
( 4.50) has the form 
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(4.53) 

This distribution takes negative values inside the circle lal 2 = n(1- e-~'t)[1-
n(e~'t- 1)] during the time interval 0 < ,t < ln(n + 1) -ln n. 

Exercise 4.4 Show that (4.50) gives 

((ata)(t)) = (a*a(t))p = ze-')'t + n(1- e-'Yt), 

in agreement with (1.70). 

4.2.3 Damped Fock State in the Q and Wigner Representations 

We have seen that the Q distribution is proportional to the diagonal matrix 
elements of p in the coherent state basis, and therefore it cannot become 
negative [Eq. (4.6)]. Indeed, the Green function (4.16) and the distribution 
(4.10) representing an initial Fock state in the Q representation are every­
where positive; it is clear then that Q(a, a*, t)p(O)=Il)(ll for a damped Fock 
state will be nonnegative at all times. To calculate this distribution explicitly 
we use (4.16) and (4.10) to write 

Q(a, a*, t)p(O)=Il)(ll 

= J d2 >..Q(a, a*, ti>.., >..*, O)Q(>.., >..*, O)p(O)=Il)(ll 

= Jd2 >.. 1 ex [-Ia- >..e-~te-iwotl2]..!:.e-l>-121>..12l 
1r(n + 1)(1- e-~'t) p (n + 1)(1- e-'Yt) 1r l! 

1 [ lal2 ] 
= 1r(n + 1)(1- e-~'t) exp - (n + 1)(1- e-~'t) 

x ..!:...!:.jd2>..1>..12Zex [-1>..12e-~'t+(n+1)(1-e-~'t)] 
1r l! P (n + 1)(1 - e-~'t) 



4.2 Fun with Fock States 121 

1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-'t) 

1 11ood 2l+I [ 2 e-'t + (n + 1)(1- e-'t)] x - - r r exp - r ---:-----'---:--:----'--'------:-:,-----'-
7rl! 0 (n+1)(1-e-rt) 

1
211" [ 2lale-h/2)t ] 

x d¢ exp ( )( _ t)rcos¢ , o n+1 1-e' 

where r = I-AI, and ¢ = arg(.A)- arg(a) + wot. The angular integral gives a 
Bessel function. With this Bessel function expressed in its series representa­
tion we find 

Q( a, a*, t) p(O)=Il) (!I 

1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-rt) 

111ood 21+1 [ 2e-'t+(n)+1)(1-e-'t)] x - - r r exp - r -----:-----'-~,..,..-'--'----:-:--'-
1Tl! 0 (n+1)(1-e-rt) 

2 oo 1 [ rlale-h/2)t ]2k 
x 7r (; (k!)2 (n + 1)(1- e-rt) 

1 [ lal 2 ] 
= 1r(n + 1)(1- e-rt) exp - (n + 1)(1- e-rt) 

1 oo 1 [ lale-(r/2)t ]2k 
x lT (; (k!)2 (n + 1)(1- e-rt) 

x 2 dr r 2(k+l)+l exp -r2 n - e . 100 
[ 1 + - (1 -'t) ] 

o (n + 1)(1- e-'t) 

The remaining integral is performed by repeated integration by parts and 
gives 

Q(a, a*, t)p(O)=Il)(ll 

1 [ lal 2 ] 
= 1r(n + 1)(1 - e-rt) exp - (n + 1)(1 - e-rt) 

1 oo 1 [ lale-h/2)t ]2k '[(n+1)(1-e-'t)]k+l+I 
x lT (; (k!)2 (n + 1)(1- e-rt) (k + l). 1 + n(1- e-rt) · 

The Q distribution for a damped Fock state is then 
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(4.54) 

Again, this expression clearly shows the evolution to a Gaussian distri­
bution describing a thermal state in the long-time limit - now with the in­
creased variance ( n ---+ n + 1) discussed below ( 4.21). Our result does not have 
the most convenient form, however, since the summation includes an infinite 
number of divergent terms in the limit t---+ 0. Of course, Q(a, a*, 0) does not 
diverge; this is prevented by the exponential multiplying the sum. It would 
be nice to have a form that cancels the divergent sum explicitly to reproduce 
the Q distribution for the initial Fock state in an obvious way. This can be 
accomplished using the following result: 

~ (k + l)! k = .!!!__ (~ _!_ k+l) 
~ (k!)2 x dxl ~ k!x 
k=O k=O 

dl 
= dxl (xlex) 

l l! l! l-k dl-k X 

= L k!(l- k)! (l- k)!x dxl-ke 
k=O 

l l' l' X~ • • k 
=e ~k!(l-k)!k!x · 

k=O 
(4.55) 

The third line follows from (4.45), with A = -1, B = C = 0, and n = 1; 
also, in the last line we have changed the summation index, with l- k---+ k. 
Using (4.55), equation (4.54) may be recast to give an alternative form for 
the Q distribution for a damped Fock state: 

Q(a, a*, t)p(O)=I!)(!I 

1 [ lal2 ] 1 [(n+1)(1-e--rt)] 1 

= rr[1 + n(1 - e--rt)] exp - 1 + n(1 - e--rt) lT 1 + n(1 - e--rt) 

l l! l! { lal2e-b/2)t }k 
x L k!(l- k)! k! (n + 1)(1- e--rt)[1 + n(1- e--rt)] · 

k=O 
(4.56) 

Equation ( 4.56) produces the correct initial distribution in an obvious way 
(only the k = l term in the sum survives), and it also produces the Gaussian 
form in the long-time limit. It is clearly everywhere positive; for example, for 
l = 1. 
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( 4.57) 

which is to be compared with the result ( 4.53) for the corresponding P dis­
tribution. 

Exercise 4.5 The Wigner distribution can be derived in a similar manner. 
Show that the Wigner distribution for a damped Fock state is given by 

Like P(a, a*, t)p(O)=Il)(ll, this distribution can be negative. Analyze its be­
havior for l = 1. 

4.3 Two-Time Averages 

In Sect. 1.5 we obtained expressions for calculating two-time averages from 
an operator master equation. We have now seen that the operator master 
equation can be converted into a partial differential equation - in the case of 
the damped harmonic oscillator, a Fokker-Planck equation- by setting up a 
correspondence between p and a phase-space distribution function. How can 
the formal operator expressions given in Sect. 1.5 be cast into phase-space 
language to allow us to calculate two-time averages at the "classical" end of 
the quantum-classical correspondence? This is the question we now address. 
Answering the question in a general way requires that we first develop a little 
more formalism. The notation of this formalism is itself a bit burdensome, and 
certainly some of the calculations we eventually perform with it are rather 
arcane. It is perhaps helpful, then, to look ahead to (4.100a) and (4.100b). 
These state the result used most widely in applications; namely, that normal­
ordered, time-ordered two-time averages, such as those needed to calculation 
an optical spectrum or intensity correlation function, are given by phase­
space integrals in the P representation analogous to those met in classical 
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statistics. The effort expended with the formalism allows us to generalize 
from this result in two directions: to determine which two-time averages are 
given by similar phase-space integrals in the Q and Wigner representations, 
and to see how derivatives of the phase-space distribution must be taken, as 
in Sec. 4.1.3, if inappropriately ordered operator averages are considered. 

4.3.1 Quantum-Classical Correspondence for General Operators 

Consider the relationship defined by (3.70) and (3.72) between the opera­
tor p and the distribution P(a, a*). There is actually no reason to restrict 
this relationship to density operators; we can generalize it to set up a cor­
respondence between any system operator 6 and a function Fg) (a, a*) (we 
use "function" remembering that this may be a generalized function). As a 
generalization of the characteristic function XN(z, z*) we define 

pg)(z, z*) = 7rtr(6eiz*at eiza); 

the generalization of the P distribution is then 

F(a)(a a*)= ~~d2zF(a)(z z*)e-iz*a* e-iza 
6 ' - 7f2 6 ' ' 

with the inverse relationship 

p~a)(z,z*) = Jd2aF~a)(a,a*)eiz*a*eiza. 

(4.59) 

(4.60) 

(4.61) 

Taken together (4.59) and (4.60) set up a correspondence between the oper­
ator 6 and the phase-space function F~a) (a, a*). In place of the relationship 
that gives normal-ordered moments in the P representation [Eqs. (3.71) and 
(3.74)] we now have the more general result 

( ' tP q) - ..!:_ oP+q -(a) * I 
tr Oa a - o(" *toC )qF6 (z,z) 

7f ZZ ZZ z=z*=O 

1 oP+q J 2 (a)( *) iz*a* izai = - 0 (. *)Po(· )q d aF6 a,a e e 
7f ZZ ZZ z=z*=O 

= ..!:.fd2aF~a)(a,a*)a*Paq. (4.62) 
7f 0 

Within this scheme the P distribution is defined with 

( *)- 1 F-(a)( *) XN z, z = - P z, z , 
7f 

1 
P(a,a*) = -F~a)(a,a*). 

7f 

(4.63a) 

(4.63b) 
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We have slipped in some changes here that need an explanation: a factor 
of 7f has been added in (4.59) and the subscript Non xN has been replaced 

by the superscript (a) on PJa). This has been done with the following in 
mind. 

Consider an operator A expanded as a power series of terms written in 
antinormal order: 

A= A(a at)=""' cCa)aqatP ' - L......t p,q ' 
(4.64) 

p,q 

where the C~~ are constants. Then, from (4.59), 

p,q 

- '"'c(a) av+q t ( iz*at iza) 
- 7f L..J p,q 8(iz*)P8(iz)q r e e · 

p,q 

Introducing the expansion (3.9) for the unit operator, 

L () av+q I .. = c a d2). eiz ).. eiz.>.. 
p,q 8(iz*)P8(iz)q p,q 

- 2 ""'cCa) av+q 8( ) 
- 7f L..J p,q 8(iz*)Po(iz)q z · 

p,q 

We substitute this result into ( 4.60) and integrate by parts to obtain 

L ( )! 2 ()P+q . • • . _ a -tz a -tza 
- cp,q d z8(z) 8(iz*)p8(iz)qe e 0 

p,q 

Thus, 
(4.65) 

Equations ( 4.64) and ( 4.65) state that, for operators written as an anti­
normal-ordered series, F~a) (a, a*) is obtained by replacing the operators 

a and at in that series by the complex numbers a and a*, respectively. 
Fg) (a, a*) is called the antinormal-ordered associated function for the oper­

ator 6. The superscript (a) denotes the antinormal-ordered associated func­
tion. The factor of 7f in (4.59) leads to the direct association of functions and 
operators expressed by (4.64) and (4.65), rather than with a 1/7f multiplying 
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the right-hand side of (4.65). We must be careful now not to become confused 

between our "normals" and "antinormals". In ( 4.63b) we see that P( a, a*), 
which is used to calculate normal-ordered averages, is, apart from a factor 

of 1r, the antinormal-ordered associated function for p. This relationship will 

become clearer as we follow the idea of associated functions a little further. 

Analogous definitions of normal-ordered and symmetrically ordered asso­
ciated functions for an operator can be given. We define the normal-ordered 

associated function F~n\a, a*) in terms of its Fourier transform p~n) (z, z*) 

introduced as a generalization of ( 4.1): We define 

( 4.66) 

and 
(n) 1 j 2 - (n) · * * · F, (a, a*)= -2 d zF, (z,z*)e-tz a e-tza, 
0 7r 0 

( 4.67) 

with the inverse relationship 

p~n) (z, z*) = J d2a F~n) (a, a*)eiz*a* eiza. ( 4.68) 

In place of the relationship that gives antinormal-ordered moments in the Q 
representation [Eq. ( 4.5)], we have 

(4.69) 

The Q distribution is proportional to the normal-ordered associated function 
for p: 

( *)- 1 p-(n)( *) XA z, z = - P z, z , 
7r 

(4.70a) 

1 
Q(a, a*)= -F~n)(a, a*). 

7r 
( 4. 70b) 

Similarly, the symmetric-ordered associated function Fg)(a,a*) is de­

fined in terms of its Fourier transform Pg\z, z*) introduced as a generaliza­

tion of (4.25): We define 

( 4. 71) 

and 
p\s)(a,a*) = ~2Jd2zft\s)(z,z*)e-iz*a* e-iza. 

0 7r 0 
(4.72) 

with the inverse relationship 

Pg) (z, z*) = J d2a Fg) (a, a*)eiz*a* eiza. ( 4. 73) 
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In place of the relationship that gives symmetric-ordered moments in the 
Wigner representation [Eq. (4.31)], we have 

tr[6(atpaq)s] = ~jd2aFg)(a,a*)a*Paq. (4.74) 

The Wigner distribution is proportional to the symmetric-ordered associated 
function for p: 

( *)- 1 p-(s)( *) Xs z, z = - P z, z , 
7f 

( 4. 75a) 

1 
W(a, a*)= -FJsl(a, a*). 

7f 
(4.75b) 

Relationships between the various associated functions, and between their 
Fourier transforms, can be obtained as generalizations of earlier results: equa­
tions (4.9) and (4.34) generalize to give 

p~n\z, z*) = e-~lzl2 pgl(z, z*) = e-lzl2 p~a\z, z*); 

Eqs. ( 4. 7) and ( 4.35) generalize to give 

F~n)(a,a*) = ~Jd2 Ae-l>--ai 2 F~a)(A,A*), 
0 7f 0 

F~s) (a, a*) = ~1d2 A e-21>--al2 F~a) (A, A*), 
0 7f 0 

F~n) (a, a*)= ~1d2 A e-21>--a12 F~s) (A, A*); 
0 7f 0 

finally, Eqs. ( 4.11) and ( 4.36) generalize to give 

( 4. 76) 

(4.77a) 

(4.77b) 

(4.77c) 

F (n)( *)- (1 [)2 )p(s)( *)- ( [)2 )p(a)( *) 6 a, a - exp 2 oaoa* 6 a, a - exp oaaa* 6 a, a . 

(4.78) 

We can now understand the relationships between the various associated 
functions for p (the P, Q and Wigner distributions) and the ordered operator 
averages that are calculated from their moments in a more general context. 
First, we note the extension of the result expressed by (4.64) and (4.65) to 
normal-ordered and symmetric-ordered series. For an operator N written as 
a normal-ordered series, 

N = N(a at)="' cCn)atpaq ' - L....t p,q ' (4.79) 
p,q 

the normal-ordered associated function is obtained by replacing a by a and 
at by a*: 

( 4.80) 
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For an operator S written as a symmetric-ordered series, 

(4.81) 

the symmetric-ordered associated function is obtained by replacing a by o: 

and at by o:*: 

( 4.82) 

Now, if 6 1 and 6 2 are arbitrary system operators, and N2 = N 2 (a, at) = 6 2 
is the normal-ordered form of 6 2, we can apply (4.62) to each term in the 

series expansion of N 2 (a, at) to obtain 

tr(6162) = tr[61N2(a, at)] 

= ~ J d2 o:F~~l(o:,o:*)N2(o:,o:*) 

= .!_ Jd2o: F~a) ( 0:, o:*)F~n) ( o:, o:*)' 
7r 01 02 

( 4.83) 

where the last line follows from (4.80). Equations (3.74) and (4.5), glVlng 

normal-ordered and antinormal-ordered operator averages as moments of the 

P and Q distributions, respectively, are special cases of this more general re­

sult. With 6 1 taken asp, moments of the antinormal-ordered associated func­

tion for p give the averages of operators 6 2 written in normal-ordered form. 

Alternatively, with 02 taken as p, moments of the normal-ordered associated 

function for p give averages of operators 6 1 written in antinormal-ordered 
form. A similar result can be obtained by writing 6 2 as a symmetric-ordered 

series and using (4.74) and (4.82): 

tr(0162) = ~ j d2o:Fg1l(o:,o:*)Fg}(o:,o:*). ( 4.84) 

The relationship ( 4.31) between symmetric-ordered operator averages and 

the moments of the Wigner distribution is a special case of this result. 

Note 4.5 The association given by (4.79) and (4.80) is easily proved following 

an argument analogous to that used to establish (4.65). A similar proof of 

the association given by ( 4.81) and ( 4.82) is not so straightforward because 

partial derivatives with respect to (iz) and (iz*) act in a rather complicated 

way on eiz*at +iza (see Sect. 4.3.5). A simple proof can be devised, however, 

by arguing backwards as follows: Set Fg)(o:,o:*) = o:*Po:q. What, then, is the 

operator 6 having this symmetric-ordered associated function? The answer 

to this question can be obtained by converting everything into normal order, 

using ( 4. 78) to write 



4.3 Two-Time Averages 129 

F~n)(o:,o:*) = exp(~~)a*Po:q 
0 2 ao:ao:* 

min(p,q) 1 1 I I 
'"""' p. q. *P-k q-k 
L..t 2kk!(p-k)!(q-k)!o: 0: 0 

k=O 

Then, from (4.79) and (4.80), 

min(p,q) 1 1 I I 
6 - '"""' p. q. tp-k q-k 

- L..t 2kk!(p-k)!(q-k)!a a . 
k=O 

But (4.33) tells us that this is just the symmetric-ordered operator (atPaq) 8 . 

4.3.2 Associated Functions and the Master Equation 

We saw how to derive an equation of motion for the P distribution to replace 
the operator master equation in Sect. 3.2.2. Generally, we will refer to such an 
equation as a phase-space equation of motion. We now see what this equation 
of motion looks like in the language of our generalized formalism of associated 
functions for arbitrary operators. 

Let us start with a rather formal summary of the derivation of the equa­
tion of motion for the P distribution. From the operator master equation 
(3.1) we write 

(4.85) 

which, after substituting the explicit form of £ for the damped harmonic 
oscillator, is just (3.76). In the language of associated functions (4.85) states 
that 

a F-(a) ( *) _ F-(a) ( *) at p(t) z, z - cp(t) z, z . (4.86) 

The Fourier transform of this equation gives the equation of motion for the 
antinormal-ordered associated function for p- the P distribution (multiplied 
by 7r): 

a p(a) ( *) - p(a) ( *) at p(t) a, a - cp(t) a, a . (4.87) 

Formally, this is the Fokker-Planck equation. But the next step is needed to 
reveal its explicit form as a partial differential equation; this is the step where 
most of our effort was spent in Sect. 3.2.2. We must express FJ:;!(t) ( o:, o:*) in 

terms of F;(J)(o:,o:*), with the action of£ on the density operator p trans­
formed into the action of some differential operator on the associated function 
for p. Leaving out the details, the aim is to write 

F (a) ( *) _£(a)( * !_ _!.._) p(a) ( *) £p(t) o:, 0: - o:, 0: ' ao:' ao:* p(t) o:, 0: ' (4.88) 
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where L(al(a, a*, !/a, 8~.) is a differential operator associated with C. For any 

particular example this must be found from an explicit calculation similar to 

the one in Sect. 3.2.2; for the damped harmonic oscillator 

L (a)( * a a ) 
\a, a' aa' aa* 

= (1 + iwo) ~a+ (1- iwo) _!!_a*+ ryn____!!_. (4.89) 
2 aa 2 aa* aaaa* 

Now (4.87) becomes 

!!..F(a) ( *) - L(a)( * ~ _!}_) F(a) ( *) 
at p(t) a, a - a, a ' aa' aa* p(t) a, a ' ( 4.90) 

and setting 

P(a,a*,t) = ~F;('))(a,a*), ( 4.91) 

the equation of motion for P(a, a*, t) is 

!!_P( * ) - L(a)( * ~ _!!_) ( * ) at a, a 't - a, a ' aa' aa* p a, a 't . ( 4.92) 

More generally, we may write ( 4.88), not just for density operators, but 

for any operator 6. Then, by induction, 

(a) * _ (a) * a a (a) * [ ( )]
k 

F_ck 0 (a, a ) - L a, a , oa, oa* F0 (a, a ), ( 4.93) 

from which it follows that 

F(a) ,(a a*)= eL(al(a,a*,Ja,a~•)TF\a)(a a*). 
exp(£T)0 ' 0 ' 

(4.94) 

This result, and ( 4.83) from the last section, will serve as centerpieces in 

our conversion of the expressions from Sect. 1.5 for two-time averages into 

phase-space form. 
Of course, we define the differential operators L(n)( a, a*, !/a, 8~.) and 

L(sl(a,a*, !/a' 8~.) which govern the dynamics of the Q and the Wigner 

distributions, respectively, in an analogous manner. For the damped har­

monic oscillator L(n)( a, a*, !/a, 8~.) is given by ( 4.89) with the replacement 

n---+ n + 1, and L(sl( a, a*, 88a, 8~.) is given by the same expression with the 

replacement n ---+ n + ~. 
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4.3.3 Normal-Ordered Time-Ordered Averages 
in the P Representation 

We first set ourselves the task of finding a phase-space form in the P repre­
sentation for the average ( T ~ 0) 

( 4.95) 

where the expression on the right-hand side is obtained from (1.102); N can be 
any system operator written as a normal-ordered series [Eq. (4.79)]. Equation 
( 4.95) provides an expression for calculating a general normal-ordered, time­
ordered, two-time average - every at to the left of every a, every at ( t + T) 
to the right of every at(t), and every a(t + T) to the left of every a(t). These 
are the averages that most interest us for applications in quantum optics. 

Using (4.83) and (4.94), we write the average (4.95) as the phase-space 
integral 

(atP(t)N(t + T)aq(t)) 

1 /d2 p(a) ( *) p(n)( *) = ;: a exp(£T)[aqp(t)atPj a, a N a, a 

Then, from (4.60) and (4.59), 

F (a) ( *) 1 /d2 p-(a) ( *) -iz*a* -iza aq p(t)atP a, a = 7r2 z aq p(t)atP z, Z e e 

= :2 J d2 z ntr [ aq p( t)a tP eiz* at eiza] e-iz* a* e-iza 

= 7r~ J d2 z ntr [P( t)a tPeiz* at eizaaq J e-iz* a* e-iza 

1 J 2 [ ap+q -(a) * ] -iz*a* -iza 
= n2 d z 8(iz*)P8(iz)qFp(t)(z,z) e e . 

Substituting for F~(j)(z,z*) from (4.61), we have 

(a) * - 1 J 2 [ ap+q J 2 (a) * iz* .X* iz.X] Faqp(t)atP(a,a)- n2 d z 8(iz*)P8(iz)q d )..Fp(t)(>,,).. )e e 

X e -iz* a* e -iza 

= I_Jd2)..p(a) (>. )..*))..*P)..qfd2zeiz*(.X*-a*)eiz(.X-a) 
7r2 p(t) ' 

= I_Jd2)..p(a) (>. )..*))..*P)..q8(2)().. _a) 
7r2 p(t) ' 

= p(a) (a a*)a*Paq p(t) ' . ( 4.97) 
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We now substitute this result into (4.96) to find (T ~ 0) 

(atP(t)N(t + T)aq(t)) 

= .!.jd2a [eL(al(o:,o:*,j;;,a~·)r p(a) (a a*)a*Paq] p(n)(a a*) 
7r p(t) ' N ' · 

(4.98) 

At first sight, this expression may seem to be a rather useless formal result. 
However, a little more work casts it into a simple form- a form which might 
already have been anticipated. In simpler notation, (4.98) reads (T ~ 0) 

(atP(t)N(t + T)aq(t)) 

= J d2a [ eL(al(o:,o:*, t"' a~• )r P(a, a*, t)a*P aq J N(a*, a), (4.99) 

where we have used (4.91) and (4.80). Now the action of the propagator 
exp [ £(a)(a, a*, :a, 8~.) T] on the 8-function 8(2 ) (a- a0 ) generates the Green 
function for the equation of motion ( 4.92). This suggests that we should write 
the operand of the propagator in (4.99) as 

P(a, a*, t)a*Paq = J d2ao 8(2)(a- ao)P(ao, a~)a~vag, 

whence (T ~ 0), in the P representation a normal-ordered, time-ordered, 
two-time average is calculated as 

(atP(t)N(t + T)aq(t)) 

= J d2a J d2a0 a~P agN(a, a*)P(a, a*, Tlao, a~, O)P(ao, a~, t) 
= ((a*Paq)(t)N(t + T))p, (4.100a) 

where we have introduced the notation 

and 

((a*Paq)(t)N(t + T))p 

= J d2a J d2a0 a~PagN(a, a*)P(a, a*, t + T; ao, a~, t), 
(4.100b) 

P(a, a*, t + T; ao, a~, t) = P(a, a*, Tlao, a~, O)P(ao, a~, t) (4.101) 

is the two-time, or joint, distribution. Thus, the correspondence with a clas­
sical statistical description has been extended one step further. Equation 
(4.100b) is formally equivalent to the formula for calculating two-time aver­
ages in a classical statistical theory. 
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4.3.4 More General Two-Time Averages 
Using the P Representation 

We have seen that antinormal-ordered one-time averages can be calculated 
using the P representation [Sect. 4.1.3]; although, with some inconvenience, 
since the expressions for these averages involve derivatives of the P distribu­
tion. The situation is similar when we consider two-time averages that are 
not in normal-ordered time-ordered form. To see how (4.100) must be modi­
fied to give these averages we will seek a phase-space expression using the P 
representation for the general average ( T 2 0) 

(4.102) 

where 
(4.103) 

and N is again the arbitrary normal-ordered operator defined by the series 
expansion ( 4. 79). Once we have a solution to this problem, results for various 
combinations of normal-ordered and antinormal-ordered operators will follow 
with little extra effort. 

We begin as before, using ( 4.83) and ( 4.94) to write 
A A At 

(Or,q,m(t)N(t + T)Os,p,n(t)) 

= ~~d2a[eL(a)(a,a*,&8a'&~•)Tp~~) , (a,a*)]F\n)(a,a*) 
7r Oa,p,nP(t)Or,q,m N 

(4.104) 

the second line follows from ( 4.60). Our aim now is to express the function 

PgL,np(t)Dr,q,Jz,z*) in terms of F;'())(z,z*) and its derivatives. Using (4.59) 
and (4.103), we have 

and then, from (3.78), 
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We write this to reflect the order of the operators in (4.103): 

F- (a) ( *) - om ( 0 . *)q or 
't , z, Z - m --) + ZZ r 

On,p,sP(t)Or,o,= o(iz*) o(iz o(iz*) 

on ( 0 . )p OS -(a) * 
x o(izt o(iz*) +zz o(iztFp(t)(z,z ). 

(4.105) 

We now substitute the Fourier transform of F~())(a, a*) for F~())(z, z*) to 

obtain 

where the last line follows after repeated integration by parts. When we 

use this result in (4.104) the integral with respect to z gives a 8-function, 

8(2) (a - .\), and the integral with respect to .\ is then trivially performed; we 

find (T ~ 0) 
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If we proceed, as below (4.98), to express this result in terms of P(a0 ,a0,t) 
and P(a, a*, Tla0 , a0, 0), (4.107) becomes (T 2: 0) 

A A At 
(Or,q,m(t)N(t + T)On,p,s(t)) 

= J d2 a J d2a 0 N(a, a*)P(a, a*, Tlao, a~, 0) 

*m ( a )q *r n ( * a )p sp( * t) x a 0 ao - aa() a 0 ao a 0 - aao ao ao, a 0 , . 

(4.108) 

The replacement of a tP and aq by differential operators, below ( 4.104), may 
also be performed in the reverse order; this gives an alternative to ( 4.108) in 
the form ( T 2: 0) 

A A At 
(Or,q,m(t)N(t + T)On,p,s(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tlao, a~, 0) 

n ( * a )P s *m ( a )q *rP( * t) x ao a 0 - aao ao a 0 ao - a a() a 0 ao, a 0 , . 

(4.109) 

With p = q = 0, both of these expressions reproduce the result (4.100) 
for the average (atm+r(t)N(t + T)an+s(t)). When p 'I 0, or q 'I 0, derivatives 
of P(a0 ,a0,t) are involved, as in (4.23). Equation (4.23a) can be recovered 
from either (4.108) or (4.109); for example, with q 'I 0, N = atP, T = 0, and 
r = m = n = p = s = 0. Similarly, (4.23b) can be recovered with p 'I 0, 
N = aq, T = 0, and r = q = m = n = s = 0. There are other combinations 
of parameters that also recover these earlier results. 

A number of results for two-time averages of operators expressed as 
normal-ordered and antinormal-ordered series now follow from ( 4.108) and 
( 4.109). We introduce the normal-ordered series 

N1 = N1(a at)= ~C(n) atPaq ' - L....; lp,q ' (4.110a) 
p,q 

N2 = N2(a at)= ~C(n)atPaq ' -6 2pq ' (4.110b) 
p,q 

and the antinormal-ordered series 
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(4.1lla) 
p,q 

A2 = A2(a at) = """'c<a) aqatP 
' - ~ 2pq . (4.1llb) 

p,q 

Then, applying (4.108) term by term, we prove the following (T 2 0): 

(Nl(t)N(t + T)N2(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

X 1V{ao- O~o,a(;)N<ao,a(;- a~JP(ao,a(;,t), 
(4.112a) 

(Nl(t)N(t + T)A2(t)) 

= J d2 a J d2 a0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

xN{ao- o~*,ac;)A;(ao,a(;- 8~JP(a0 ,a0 ,t), 
0 (4.112b) 

(Al(t)N(t + T)N2(t)) 

= J d2a J d2a0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

x ih( ao- 8~0 , a0) N2( ao, a0- a~J P(a0 , a0, t), 
(4.112c) 

(Al (t)N(t + T)A2(t)) 

= J d2a J d2a 0 N(a, a*)P(a, a*, Tiao, a(;, 0) 

X Jh(ao- o~*, a(;)J!;(ao, a(;- 0~J P(ao, a0, t). 
0 (4.112d) 

The arrows indicate whether the power series are to be written with the 

differential operators placed to the right or to the left. Equation ( 4.109) 

allows the order of the functions N1, N2, A1, and A2 to be reversed in these 

expressions. 

Note 4.6 We have not exhausted all combinations of normal-ordered and 

antinormal-ordered operators here. If N is replaced by an antinormal-ordered 

series [Eq. (4.64)], it can be shown that N(a,a*) may be replaced in (4.112a)­

(4.112d) by either A( a- 8~., a*) or A( a, a*- ,t,J. The resulting expressions 

reproduce (4.23a) and (4.23b), respectively, when N1 = N2 = A1 = A2 = 1 
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and A= aqatP. To prove this, use the relationship between Fln)(a,a*) and 

Fla)(a,a*) given by (4.78). 

4.3.5 Two-Time Averages 
Using the Q and Wigner Representations 

Just as the operator averages corresponding to the moments of the single­
time distribution vary from one representation to the other, so too do the 
averages corresponding to the moments ofthe two-time, or joint, distribution. 
In the Q representation a calculation parallel to that of Sect. 4.3.3 shows 
that antinormal-ordered, reverse-time-ordered, two-time averages are given 
by (r ~ 0) 

with 

and 

(aq(t)A(t + r)atP(t)) = ((a*Paq)(t)A(t + r))Q, (4.113a) 

((a*Paq)(t)A(t + r))Q 

= j d2a j d2a 0 a~Pa6A(a, a*)Q(a, a*, t + r; ao, a~, t), 
(4.113b) 

Q(a, a*, t + r; ao, a~, t) = Q(a, a*, rlao, a~, O)Q(ao, a~, t), (4.114) 

where A is any operator written as a series in antinormal order [Eq. (4.64)]. 
More general averages not of the antinormal-ordered, reverse-time-ordered 
form involve derivatives of the Q distribution after the fashion of (4.112a)­
(4.112d). 

Exercise 4.6 Show that (r ~ 0) 

(A1(t)A(t + r)A2(t)) 

= J d2a J d2 a 0 A( a, a*)Q(a, a*, riao, a~, 0) 

x A; ( ao, a~ + a~J A; ( ao + 8~0 , a~) Q( a 0 , a~, t), 
(4.115a) 

(A1(t)A(t + r)N2(t)) 

= j d2 a j d2 ao A( a, a*)Q(a, a*, riao, a~, 0) 

X Al(ao,a~ + a~JN;(ao + a~*,a~)Q(ao,a~,t), 
0 (4.115b) 
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(NI(t)A(t + T)A2(t)) 

= J d2a J d2ao A( a, a*)Q(a, a*, Tlao, a0, 0) 

x~(ao,a()+ 8~JA2(ao+ 8~0 ,a0)Q(ao,a0 ,t), 
(4.115c) 

(Nl(t)A(t + T)N2(t)) 

= J d2a J d2a 0 A( a, a*)Q(a, a*, Tlao, a0, 0) 

x ~(ao, a0 + 8~JN;(ao +a~*, a0) Q(ao, a0, t). 
0 (4.115d) 

As mentioned in Note 4.6, if A is replaced by an operator N = N(a, at) writ­
ten as a normal-ordered series, A( a, a*) may be replaced in these expressions 

---+ ---+ 
by either N (a + 8~., a*) or N (a, a* + //c,). From the resulting expressions 
we can recover (4.24a) and (4.24b) by setting A1 = A2 = N1 = N2 = 1 and 
N(a,at) = atPaq. 

We might expect the operator averages that correspond to moments of the 
two-time distribution in the Wigner representation to be some rather tangled 
mess. The symmetric-ordered operators related to moments of the one-time 
distribution are themselves a little imposing beyond the first few orders; how 
must we distribute the "t's" and "t + T's" within the terms of the symmetric 
operator sums [Eqs. ( 4.29)] to come up with the two-time operator whose 
average is given by a double integration like (4.100) or (4.113)? The answer 
to this question is found by studying Sect. 4.3.3 a little more carefully to 
find out what really makes the calculation there work. Needless to say, the 
extension of this calculation to two-time averages calculated in the Wigner 
representation is going to call for a little more algebraic muscle. 

First, note that a sum of averages ( T ;:::=: 0) 

(4.116) 
i,j i,j 

can be written as a phase-space integral analogous to (4.96): 
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i,j 

= .!.fd2a[eLC•l(a,a*,-/a,a~·)r'"' F~s) • (a a*)]F~s)(a a*) 
7r ~ Ojp(t)O; ' S ' ' 

i,j ( 4.117) 

where we have used (4.84) and (4.94), and S denotes any operator written as a 
symmetric-ordered series [Eq. ( 4.81)]. Now, the point on which the calculation 
of Sect. 4.3.3 turns is found in the fourth line of the equation below ( 4.96); if 

we can substitute F~(f)(z, z*) for F~'(J)(z, z*) here we will be able to proceed 
in a parallel calculation to a result analogous to (4.100) -with W replacing 
P, and S replacing N. But to connect such a calculation with ( 4.117) we must 
answer one question: What operators Oi and Oj must be chosen so that 

'""'p<s) ( *) - ap+q p<s) ( *)? 
~ 6jp(t)6i z, z - a(iz*ta(iz)q p(t) z, z · 
<,) 

With the answer to this question the two-time operator average obtained 
from moments of the two-time distribution in the Wigner representation will 
be the average ( 4.116). 

The key to an answer lies with the following observation. Using (4.71) 
and the Baker-Hausdorff theorem [Eq. (4.8)], we find 

a -(s)( *) 
a(iz) Fp(t) z, z 

a [ .. t+. ] = --. -7rtr p(t)e"z a •za 
a(zz) 
a 1 [ ( 1 1 12 . . • t 1 1 12 .• t . )] = --. --7ltr p(t) e2 z e•zaeu a + e-2 z e•z a e•za 

a(zz) 2 

= ~7rtr{p(t) [(a - ~iz*)eiz*a t +iza + eiz*at +iza (a+ ~iz*) J} 

= ~ [Pd;~t)(z, z*) + F~(f)a(z, z*)], (4.118a) 

and, in a similar fashion, 

a p<sl ( *) _ 1 [P<sl ( *) p<sl ( *)] a( iz*) p(t) z, z - 2 at p(t) z, z + p(t)at z, z . (4.118b) 

Also, if we wish to obtain an answer in a form that preserves the relation­
ship to operators written in symmetric order, we must order the differential 
operators appearing in (4.118) in a corresponding fashion. Thus, we write 

(4.119) 
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where the right-hand side is the average of the (p+q)!j(p!q!) orderings of the 
p differential operators 8/8(iz*) and the q differential operators 8j8(iz). Now 
the answer to our question is accessible. To reach it, however, still requires a 
little combinatorics. The final step is left as an exercise: 

Exercise 4.7 Use (4.118a), (4.118b), and (4.119) to show that 

()P+q p(s) * 1 ~ (p + q) p(s) * 
8(iz*ta(iz)q p(t)(z,z) = 2v+q f='o k (atP:p(t):aq)~kl(z,z ), 

(4.120) 

with 

(4.121) 

where the summation in (4.121) is taken over all different permutations 
61 · · · 6p+q of p creation operators and q annihilation operators - i.e. p(t) 
is placed into each term of (atvaq)s k places from the extreme right. 

Equation (4.120) now allows us to follow the steps that led to (4.97) to 
obtain the corresponding result 

( 4.122) 

The series of operators 6i and 6 j appearing in ( 4.117) must now be chosen 
to connect with this result. The choice is fairly obvious from the associated 
function that appears on the left-hand side of (4.122); we have 

1 ~(p+ q) p!q! 
= 2P+q ~ k (p + q)! 

k=O 

X L (6p+q(t) ... 6k+l(t)S(t + T)6k(t) ... 6l(t)) 
{Oj} 

1 ~(p+ q) p!q! 
= 2P+q ~ k (p + q)! 

k=O 

X L tr{(e.CT[6k ... 6lp(t)6p+q ... 6k+ll)S}, 
{Oj} 
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where we have used (1.102). The order of the subscripts in the sum over 
permutations of the operator product atvaq can be changed with no effect, 
since operator sequences in every order are covered in the sum. Then 

1 ~(p+ q) p!q! 
= 2P+q L...J k (p + q)! 

k=O 

x L tr{(e.Cr[Op+q · · · Op+q-k+!P(t)Ov+q-k · · · 01l)S}. 
{Oj} 

In the operator sequences on the right-hand side of this expression p(t) is 
inserted k places from the extreme left, in contrast to its position k places 
from the extreme right in the definition (4.121). This difference is removed, 
however, by a change of summation index, with p + q- k---+ k; after making 
this change we arrive at the desired explicit form for (4.117); using (4.84) 
and (4.94): 

(4.123) 

Equations (4.122) and (4.123) allow the two-time operator average on 
the left-hand side of (4.123) to be calculated as a phase-space average with 
respect to the two-time Wigner distribution. Following the steps leading from 
(4.98) to (4.100) we obtain the corresponding result (r ~ 0) 

with 

((a*Paq)(t)S(t + r))w 

= Jd2a Jd2a0 a(/a6S(a,a*)W(a,a*,t+r;ao,a~,t), 
(4.124b) 
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and 

W(a, a*, t + T; ao, a0, t) = W(a, a*, Tlao, a0, O)W(ao, a0, t). (4.125) 

We have again managed to construct a relationship between ordered oper­
ator two-time averages and two-time averages in the corresponding "classi­
cal" statistical system. However, the sum of operator averages appearing on 
the left-hand side of (4.124a) makes this a rather more formidable relation­
ship than the corresponding relationships for the P and Q representations 
[Eqs. (4.100) and (4.113)]. 

To convince ourselves of the consistency of our result we should perhaps 
show that ( 4.124) is able to reproduce the expression for calculating one­
time averages in the Wigner representation [Eq. (4.31)]. This is clear when 
we specialize to one-time averages by either taking p = q = 0, or S = 1; in 
both cases we need only observe that 

It is less obvious, however, that the single-time result is recovered when T is 
set to zero. Then (4.124) becomes 

= j d2 aa*PaqS(a, a*)W(a, a*, t). 

If this is to correspond to ( 4.31), the phase-space function 

a*PaqS(a,a*) = L c~~:q,a*P+P'aq+q' 
p',q' 

that appears with the Wigner distribution in the integrand on the right-hand 
side must be the symmetric-ordered associated function for the operator that 
appears on the left-hand side- i.e. for the operator 

= "'ces) [-1-~ (p + q)(atP. (atp' aq')s ·aq)(k)l L.... p',q' 2P+q L.... k . . S . 
p',q' k=O 

We know that (a tv+v' aq+q') 8 is the operator with the symmetric-ordered 

associated function a*P+v' aq+q'; thus, we must show that 
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(4.126) 

The proof is constructed by using the identity ( 4.28) to write 

= _1_~ p+q (atP:eiz*at+iza:aq)(k) . 
aP' +q' p+q ( ) I 

a(iz*)P' a(iz)q' 2P+q ~ k S 
k=O z=z*=O 

Then, using 

_a_eiz*at+iza = l(aeiz*at+iza + eiz*at+izaa) 
a( iz) 2 ' 

(4.127a) 

__ a_eiz*at +iza = l (at eiz*at +iza + eiz*at +izaat) 
a(iz*) 2 ' 

(4.127b) 

a calculation parallel to the one leading from ( 4.118) to ( 4.120) gives 

Substituting this result and making a second use of ( 4.28), we have 

_1_ ~ (p + q)(atP: (atP' aq')s :aq)(k) 
2P+q ~ k S 

k=O 

- e"z a +tza 
f)P+P' +q+q' . * t . I 

- 0( iz* )P+P' a( iz )q+q' z=z* =O 

= (atP+P' aq+q')s· 

It is possible to derive more general expressions for two-time averages 
in the Wigner representation - expressions that involve partial derivatives, 
after the fashion of the results (4.112) and (4.115) for the P and Q repre­
sentations. We have no use, however, for these expressions later in the book 
and therefore we will not bother with their derivation here. In general we 
are interested only in the simple relationships (4.100), (4.113), and (4.124), 
where two-time operator averages are given by moments of the two-time 
phase-space distributions. It is important to realize, however, that within 
each of the three representations we have discussed many two-time averages 
simply cannot be calculated in terms of a simple "classical" integral; the 
more complicated expressions such as ( 4.112) and ( 4.115) are needed when 
the ordering is inappropriate for the chosen representation. When calculating 
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single-time averages we always have the option of reordering the operators 
to suit the representation. Thus, (ata) can be calculated as (ata) = (a*a)P 
in the P representation, (aat)- 1 = (a*a)q- 1 in the Q representation, or 

as H (at a)+ (aa t)) - ! = (a* a )w - ! in the Wigner representation. On the 
other hand, while an average like (at(t + r)a(t)) , or (a(t + r)a(t)), can be 
calculated as a "classical" integral in the P representation [Eq. (4.100)], we 
generally do not have commutation relations to tell us how to reorder the 
operators so that the same result can be obtained as simply in either the Q 
or the Wigner representations. Applications in quantum optics are ultimately 
concerned with the normal-ordered time-ordered averages that arise in the 
theory of photodetection [4.11, 4.12]. Our phase-space results for two-time 
(more generally multi-time) averages clearly distinguishes the P representa­
tion as the most suited to the treatment of problems in quantum optics -
results for multi-time averages show this even more clearly than do results 
for one-time averages. 

Note 4. 7 The assertion that the P representation is the most suited to 
problems in quantum optics perhaps requires some qualification. The P rep­
resentation gains its special status from the theory of photoelectric detection, 
in which normal-ordered time-ordered averages appear. Therefore questions 
that are related in an immediate way to the ultimate observation of pho­
tons through the photoelectric effect lead in a natural way to a phase-space 
formulation in terms of the P representation. But there are questions of in­
terest which need not be stated in terms of the photoelectric emission that 
ultimately completes a measurement process. Certainly then, there are situ­
ations in which, as a mathematical tool, the Q or the Wigner representation 
might be preferred over the P representation. An important consideration 
in this regard is the fact that the P distribution may be a generalized func­
tion. If this is so we do not gain much physical insight, and probably little 
mathematical assistance, by using the P representation. On the other hand, 
the Q and Wigner distributions are always well-behaved functions (although 
the Wigner distribution may take on negative values). For this reason the Q 
or Wigner representation is often the choice for studies of nonclassical states 
of the electromagnetic field - for example, squeezed states, in one sense, are 
related most directly to the Wigner representation. 

Having said this, it is still important to reiterate the observation above 
concerning multi-time averages. When we use a phase-space representation 
to convert an operator master equation into a Fokker-Planck equation, we 
do not merely set up a representation for some state of the electromagnetic 
field; we set up a correspondence between quantum and classical processes 
that evolve in time. When the P representation provides the basis for the 
quantum-classical correspondence a direct connection exists between all the 
multi-time correlation functions of the classical process and the multi-time 
correlation functions of the quantized field that are measured by photoelec-
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tric detection. We cannot make a similar general statement connecting the 
classical multi-time correlation functions and measured multi-time statistics 
of the quantized field when the Q or Wigner representations provide the basis 
for the quantum-classical correspondence. 

Exercise 4.8 Reproduce the result 

from Sect. 1.5.3 using the P representation and the Q representation. From 
the simple relationship between the Fokker-Planck equations for the damped 
harmonic oscillator, it follows that (4.113) and (4.124) give 

(a(O)a(T)at(T)at(o))ss = (n + 1)2(1 + e-'YT) 

and 

Reproduce these results using the methods of Sect. 1.5.3. 



5. Fokker-Planck Equations and Stochastic 
Differential Equations 

We have seen how the quantum-classical correspondence is used to transform 
a quantum-mechanical operator description of a dissipative system, such as a 
damped harmonic oscillator, into the language of classical statistical physics. 
The distribution that represents the density operator need not satisfy all of 
the conditions required of a probability density; but in many cases it does, 
and very often it obeys a Fokker-Planck equation which leads us directly to 
a treatment using the language and methods of classical statistics. We will 
shortly discuss the extension of these ideas to the representation of atomic 
states. However, before moving to this subject, now is a good time to say 
something about the general properties of Fokker-Planck equations and their 
connection with stochastic differential equations. 

The Fokker-Planck equation has a long history, going back to its use by 
Fokker in 1915 [5.1], and Planck in 1917 [5.2], to describe Brownian motion. 
In its traditional context it is an equation for a conditional probability density 
P(x, tixo, 0) of the form 

aP(x, tixo, 0) 

at(nf) 1n fj2 ) 
= -L:axAi(x)+2L axax·Dij(x) P(x,tlxo,O), (5.1) 

i=l • i,j=l • J 

where x is a vector of n random variables, x 1 , ... , Xn, and the Ai ( x) and 
Dij(x) are general functions ofthese variables; the matrix Dij(x) is symmet­
ric and positive definite by definition. The conditional probability density is 
the Green function solution to (5.1), which has initial condition 

P(x, Olxo, 0) = 8(x- xo) = 8(x1 - xw) · · · 8(xn - Xno). 

Of course, the unconditioned distribution 

P(x, t) = j dxo P(x, tixo, O)P(xo, 0) 

also satisfies (5.1). The Fokker-Planck equation is an approximate form of 
the Chapman-Kolmogorov equation, 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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for a Markov process. The essential content of the approximation leading 
from (5.2) to (5.1) is the assumption that the stochastic evolution of the 
state x(t) proceeds via infinitely many infinitesimal jumps, in a diffusion 
process; discontinuous jumps (jumps that are not infinitesimal) add deriva­
tives of all orders to (5.1) (the Kramers-Moyal expansion). Discussion of 
the derivation and application of the Fokker-Planck equation in the theory 
of classical stochastic processes can be found in many places, including the 
books by Gardiner [5.3], van Kampen [5.4], and Risken [5.5]. These books will 
provide useful references for an expanded coverage of the topics we discuss 
in this chapter. 

A Fokker-Planck equation is always linear in the distribution P. The 
designation "linear" need not, therefore, be reserved to distinguish between 
equations that are linear and nonlinear in P, which would be the usual math­
ematical usage. We will use it to refer to a Fokker-Planck equation in which 
each Ai ( x) is a linear function 

n 

Ai(x) = L AijXj, (5.3) 
j=l 

and the Dij(x) are all constants: 

Dij(x) = Dij· (5.4) 

A linear Fokker-Planck equation can be written in the compact vector nota­
tion 

8P - = (- x'T Ax+ lx'TDx')P at 2 ' 
(5.5) 

where A and D are n x n matrices with matrix elements Aij and Dij, re­
spectively, x and x' are the column vectors 

(5.6) 

and T denotes the transpose. 

5.1 One-Dimensional Fokker-Planck Equations 

To gain some insight into the physics described by the Fokker-Planck equa­
tion, without delving into the details of its derivation for classical stochastic 
processes, let us spend a little time considering the one-dimensional equation 
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aP ( a 1 a2 ) - = --A(x) + --D(x) P. at ax 2 ax2 
(5.7) 

We have already met the solution to the linear version of this equation in 
Sect. 3.1.5. We will now attempt to develop some intuition for the temporal 
evolution described by this solution, identifying the terms in the Fokker­
Planck equation that generate the different features in the evolution. 

5.1.1 Drift and Diffusion 

The mean and variance of the random variable x are defined, respectively, by 

\x(t)) = 1: dx xP(x, t), (5.8) 

and 
(5.9) 

with 

(5.10) 

Equations of motion for these moments are obtained from ( 5. 7) in the fol­
lowing way: For the mean of x, we have 

d 100 (:i:) = - dx xP(x, t) 
dt -(X) 

= 1oo dx x aP(x, t) 
_ 00 at 

100 a 1100 a2 
= - dx x~A(x)P(x, t) +- dx x .<:> 2 D(x)P(x, t). _00 uX 2 _00 uX 

Integration by parts gives 

(:i;) =- xA(x)P(x, t)[= + 1: dx A(x)P(x, t) 

1 a 100 1100 a + -x~D(x)P(x, t) -- dx ~D(x)P(x, t), 
2 uX _ 00 2 _00 uX 

and then if P and its derivatives vanish sufficiently fast at infinity, 

(:i;) = \A(x)). (5.11) 

The equation of motion for the variance of x is obtained in a similar manner. 
We first derive the equation of motion for (x2 ): 
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. 100 8 1100 [)2 
(x2) =- -oo dx x2 ox A(x)P(x, t) + 2 -oo dx x2 ox2 D(x)P(x, t) 

= -x2 A(x)P(x,t)[00 +I: dx2xA(x)P(x,t) 

+ -x2 -;;-D(x)P(x, t) - dx x-;;-D(x)P(x, t) 1 8 100 100 8 
2 uX _ 00 _ 00 uX • 

= 2(xA(x))- xD(x)P(x, t)[00 +I: dx D(x)P(x, t) 

= 2(xA(x)) + (D(x)). (5.12) 

Using (5.9), (5.11) and (5.12), we obtain 

a 2 = 2(xA(x))- 2(x)(A(x)) + (D(x)). (5.13) 

If the Fokker-Planck equation is linear- A(x) = Ax, D(x) = D, where 

A and Dare constants- (5.11) and (5.13) become 

(x) = A(x) (5.14) 

and 
(5.15) 

Then the mean and variance evolve independently, with 

(x(t)) = (x(O))eAt (5.16) 

and 
(5.17) 

The motion of the mean is governed by A; it is generated by the first term 

on the right-hand side of (5.7) alone. This term is called the drift term be­
cause it imparts a "drift" to the distribution - the peak of the distribution 

follows the time-dependent mean [Eq. (5.16)]. The role of the second term 
on the right-hand side of (5. 7) is apparent from the solution for the time­
dependent variance. With D > 0 (A < 0), an initially sharp distribution 

[(a2(0)) =OJ broadens with time [Eq. (5.17)]; in (5.15) D acts as a source 
of fluctuations. The second term on the right-hand side of (5.7) is therefore 

called the diffusion term or fluctuation term. 
The two pieces of the evolution, drift and diffusion, are seen quite clearly 

in the solution for the conditional distribution P(x, tlxo, 0). This is given by 

(3.64), or in the present notation, 

1 [ 1 (x- x 0 eAt) 2 ] 
P(x, tlxo, 0) = y'2n(D/2A)(e2At- 1) exp -2 (D/2A)(e2At- 1) . 

(5.18) 
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For A f. 0, the evolution of (x) corresponds to a drift of the Gaussian distri­
bution as a whole, while if D > 0, (5.17) describes the broadening (A < 0) 
of this distribution (Fig. 5.1). If A = 0 and D > 0 there is no drift; the 
conditional distribution keeps its initial mean for all times and its variance 
grows linearly in time. This is the behavior known as Brownian motion: 

1 [ 1(x-x0 )
2

] P(x, tlxo, 0) = V21fDi exp -- D · 
2nDt 2 t 

(5.19) 

If D = 0 and A f. 0 there is no diffusion; the conditional distribution reduces 
to a "drifting" b-function, 

P(x, tlxo, 0) = b(x- x0eAt). (5.20) 

(a) (b) (c) 

(x(t))- u(t) (x(t)) + u(t) 

0 

(x(t)) 

Fig. 5.1 Time evolution of the Gaussian distribution (5.18): (a) initial 8-function, 
(b) evolution under the combined action of drift and diffusion, (c) steady state. 

Of course, if the distribution has an initial width, the drift term does not 
simply generate a displacement of the initial distribution. Let D = 0 and 

1 [ 1 (x- x0 )
2

] P(x, 0) = J2; exp -- 2 ( ) . 
2ncr(O) 2 u 0 

(5.21) 

Then 

P(x, t) = 1: dx1 P(x, tlx1 , O)P(x1 , 0) 

100 d 1 o( 1 At) 1 [ 1 (X1
- Xo)2] = ~oo x x- x e J2;cr(O) exp -2 u2(0) 

1 [ 1 (x- x0 (t)) 2
] 

= J2;u(t) exp -2 u 2 (t) ' (5.22) 

where 

(5.23) 
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A simple displacement of the initial distribution to follow the displacement 
x0 (t)- x0 of the mean would give P(x, t) = P(x- x0 (t) + x 0 , 0); Eq. (5.22) 
does not give this result. The drift term shifts the mean; but it also damps 
(A < 0) or amplifies (A > 0) any statistical uncertainty (fluctuations) that 
is present in the initial state. When A< 0 and D > 0, the balance between 
the production of fluctuations by the diffusion term, and their damping by 
the drift term, produces the steady-state variance a-2 (oo) = D/2IAI found in 
(5.17) and (5.18). 

When the full nonlinear form of the Fokker-Planck equation is retained, 
the simple picture of drift and diffusion loses much of its content. To begin 
with, the mean and variance no longer evolve independently; nor do they 
even, in general, obey a coupled pair of equations - we can expect all of the 
moments, (xn), n = 1, 2, ... , to be coupled in an infinite hierarchy of equa­
tions. We can still demonstrate the role of D(x) as a source of fluctuations, 
since in its absence (5.7) reads 

which, for an initial sharp distribution, has the solution 

P(x, tlxo, 0) = 8(x- xo(t)), 

with 
±o(t) = A(xo(t)), 

This is verified by direct substitution: 

{} 
{Jt8(x- xo(t)) 

{} 
= A(xo(t)) fJ(xo(t)) 8(x- xo(t)) 

xo(O) = xa. 

(5.24) 

(5.25) 

(5.26) 

= fJ(x~(t)) [A(xo(t))8(x- xo(t)) J - 8(x- xo(t)) fJ(x~(t)) A(xo(t)) 

{} {} 
= A(x) fJ(xo(t)) 8(x- xo(t))- 8(x- x0 (t)) fJxA(x) 

{} {} 
= -A(x) fJx 8(x- xo(t))- 8(x- xo(t)) fJx A(x) 

{} 
= - fJx A(x)8(x- xo(t)). 

Thus, an initially sharp distribution remains a sharp distribution. In (5.26), 
A(x) governs a deterministic motion that is again described by a "drifting" 
8-function. On the other hand, if D(x) is nonzero at any point on the trajec­
tory generated by (5.26), the equation of motion for the variance [Eq. (5.13)] 
shows that the distribution acquires a nonvanishing width. If D(x) remains 
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appropriately small, linearization about the deterministic trajectory is possi­
ble, and the picture of a drifting Gaussian can be substituted for the drifting 
8-function. However, if both terms are present in the nonlinear Fokker-Planck 
equation and the diffusion is not small, the distinction between drift and dif­
fusion is rather ambiguous and artificial. We might write (5.7), alternatively, 
as 

oP [ 0 ( 1 1 ) 1 0 a ] - = -- A(x)- -D (x) + --D(x)- P, 
at ax 2 2 ax ax 

(5.27) 

where D'(x) = dD(x)/dx. Why not call - %x (A(x)- ~D'(x))P the drift 
term in (5.27)? On its own it generates the drifting 8-function (5.25), but 
with a modified deterministic equation to replace (5.26). Then~ %xD(x)%xP 
is the term adding fluctuations to this picture - the diffusion term. In the 
full nonlinear case we do best to think in terms of a single, integrated, non­
linear diffusion process, rather than in terms of separate drift and diffusion 
processes. 

5.1.2 Steady-State Solution 

We will see shortly that linear Fokker-Planck equations can be solved even 
when they are multidimensional. Nonlinear Fokker-Planck equations are 
quite a different story. In general even the steady-state solution is impos­
sible to find analytically. The one-dimensional case is rather special in this 
respect, since it is possible to construct a closed form expression for its steady 
state solution. There are situations - for example, when potential conditions 
are satisfied [5.6] - in which the steady-state solution to a multidimensional 
nonlinear Fokker-Planck equation can be found analytically; nevertheless, 
these are the exception rather than the rule. 

In one-dimension we are looking for a solution P •• (x) to the equation 

d ( 1 d ~ dx -A(x)Pss(x) + 2 dx D(x)P88 (x)} = 0. (5.28) 

This gives the first-order differential equation 

d 
dx (D(x)Pss(x)) = 2A(x)Pss(x) +constant. (5.29) 

If A(x)Pss(x) and d(D(x)Pss(x))/dx vanish at infinity, the constant is zero 
and we obtain the equation 

1 d A(x) 
D(x)Pss(x) dx (D(x)Pss(x)) = 2 D(x)' 

with the solution 

· 1 1 ( j A(x)) 
P88 (x) = N D(x) exp 2 dx D(x) ; (5.30) 
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N is a constant set by the normalization condition f~oc dx P88 (x) = 1. 
This result can be used to further illustrate how ambiguous a distinction 

between drift and diffusion is for a nonlinear diffusion process. Consider the 
steady state obtained from (5.30) with 

A(x) = -A(x3 - bx), 

D(x) = D, 

where A, D, and bare constants. If we introduce 

V(x) = A(ix4 - !bx2 ), 

such that 

we find 
1 ( V(x)) Pss(x) = N exp -2---n- . 

(5.31a) 

(5.31b) 

(5.32) 

(5.33) 

(5.34) 

V ( x) is the potential underlying the deterministic evolution generated by 
A(x) when D = 0- a double-well potential with minima at x = ±Vb, for 
b > 0; in terms of V, (5.26) can be written in the form 

±o = -~V(xo), 
dxo 

(5.35) 

and the speed of the 8-function (5.25) is determined by the local slope of the 
potential V(x0 ). Now, (5.34) is also the steady-state solution for an entirely 
different Fokker-Planck equation, with linear drift, and an appropriately cho­
sen nonlinear diffusion. The proof of this is left as an exercise: 

Exercise 5.1 Show that (5.34) is also the steady-state solution to the 
Fokker-Planck equation defined by 

A(x) =Ax, 

D(x) = e2V(x)/D J dx2Axe-2V(x)fD. 

(5.36a) 

(5.36b) 

Of course, the Fokker-Planck equations defined by (5.31) and (5.36) are 
not equivalent; they have the same steady state, but their time-dependent 
solutions are different. Nevertheless, we do see that the same double-peaked 
steady-state distribution can be established both by nonlinear drift and con­
stant diffusion, and linear drift and nonlinear diffusion. In a nonlinear dif­
fusion process the roles played by the terms designated as "drift" and "dif­
fusion" are in some sense interchangeable. This observation underlies the 
subject of noise-induced "phase" transitions, treated at length in the book 
by Horsthemke and Lefever [5. 7]. 
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5.1.3 Linearization and the System Size Expansion 

Little progress would be made with Fokker-Planck equation methods if we 
relied solely on the good fortune of obtaining equations that can be exactly 
solved. The harmonic oscillator is rather special in giving a linear, and there­
fore solvable, Fokker-Planck equation. Later in this book we will treat the 
laser, and in Volume 2, the degenerate parametric oscillator and optical bista­
bility, by the methods of the quantum-classical correspondence. These ex­
amples give multidimensional nonlinear equations; two of them do not give 
Fokker-Planck equations at all - as we will see shortly, the treatment of 
two-level atoms using the quantum-classical correspondence produces par­
tial derivatives to all orders in the equation of motion for the phase-space 
distribution. In such situations progress can only be made using approxima­
tions. To prepare ourselves for these difficulties, let us spend a little time 
discussing the method of system size expansion applied to a one-dimensional 
equation. In appropriate circumstances this method can be used to reduce 
an equation of motion involving partial derivatives beyond second order to a 
Fokker-Planck equation- usually to a linear Fokker-Planck equation. 

The discussion which follows is based on the systematic treatment of 
fluctuations in classical stochastic systems worked out by van Kampen [5.8]. 
We begin with the generalized Fokker-Planck equation, or what is known in 
classical stochastic theory as the Kramers-Moyal expansion [5.9, 5.10]: 

(5.37) 

This equation is formally equivalent to the master equation for a classical 
jump process, which is itself equivalent to the Chapman-Kolmogorov equation 
(5.2). Our derivation of such an equation in quantum optics is not grounded in 
the Chapman-Kolmogorov equation, but proceeds formally from an operator 
master equation via the methods described in the previous two chapters. Nev­
ertheless, (5.37) provides a general form (in one dimension) for the equation of 
motion for the phase-space distribution obtained via the quantum-classical 
correspondence. Two difficulties with this equation usually have to be ad­
dressed: First, the appearance of derivatives beyond second order. Second, 
even if these higher-order derivatives are dropped, this will generally leave a 
nonlinear Fokker-Planck equation; for a multidimensional problem, such an 
equation will almost certainly be impossible to solve. Both of these difficulties 
can often be removed on the basis of a "small-noise" approximation. 

The central idea is that the picture of the drifting 8-function provided 
by (5.25) and (5.26) should come pretty close to the exact description if the 
fluctuations are sufficiently small; all we should need to add is a small, finite 
width for the drifting distribution. It seems reasonable that this distribution 
be approximated by a narrow Gaussian, and we have seen that Gaussian dis­
tributions are obtained from linear Fokker-Planck equations. The system size 
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expansion follows a systematic path from (5.37) to such a description, basing 
its development on an expansion in terms of a small parameter related to the 
inverse of the system "size". The systematic approach offered by the system 
size expansion leads in a single step to a linear Fokker-Planck equation, si­
multaneously taking care of both of the difficulties mentioned above. This is 
the consistent thing to do, rather than simply truncating derivatives beyond 
second order and accepting the nonlinear Fokker-Planck equation that re­
sults. As will become clear below, retaining the nonlinearity after truncation 
brings corrections to the linearized form of the Fokker-Planck that are of the 
same order as terms that have already been dropped. It is therefore incon­
sistent not to linearize as well as truncate. There are special circumstances 
where the lowest order treatment of fluctuations must be nonlinear; these 
will be shown to us in a natural way by the system size expansion itself. 

We must look for an expansion parameter that can take us to the limit 
of zero fluctuations. What is the rationale for expecting such a limiting pro­
cedure to be possible? How can the limit be taken formally? Our interest 
is with intrinsic fluctuations arising in the microscopic quantum processes 
that govern the interaction of light with matter. The quantized, or discrete, 
nature of this interaction is the fundamental source of the fluctuations: pho­
ton numbers change discretely, and material states follow suit as photons are 
exchanged with the optical field. If the number of quanta in the field and the 
number of interacting material states are large, we might expect the fluctu­
ations associated with individual transitions to be small on the scale of the 
average behavior. Let us imagine we can scale the "size" of a given system 
with some system size parameter n, to obtain a family of systems, all with 
the same average behavior, but whose fluctuations decrease relative to the 
mean as [2 is increased. Let x specify a state in microscopic units (numbers 
of photons, for example), which therefore scales with system size, and let x 
specify the macroscopic state whose average does not change with n. We 
propose a scaling relationship 

(5.38) 

This is a generalization of the relationship postulated for a classical jump 
process [5.8]. In that relationship p = 1. We need the more general form, 
specifically, to include the case p = 1/2, which is appropriate for optical field 
amplitudes. 

Consider the example of an optical field amplitude. Let x be the amplitude 
of an optical cavity mode in units such that x 2 measures the number of 
photons in the cavity; thus, x corresponds to the variable a in (3.47), (4.14), or 
( 4.37) -forget for the moment the two-dimensional character of the field. The 
cavity mode interacts with some intracavity medium. The relevant quantity 
for describing this interaction at the macroscopic level is not the photon 
number, but the energy density in the medium. We therefore choose x to be 
scaled so that x2 "' 1 corresponds to energy densities in the range typical 
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of the behavior to be studied (for example, the saturation of a two-level 
atom, the turn on of a parametric oscillator). The size of the cavity can be 
scaled up, increasing the photon number x 2 corresponding to any fixed energy 
density x2 . If no is the photon number at each cavity size corresponding to 
the reference energy density x2 = 1, we would write (5.38) as 

In this example J2 is a reference photon number and p = 1/2. 
For a second example let x correspond to the inversion of a two-level 

medium. The relevant quantity for describing the macroscopic properties of 
the medium is the inversion density, giving the number of atoms per unit 
volume available for absorption or emission. Define x as the inversion density 
divided by the atomic density N/V (for N atoms uniformly distributed in a 
volume V). Systems of increasing size, with fixed atomic density and inversion 
density x, have 

x=Nx. 

In this case J2 is a number of atoms and p = 1. 
The system size expansion now works as follows. We assume that as J2 

increases, some mean motion x0 (t) is preserved, while fluctuations about this 
mean decrease. We assume a scaling of the fluctuations such that 

x = xa(t) + n~q~' (5.39a) 

and introduce the change of variable 

(5.39b) 

The new variable ~ is to be of the same order as x0 ( t), and q must be deter­
mined self-consistently from the description of the fluctuations provided by 
the generalized Fokker~Planck equation (5.37). Setting 

(5.40) 

the generalized Fokker~Planck equation becomes 

Assuming P(x, t) is normalized with respect to the variable x, P(~, t) has been 
defined so that it is normalized with respect to the variable~- We now make 
a Taylor expansion of the functions ak(x) about the mean motion J2Px0(t): 
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aP _ nqaP dx0 (t) 
at- f)~ d,t 

- gq-p :~ [al(JlPxo(t)) + nv-q~a~(JlPxo(t)) + ~Q2(p-q) 

x~ a1 JlPx0 (t) + · · · P 2 "( ) ] -

1 82 [ 1 + 2n 2Cq-p) 0~2 a2(ilPxo(t)) + nv-q~a;(nvxo(t)) + 2n 2Cv-q) 

x~ a2 JlPx0 (t) + · · · P 2 "( ) ] -

+ 
(5.41) 

where 1 denotes differentiation with respect to x. 
To take things further we need to know how the functions ak(JlPx0 (t)) 

scale with Jl. In the context of classical jump processes this scaling can be 
argued from the dependence of the ak - the jump moments - on the transition 
probability for a jump of given length from an initial state x. Our derivation 
of the Fokker-Planck equation, starting from an operator master equation, 
cannot rely on the same argument; indeed, the scaling adopted for a jump 
process [5.8] must be generalized to include variables corresponding to field 
amplitudes, for which, as we have already noted, p = 1/2 rather than p = 1. 
To cover both values of p we propose 

(5.42) 

This fits all of the examples we will meet later on. Then the expansion (5.41) 
becomes 

aP _ nq [dxo(t) _ (- ( ))] aP 
- - J& -- - a1 xo t -
8t dt f)~ 

- ~~[a~(xo(t)) + ~g-q~a~(x0 (t)) +O(n-2q)]P+ 

1 f)2 [ ] + 2n 2q-l 0~2 a2(xo(t)) + n-q~a;(xo(t)) + o(n-2q) P 

+0(il3q-2), (5.43) 

where 1 now denotes differentiation with respect to x. 

Note 5.1 With p = 1/2 and Jl = n0 , (5.42) gives the scaling 

ak(n~12 xo(t)) = n~-k12ak(xo(t)) 
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for variables corresponding to field amplitudes. It is a little difficult to justify 
this scaling at this early stage, while we do not have explicit examples to refer 
to. The ultimate justification is found by referring to the examples to which 
we will apply the system size expansion (Chaps. 7, 8, 10 and 14). A general 
indication of why the scaling works out this way can be given, however. First 
note, that in the case of a jump process, the derivatives enter the generalized 
Fokker-Planck equation from shift operators exp[±8/8x]. It is clear then 
that the coefficients ak(x) all scale with the same power of D, since each shift 
operator produces derivatives of all orders; we will not find different functions 
of x multiplying derivatives of different orders. Thus, when p = 1 (5.42) has 
ak ( Dx0(t)) scaling as D for all k. An example of a jump process is provided 
by the inversion dynamics for a medium of two-level atoms [see Sects. (6.2.4), 
(6.3.4), and (6.3.5)]. The scaling we have proposed for variables corresponding 
to field amplitudes is different, with the power of n that scales ak(D112xa(t)) 
depending on k. The reason for this is found in the way derivatives enter 
the generalized Fokker-Planck equation using the methods described in the 
previous two chapters. The central point is that derivatives always enter, not 
alone, but as powers of (8/8a +a*) and (8/8a* +a) -as, for example, in 
(3.44a)-(3.44e). In a one-dimensional version, consider the term Xk(djdx + 
x )k, which contributes a derivative of order k; the coefficient Xk is some 
parameter in the master equation which characterizes the strength of the 
interaction that generates the term Xk ( d/ dx + x )k in the generalized Fokker­
Planck equation. We see that the scaling of the coefficient of the derivative of 
order k is determined by Xk. We determine the scaling of Xk by noting that 
whenever the term Xkdk jdxk enters the generalized Fokker-Planck equation, 
it brings with it the first derivative term Xk(d/dx)xk- 1 . Assuming that the 
coefficient of the first derivative scales as XkXk- 1 ""n~/2 , then Xk must scale 
as n~-k/2 ; this is the scaling given by (5.42). 

We have now reached the point at which we impose self-consistency on 
our expansion; we require that (5.43) produce fluctuations~ of the order x0 (t) 
in the limit of large D, as was assumed in the ansatz (5.39a). To avoid the 
divergence of the first term on the right-hand side the factor in the square 
bracket must vanish identically: 

(5.44) 

This is the macroscopic law governing the mean motion of the system; it cor­
responds to our earlier equation (5.26) which governed the motion of the drift­
ing 6-function in the absence of noise. The self-consistency requirement also 
sets the size of q. Assuming that a~(x0 (t)) and ii2(x0 (t)) are both nonzero, 
we must clearly choose q = 1/2. Then the right-hand side of (5.43) becomes 
an expansion in powers of n- 112 , and in the limit of large D, the dominant 
terms give the linear Fokker-Planck equation 
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aP [ _, (- ( )) a 1_ (- ) a2 J _ 7ft = -al Xo t a~~+ 2a2 xo(t) a~2 P. (5.45) 

Given a trajectory x0 (t) satisfying (5.44), equation (5.45) can be solved for a 

Gaussian distribution that drifts along this trajectory, accumulating a width 

as it goes by integration over a time-dependent diffusion. 

Exercise 5.2 Show that (5.45) has the Gaussian solution 

p t - 1 ex [- (~- (~(t)))2] 
(~, ) - v'27i1J(t) p 21J2 (t) ' (5.46) 

with mean 

(~(t)) = (~(0)) exp [1tdua~(x0 (u))], (5.47a) 

and variance 

1J2 (t) = exp [21tdua~(x0 (u))] 

x {1J2 (0) + 1tdu exp [-21u dva~(x0 (v))] a2 (xo(u))}. 
0 0 (5.47b) 

Since the original construction puts the mean motion in x0 (t), this solution 

is to be taken with (~(0)) = 0. 

5.1.4 Limitations of the Linearized Treatment of Fluctuations 

We will make extensive use of the truncation and linearization procedure 
provided by the system size expansion. Much of the remainder of this chapter 
is therefore devoted to linear Fokker-Planck equations. Linearization has its 

limitations, however, and now is a good time to note some of these. 
The most obvious limitation is that fl may not be very large. Systems of 

just a few interacting photons and atoms can be expected to exhibit relatively 

large quantum fluctuations; for these systems the system size expansion is not 

a good approximation. In fact, this may well be the most interesting situa­

tion, since we do not expect many manifestations of quantum fluctuations to 

survive at a measurable level in a macroscopic system. In the smallest sys­

tems - problems such as single-atom resonance fluorescence - it may actually 

be easier to deal directly with the operator master equation, and not attempt 

to use phase-space distributions and Fokker-Planck equations at all. On the 

other hand, when many atoms and photons are involved - in a laser for ex­

ample - the quantum-classical correspondence, used in conjunction with the 

system size expansion, provides a powerful approach. For systems of inter­

mediate size, the phase-space method might be tried, but the system size 



5.1 One-Dimensional Fokker-Planck Equations 161 

expansion cannot be used. This is a no-man's-land in which little work has 
been done. We will have more to say about this subject in Volume 2. 

Even when [2 is large there are limitations to what can be done with the 
linear equation (5.45). Our main interest will be with the linearized treatment 
of fluctuations about a steady state; therefore, let us focus on this case, setting 
xa(t) = X88 , with a1(X88 ) = 0. From (5.46) and (5.47), the solution to the 
Fokker-Planck equation is 

- 1 ( ~2 ) P(~, t) = V21fu(t) exp - 2u2(t) ' (5.48a) 

with 

(5.48b) 

Clearly, the procedure we have followed breaks down after some finite time 
if Xss is not a stable steady state (a~ (.Tss) < 0). Even under conditions of 
marginal stability (a~ (.Tss) = 0) the variance grows linearly in time, as in 
(5.19), and eventually the fluctuations grow to be of the order [2112, invali­
dating the system size expansion. Unstable states (a~ (.Tss) > 0) have expo­
nentially growing fluctuations which quickly invalidate the linearized treat­
ment. There are situations, then, for which even the lowest-order treatment 
of fluctuations must include nonlinearities. 

It is sometimes possible to simply include the next term in the system size 
expansion to overcome a breakdown in the linear theory. The critical point in 
the bistable system defined by the potential (5.32) provides a good example. 
We write 

a1(x) = -A(x3 - bx). 

Then, if b = 0, a~ (0) = ano) = 0, and in the linear theory the critical 
point Xss = 0 is unstable; fluctuations grow without limit in the manner 
of Brownian motion [Eq. (5.19)]. But in reality the critical point is stable; 
nonlinearities in the potential provide a restoring force to constrain the fluc­
tuations (assuming aJ'(O) < 0). In such cases the system size expansion can 
be extended to include this restoring force to lowest order. If we return to 
(5.43), with .To(t) = Xss = 0, 

aP =- n-2q.!!_~[~ea'"(o) + o(n-q)]P at a~ 6 1 

1 a2 
[ ] + 2n2q-1 a~2 a2(o) + o(n-q) P 

+ O(D3q-2). (5.49) 

The term proportional to a~'(O) will constrain the fluctuations. However, the 
choice q = ~ no longer gives a self-consistent treatment of these fluctuations. 
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Instead, we require -2q = 2q- 1, or q = ~' which leads to the nonlinear 
Fokker-Planck equation 

(5.50) 

with 
T = n-1f2t. (5.51) 

The critical fluctuations described by (5.50) are much larger than fluctuations 
around steady states that are stable under the linear requirement a~ (xss) < 0. 
On the scale of x they are of order n-1/ 4 rather than n-112 . This is because 
of the very flat potential at the critical point, as shown in Fig 5.2(a). The 
time scale on which things evolve is also much slower. This is observed at two 
levels: First there is the scaling of time by the system size in (5.51). Then, 
according to the macroscopic law (5.44), a small displacement 8x0 from the 
critical point relaxes according to the equation 

(5.52) 

This nonlinear dynamic is contained in the drift term in the Fokker-Planck 
equation. The solution to (5.52) is 

(5.53) 

The displacement 15x0 relaxes as T- ~, compared with the exponential decay 
for a linear force law. This slowed response at a critical point is known as 
critical slowing down. The classic example of critical behavior in quantum 
optics is provided by the laser at threshold (Sect. 8.2). 

Exercise 5.3 Show that (5.50) has the steady state solution 

(5.54) 

Of course, there are many variations on this theme. If more derivatives 
of a1 vanish, a higher order nonlinearity must be retained to constrain the 
fluctuations. There are also other circumstances in which it is not possible to 
separate average behavior and fluctuations in the manner achieved above. An 
extended version of our bistable potential illustrates two important problems 
of this kind. We now write 

(5.55) 

which corresponds to the potential 
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Fig. 5.2 Variation of the potential V(x) = A(x4 /4- bx2 /2 +ex) with parameters: 
(a) c = 0 and (i) b = -1, (ii) b = 0, (iii) b = 1; (b) b = 1 and (i) c = -1, (ii) 
c = -2/3\1'3, (iii) c = -1/5, (iv) c = 0, (v) c = 1/5, (vi) c = 2/3\1'3, (vii) c = 1. 

(5.56) 

This is the canonical form for the so-called cusp catastrophe [5.11, 5.12]. 
Figure 5.2(b) shows a sequence of potentials that can be accessed with c =/= 0. 
For c = ±2/3J3, the equation a1(x) = 0 that defines the macroscopic steady 
states has a double root (a root for which a1 (x •• ) =a~ (x •• ) = 0). These states 
are actually unstable to displacements in one direction, as shown by a stability 
analysis up to second order. Fluctuations are not constrained around the 
steady state; they lead to a decay of the unstable state so that in the long-time 
limit the distribution will be localized about some other, stable, steady state. 
This process amplifies the initial fluctuations up to the macroscopic scale, 
making it impossible to disentangle a mean motion from the fluctuations. A 
second example of the decay of an unstable state occurs for the steady state 
at the top of the hump in the double-well potential. Here a~ (xss) is positive, 
and Xss is unstable even in the linear treatment. Initial fluctuations will split 
the long-time distribution between the two available stable steady states. 

Another feature of the bistable system involving macroscopic fluctuations 
is the process of communication between the sides of the double-well poten­
tial. When the depths of the wells are unequal, decay of the unstable state 
at the top of the potential barrier will first split the distribution between 
the two sides, producing localized peaks about the two stable macroscopic 
states. But, in fact, for large fl, only the absolute minimum of the poten­
tial is stable in the presence of fluctuations [the proof of this is given as 
an exercise (Exercise 5.4)]. Thus, except in the special case where the wells 
have the same depth, one of the steady states is metastable and decays on 
a long time scale - often an extremely long time scale - to the other steady 
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state. Fluctuations taking the system from one macroscopic state to another 
clearly cannot be treated by the system size expansion, with its picture of a 
distribution localized about some mean motion. There are obviously many 
generalizations of this idea. In a multidimensional system, these may involve 
transitions between all sorts of deterministic attractors: steady states, limit 
cycles, and even strange attractors. 

5.1.5 The Truncated Kramers-Moyal Expansion 

When the systematic system size expansion fails, we must either return to 
the operator master equation for an exact treatment, or satisfy ourselves 
with some other approximation. A common approximation is to introduce 
the scaling (5.38) and (5.42), writing the generalized Fokker-Planck equation 
(5.37) in the form 

aP = ~ ( -1)k nl-k (!!_)k(_ (-)P) 
Ot L...t k! OX ak X ' 

k=l 

and then to truncate this equation at second order to give the nonlinear 
Fokker-Planck equation 

(5.57) 

This is not a systematic expansion in inverse powers off? because n-1 con­
trols the sharpness of the peaks in P, and therefore further f?-dependence is 
hidden in the derivatives of the distribution. If the change of variable (5.39a) 
is now introduced, followed by a Taylor expansion about x0 (t), the equa­
tions obtained with the system size expansion will be recovered if we retain 
terms to lowest order as before. Equation (5.57) is often used, however, with­
out taking this extra step. The nonlinear Fokker-Planck equation is taken 
as a starting point for addressing questions like those we have just raised. 
It is worth noting that a number of important problems in quantum optics 
actually produce a nonlinear Fokker-Planck equation in the form of (5.57) 
without the need for a truncation of higher derivatives. The parametric oscil­
lator is an example of this type. We will discuss this example at some length 
in Volume 2 (Chaps. 10 and 12). 

The steady state solution to (5.57) can be written down for arbitrary 
functions a1 (x) and a2 (x) following the method of Sect. 5.1.2. Equation (5.30) 
gives 

- -) 1 [l ( r _,al(x')) 
Pss(x = N a2(x) exp 2f? Jo dx a2(x') . (5.58) 

The extrema of the distribution are given by 
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These extrema correspond exactly to the steady states given by the macro­
scopic equation of motion (5.44) if a2 is a constant; otherwise, they are shifted 
from these values; although, when [l is large, the shift is of the order n-1 , and 
therefore much smaller than the fluctuations about the steady state obtained 
with the system size expansion. 

The bistable system defined by (5.55) and (5.56) is widely discussed in 
the literature using either a nonlinear Fokker-Planck equation like (5.58) or 
a master equation for a one-step jump process (one-step birth-death master 
equation) [5.13]. We do not have time to review this subject here. The one 
result concerning metastable states that we alluded to above is left as an 
exercise: 

Exercise 5.4 It is a little surprising to learn, that in the limit of very 
small noise, the steady-state distribution for a double well potential with 
unequal well depths is localized (almost) entirely at the absolute minimum 
of the potential. Although a second locally stable macroscopic steady state 
exists at the bottom of the other well, (almost) all of the probability for 
the system to be found in this state decays over long times - this state is 
metastable. Thus, in passing through the sequence of potentials illustrated in 
Fig. 5.2(b), a discontinuous transition takes place at c = 0 between a steady 
state distribution localized in the well on the left, and one localized in the well 
on the right. For the potential (5.56), and a constant diffusion a2 (x) = D, 
show that the large Jllimit of the steady state distribution with unequal well 
depths is given by 

Fss(i:) = lim 
S?--->oo 

DA(3x;,in - b) [ DA(3x;,in - b) ( _ _ )2] 
------'--7r---'D~'----------'-- exp - D X - X min 

= D(i:- Xmin), (5.59) 

where Xmin is the position of the absolute mm1mum of the potential. Of 
course, if c is ramped forwards and backwards through the sequence shown 
in Fig. 5.2(b) on a finite time scale, a dynamic hysteresis will be seen rather 
than a discontinuous transition. 

5.2 Linear Fokker-Planck Equations 

We turn now to a detailed look at linear Fokker-Planck equations, equations 
in the form (5.5). Our first task is to construct the general solution to a 
multidimensional linear Fokker-Planck equation. From this solution we will 
derive a number of useful relationships for calculating such things as the co­
variance matrix and the spectrum of fluctuations. Later we will see how these 
same results can be obtained, perhaps rather more simply, using stochastic 
differential equations. 
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5.2.1 The Green Function 

We wish to find the solution P(x, tlx0 , 0) to (5.5) for the initial condition 

P(x, Olxo, 0) = 8(x- xo) = 8(x1 - x10) · · · 8(xn - Xno). (5.60) 

It is helpful to first perform a similarity transformation to diagonalize the 

drift matrix A. We write 
y = Sx, (5.61) 

where the rows (columns) of S (S- 1) are the left (right) eigenvectors of A 
[5.14], such that 

A= SAS- 1 = diag(.>'l, ... , An), (5.62) 

where A1, ... , An are the eigenvectors of A. We then define 

(5.63) 

in terms of the new variables y, (5.5) reads 

(5.64) 

with 

y' = c;::) ~ (8-') T x' (5.65a) 

iJ = SDST. (5.65b) 

The initial condition corresponding to (5.60) is 

P(y, OISxo, 0) = detS 8(y- Sxo). (5.66) 

Note that this distribution is normalized with respect to the variables 

x1, x2, ... , Xn, not with respect to the variables Y1, Y2, ... , Yn· 
Equation (5.64) is a linear Fokker-Planck equation with diagonal drift. 

The Green function solution to equations of this form was derived by Wang 

and Uhlenbeck [5.15]. A little work generalizing the method of Sect. 3.1.5 

leads to their solution. We introduce the Fourier transform 

U(u, tiSxo, 0) = /_: dy1 · · · dynP(y, tiSxo, 0) exp (iyT u). 

Then the Fourier transform of the Fokker-Planck equation (5.64) is 

au r A , r A A 

- = (u Au - lu Du) U at 2 ' 

where 

(5.67) 

(5.68) 
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(5.69) 

This equation must be solved for the initial condition 

(5.70) 

We use the method of characteristics [5.16]. Noting the diagonal form of A, 
the subsidiary equations are 

and have solutions 

Then, 

e.Atu = c =constant. 

dO 1 T A -,- = - 2u Dudt u 
= -~CT (e-ATt De-At)cdt 

= _.!cT(fJ ·e-(>-i+.Xj)t)cdt 
2 'J ' 

where ( Mij) denotes the matrix with elements Mij, and we find 

It follows that 
0 exp (~uQ(t)u) =constant, 

where Q(t) is the n x n matrix with elements 

(5.71) 

(5.72a) 

(5.72b) 

(5. 73) 

Thus, from (5.72a) and (5.72b), the solution for 0 takes the general form 

0( u, tiSxo, 0) = ¢( e.Atu) exp (- ~uQ(t)u), (5.74) 

where ¢ is an arbitrary function. Choosing ¢ to match the initial condition 
(5.70), we find 

(5.75) 
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In the argument of the first exponential on the right-hand side we have used 

(5.62) to write 

It remains to invert the transformation (5.67). To perform the inversion 

it is useful to introduce the decomposition 

Q(t) = il(tf R(t). 

Then the Green function solution is 

F(y, tiSxo, 0) 

= ~~~I: du1 ···dun exp [i(seAtx0 ) T u J 

x exp (- ~uTQ(t)u) exp(- iyT u) 

= ~ exp[- HY- SeAtxo)T {J- 1 (y- SeAtxo)] 

X ~~00 du1···dunexp{- HR(t)u+i(R(t)r)- 1 
(2n)n -oo 

x (y- SeAtxo) J T [ R(t)u + i(R(tf) - 1 (y- SeAtxo) J} 

(5. 76) 

detS [ A T ' 1 A ] = exp - HY- Se txo) Q- (y- Se txo) . 
V(2n)ndet Q(t) 

(5. 77) 

The integrals leading to the last line are readily performed after transform­

ing to the variables v = R(t)u. Equations (5.63) and (5.77) now give the 
general Green function (conditional distribution} for a linear Fokker-Planck 
equation: 

with 

P(x, tlxo, 0) 

---r:===c===1:==o::=;=::;=exp[- Hx- eAtxo)T Q-1 (t)(x- eAtxo)], 
j(2n)ndetQ(t) 

(5. 78) 

(5. 79) 

This is a multi-dimensional Gaussian, the natural generalization of (5.18). If 
the eigenvalues >. 1 , ... , An all have negative real parts, the distribution (5. 78) 

decays to the general steady-state distribution for a linear Fokker-Planck 
equation: 

(5.80) 
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with 

Q = s-1 Q. (s-l)r 
88 ss ' (5.81a) 

A bij 
(Qss) .. =- ,\ ,\ · 

•J i + j 
(5.81b) 

Note 5.2 The decomposition (5.76) is possible (with R a real matrix) be­
cause the symmetric matrix Q is positive definite, which follows because D is 
positive definite. For a positive definite matrix M, the quadratic form zTM z 
is positive for all nontrivial z ; the decomposition M = NTN expresses the 
quadratic form as a sum of squares zTMz = wrw, with w = Nz. The 
requirement that Q be positive definite guarantees that the exponential in 
(5.72b) does not diverge at infinity. This guarantees that the distribution 
P(x, t1x0 , 0) does not diverge at infinity. It may happen that the quantum­
classical correspondence leads to a Fokker-Planck equation that does not 
have positive definite diffusion. In this way, the incompatibility of classical 
statistics with quantum mechanics is revealed in a particularly direct fash­
ion. There are sometimes technical ways around the problem, but ultimately 
it arises from the fundamental differences between classical and quantum 
physics. We will return to this subject as one of our main themes in Volume 
2. (In some applications Q may be positive semidefinite. Then it is a sin­
gular matrix that generates quadratic forms that are nonnegative, but are 
not always positive. This corresponds to situations in which there is no dif­
fusion in at least one dimension, and therefore the distribution "drifts" as a 
8-function in at least one phase-space direction. To generalize the following 
mathematics to this case, matrix inverses, which now do not strictly exist, 
can be interpreted in the sense of a limit in which noise of order E is added in 
the offending dimensions and then E is taken to zero; in this way Gaussians 
approach 6-functions.) 

5.2.2 Moments of Multi-Dimensional Gaussians 

The calculation of averages for a system described by a linear Fokker-Planck 
equation reduces to the problem of finding the moments of multi-dimensional 
Gaussian distributions. Consider the normalized distribution 

(5.82) 

where z is an n-dimensional vector and M is an n x n symmetric positive 
definite matrix. We want to calculate the vector of means 

(z) = 1: dz1 · · · dzn zP(z), (5.83) 

and the variances ( i = j) and correlations ( i =f. j) 
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(5.84) 

The n x n matrix C formed from the Cij is called the covariance matrix. It 
can be expressed in vector notation as 

C = ( (z- (z))(z- (z))T) 

= /_: dz1· · ·dzn(z- (z))(z- (z))TP(z). (5.85) 

The integrals needed to evaluate (5.83) and (5.85) are performed using 
the decomposition introduced in (5.76). For a symmetric, positive definite 
matrix M, we write 

Then in terms of the new variables w = N-1(z- z 0 ), (5.83) becomes 

(z) = detN /_: dw1 · · · dwn (zo + Nw)P(zo + Nw) 

1 100 
( 1 T ) = zo dw1· · ·dwnexp - 2w w 

J(2n)n -oo 

1 1oo ( 1 T ) + N dw1· · ·dwnwexp - 2w w 
J(2n)n -oo 

= zo. 

(5.86) 

(5.87) 

Similarly, substituting (z) = z 0 into (5.85), and using the same change of 
variables, 

C = detN /_: dw1 · · · dwn NwwTNTP(zo + Nw) 

= N [ 1 100 dw1 · · · dwn wwT exp (- ~wT w )] NT 
J(2n)n -oo 

=NNT 

=M. (5.88) 

Moments up to second order are generally all we will need in future ap­
plications. In fact, for Gaussian distributions, all higher-order moments can 
be generated from these; the first two moments completely specify the dis­
tribution [5.17]. 
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5.2.3 Formal Solution for Time-Dependent Averages 

Using the Green function solution we can construct the time evolution for 
any initial distribution P(x, 0): 

P(x, t) =I: dxo1 · · · dxon P(x, tlxo, O)P(xo, 0). (5.89) 

Then, since the Green function P(x, tlx0 , 0) [Eq. (5.78)] has the same form 
as (5.82), we can use (5.89) and (5.87) to obtain the time-dependent means: 

(x(t)) =I: dx1 · · · dxn xP(x, t) 

=I: dx1 · · · dxn xI: dx01 · · · dxon P(x, tlxo, O)P(xo, 0) 

=I: dx01 · · · dxon P(xo, 0) I: dx1 · · · dxn x P(x, tlxo, 0) 

= I: dxo1 · · · dxon P(xo, O)eAtxo 

This is the natural generalization of the one-dimensional result (5.16). 

(5.90) 

The covariance matrix will generally show a dependence on two time 
arguments. We define the autocorrelation matrix C(t', t) to be the n x n 
matrix with matrix elements 

or, in vector notation, 

C(t', t) = ( [ x(t') - (x(t'))j[x(t) - (x(t))] T) 
=I: dx1· · ·dxni:dx01· · ·dxon[x- (x(t'))] 

x [xo- (x(t))]TP(x,t'lxa,t)P(xa,t); 

(5.91) 

(5.92) 

here the two-time average is evaluated by integrating against the joint dis­
tribution P(x, t'; x 0 , t) = P(x, t'lx0 , t)P(x0 , t). We first consider the depen­
dence on the time separation t' - t; how do the correlations between variables 
evaluated at different times behave as the separation of the times increases? 
For t' ::,. t, we have 
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C(t', t) = /_: dxm · · · dxon P(xo, t) 

X [I: dx1 · · · dxn [x- (x(t'))] P(x, t'Jxo, t)] (xo- (x(t)) r 
= I: dxm · · · dxon P(xo, t) [ eA(t' -t)x0 - (x(t'))] 

x [xa- (x(t))r, 

where we have used (5.87). Then, using (5.90) and the definition (5.85) of 
the covariance matrix, 

C(t',t) = eA(t'-t) I:dxot· ··dxanP(xa,t)[xo- (x(t))][xo- (x(t))r 

= eA(t'-t)([x(t)- (x(t))][x(t)- (x(t))JT) 

= eA(t'-t)C(t, t), t' ;:::: t. (5.93a) 

By interchanging t and t', (5.93a) can be used to obtain a corresponding 
result for t' :S t: 

C(t',t) = ([x(t)- (x(t))][x(t')- (x(t'))r)r 

= [eA(t-t')c(t', t')t 
= C(t',t')eAr(t-t'), t' :S t. (5.93b) 

There is a second piece to the time dependence of the autocorrelation 
matrix contained in its behavior for equal times; we must now look at the 
time evolution of the covariance matrix C(t, t). We have 

C(t,t) =I: dx1·· ·dxn [x- (x(t))][x- (x(t))rP(x,t) 

=I: dx1 ... dxn [x- (x(t))][x- (x(t)) r 
xI: dxo1 · · · dxon P(x, tlxo, O)P(xo, 0) 

=I: dxm · · · dxon P(xo, 0) 

X I: dxl ... dxn [x- (x(t))][x- (x(t)) r P(x, tlxo, 0). 

To carry out the integration over x, we write 
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[x- (x(t))][x- (x(t))f = [x- eAt(x(O))][x- eAt(x(O))f 

= {(x- eAtxo) +eAt [xo- (x(O)) J} 
x { (x- eAtxo) +eAt [xo - (x(O)) J} T. 

The integrals of the four terms arising in this product are then evaluated 
using I: dx1 · · · dxn (x- eAtxo)(x- eAtxo)T P(x, tixo, 0) = Q(t), 

I: dx1 · · · dxn (x- eAtxo)P(x, tixo, 0) = 0; 

these follow from the results of Sect. 5.2.2 and the explicit form for the Green 
function P(x, tjx0 , 0) [Eq. (5.78)]. After carrying out the integrals, we find 

C(t, t) =I: dxo1 · · · dxon P(xo, 0) 

x {Q(t) +eAt [xo- (x(O))][x0 - (x(O))]T eATt} 

= Q(t) + eAtC(O,O)eATt. (5.94) 

The matrix C(O, 0) appearing on the right-hand side of (5.94) is the co­
variance matrix for the initial state; it specifies the initial variances and cor­
relations. If the eigenvalues of A all have negative real parts, the initial state 
decays to the steady-state distribution (5.80). The contribution to (5.94) com­
ing from the initial covariance matrix decays to zero, and the variances and 
correlations that survive in the steady state grow in the term Q(t), ultimately 
taking the form given by (5.81). The picture that unfolds in many dimen­
sions is a simple generalization of the behavior in one dimension following 
from (5.17). 

The solutions given by (5.90), (5.93), and (5.94) are really only useful for 
formal purposes. For example, rather than calculating (x(t)) from (5.90), or 
C(t', t) from (5.93a), we would normally work directly with the corresponding 
equations of motion: 

d(:;t)) = A(x(t)), 

dC(t',t) = AC( I ) 

dt' t, t , t' > t. 

The equation of motion corresponding to (5.94) is not so obvious. When we 
look back at the definition of Q(t) [Eqs. (5.79), (5.73), and (5.65b)J, it is 
apparent that a little untangling must be done before we can arrive at such 
an equation. 
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5.2.4 Equation of Motion for the Covariance Matrix 

We first differentiate (5.94) with respect to t to obtain 

C = Q +eAt ( AC(O, 0) + C(O, O)AT)eArt 

= Q- (AQ +QAT) +AC +CAT. (5.95) 

We want to rewrite this equation so that it only involves the matrices C, A, 
and D. From the definition of Q [Eqs. (5.79), (5.73), and (5.65b)] we write 

or, equivalently, 

where the second form follows by recognizing that A is the diagonal ma­
trix whose nonzero elements are the eigenvalues .A1 , ... , An. Using (5.62) and 
(5.65b), the second equation gives 

while the first gives 

Q = s-1 (vijec>-,+>-jlt)(s-1) T 

= s-1eAt fJeATt(s-1)T 

= eAtDeArt. 

From (5.96) and (5.97) we obtain the equation of motion for Q: 

Q = AQ+QAT +D. 

(5.96) 

(5.97) 

(5.98) 

Substituting this result into (5.95) gives the desired equation of motion for 
the covariance matrix: 

C=AC+CAT+D. (5.99) 

Notice that Q and C obey the same equation of motion; however, they 
have different initial conditions, since Q(O) = 0, while C(O, 0) need not van­
ish. The difference C- Q obeys an equation similar to (5.98) and (5.99), but 
without the diffusion matrix D acting as a source. When the eigenvalues of 
A all have negative real parts, this difference decays to zero in the steady 
state, as indicated by (5.94). 

To solve (5.99) the source term D can be removed by making the trans­
formation 
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C ::= AC +CAT+ D; (5.100) 

then 
(5.101) 

Generally, this gives n 2 linear coupled equations for the matrix elements of C. 
If steady-state variances and correlations are all that are required, these may 
be found by solving the n 2 algebraic equations for the steady-state covariance 
matrix Coo obtained directly from (5.99): 

(5.102a) 

where 
Coo= lim C(t, t). 

t-+oo 
(5.102b) 

Exercise 5.5 Two harmonic oscillators, both with frequency w0 , are coupled 
in the rotating-wave approximation and independently damped by coupling 
to reservoirs at different temperatures. The Hamiltonian for the coupled os­
cillator system is 

(5.103) 

Show that the Fokker-Planck equation in the P representation is given by 

aP _ ['Ya (a _ a -*) 'Yb (a /3- a /3-*) - - - -a+ -a + - -;;;- + ---at 2 aa aa* 2 a/3 a/3* 

(a /3- a /3-*) (a_ a-*) + g --::: + --- - g -;;;a+ ---a 
aa aa* a/3 a/3* 

a2 a2 ]-
+'Yafia aaaa* + 'Ybnb a~a~* P, (5.104) 

where - denotes quantities in a frame rotating at the frequency w0, 'Ya and 
'Yb are damping constants for the two oscillators, and na,b = n(w, Ta,b)· Solve 
(5.102a) to obtain the steady-state expectation values 

( t ) -- - c- -- )4g2 /baC'Ya +'Yb)] 
a a ss - na na nb 1 + 492 /C'Ya'Yb) , (5.105a) 

(btb) _- +(- _- )4g2 /bb('Ya+'Yb)] 
ss - nb na nb 1 + 492 j C'Ya'Yb) , (5.105b) 

( bt) - c- --) 2gf('Ya +'Yb) 
a ss - na nb 1 + 4g2 /C'Ya'Yb)" (5.105c) 

Note that because the reservoirs have different temperatures the coupled 
oscillator system is maintained away from thermal equilibrium; also that, for 
g ----> 0, each oscillator comes to its own independent thermal equilibrium, 
with (ata)ss = na and (btb)ss = nb. 
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5.2.5 Steady-State Spectrum of Fluctuations 

After a system has evolved to a steady state, it is useful to characterize the 
fluctuations about the steady state in terms of their frequency content. We 
return here to an earlier comment: a damped electromagnetic field mode is 
really a quasimode; it possess a linewidth. More generally, if the field mode 
interacts with some other system, it will not have the simple Lorentzian 
spectrum obtained from the Fourier transform of (1.116). There will, how­
ever, be a broadband component to the spectrum, and a frequency-space 
decomposition of the steady-state fluctuations determines what it is. When 
the steady-state fluctuations are described by a linear Fokker-Planck equa­
tion, it is straightforward to derive a formal result that accomplishes the 
decomposition in frequency space. 

In the steady state the autocorrelation matrix C ( t', t) becomes a function 
of the time difference T = t' - t alone. We define 

{ 
limt--+oo eA"C(t, t) 

C 88 =lim C(t+r,t) = T 

t--+oo limt--+oo C(t + T, t + r)e-A r 

= { eA"Coo 
C -ATr ooe 

T~O 

r:s;O 

(5.106) 

where we have used (5.93a) and (5.93b) (also C 88 (0) = C 00 ). The spectrum 
of fluctuations is defined by the Fourier transformation of this stationary 
autocorrelation matrix: 

( ) - 1 loo d C ( ) -iwr Tss w = -2 T ss T e 
7f -oo 

1100 
=- drexp[(A- iwln)r]Coo 

27f 0 

+- drC00 exp[(AT +iwln)r] 1 100 

27f 0 

1 
=--[(A- iwln)- 1C 00 + C 00 (AT + iwln)- 1]. (5.107) 

27f 

In denotes the n x n identity matrix, and when evaluating the integrals we 
have assumed that the eigenvalues of A all have negative real parts (the 
steady state is stable), so that limr--+oo eAr = 0. We may cast (5.107) into 
a simpler form, multiplying on the left by A - iwl n and on the right by 
AT+ iwln, to obtain 
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(A- iwln)Tss(w)(AT + iwln) 

= -~ [Coo(AT + iwln) +(A- iwln)Coo] 
21!" 
1 T = --(CooA + ACoo) 

211" 

=~D. 
21!" 

The last step is made using (5.102a). The steady-state spectrum of fluctuations 
is then given by 

(5.108) 

Equation (5.108) is a very useful result. If the matrices can be multiplied 
out analytically, each element of T 88 (w) is obtained as a ratio of polynomi­
als; and for high-dimensional systems, where analytic manipulation of the 
matrices is impracticable, the matrix algebra can be implemented directly 
on a computer. Spectra need not be calculated from (5.108), however. They 
are often calculated by first deriving explicit expressions for the steady-state 
autocorrelation functions, as a sum of exponentials. Taking the Fourier trans­
form then gives the spectrum as a sum of Lorentzians. This is the approach 
we used to calculate the spectrum of the fluorescence from a two-level atom 
(Sect. 2.3.4); although, in that case the analysis was not based on a Fokker­
Planck equation. It is useful to see how (5.108) can be rewritten to explicitly 
display the Lorentzian structure. To do this we introduce the diagonalized 
drift matrix A [Eq. (5.62)], writing 

Tss(w) = 2~ [s-1 AS- iwlnr1 D[sr Ar(s-1)r + iwlnr1 

= 2~ s-1 ( A- iwln)-1 D( AT+ iwln)- 1(8-l)T; 

for the individual matrix eleme_nt this gives 

where the (S-1 )ij are the matrix elements of s-1 . 

(5.109) 

Exercise 5.6 Use (5.108) to show that the steady-state spectra for the 
coupled oscillators of Exercise 5.5 are given by 
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(5.110a) 

2_!00 dT(bt(Q)b(T))eiWT 
27r -oo 

1 (1'bnb/2)[ba/2)2 + (w- wo) 2] + h'ana/2)g2 

1r (w- wo)4 + [h'a/2)2 + h'b/2) 2 - 2g2](w- wo) 2 + [h'a'Yb/4) + g2]2 · 
(5.110b) 

Show that the denominator in these expressions factorizes in the form [(w­
wo)2 + .A~][(w- wo) 2 + .x:_], where 

A± = _ 'Ya ; 'Yb ± J ( 'Ya ~ 'Yb) 2 
_ g2 (5.111) 

are the eigenvalues of the drift matrix A of the Fokker-Planck equation 
(5.104). 

5.3 Stochastic Differential Equations 

In classical statistical physics the Fokker-Planck equation provides a dy­
namical description in terms of an evolving probability distribution which 
determines the average quantities that would be measured over an ensemble 
of experiments. An alternative approach to calculating these averages is to 
find a set of equations whose solutions generate trajectories in phase space, 
representative of what would be observed in a single experiment. Such trajec­
tories must possess an irregular component modeling processes that are not 
observed in microscopic detail, but which manifest themselves macroscopi­
cally as sources of noise and fluctuations. These stochastic trajectories can 
be generated mathematically by stochastic differential equations - equations 
of motion that introduce irregularity through fluctuating source terms whose 
properties are defined in some probabilistic sense. For example, consider the 
equation 

x = A(x) + B(x)E;(t), (5.112) 

where, at each timet, E;(t) is chosen from a distribution with zero mean, and 
some defined variance and correlation properties with respect to its values 
at earlier times. Assuming there is a sense in which solutions to this equa­
tion are defined, it is pretty clear that they are not uniquely determined by 
an initial choice for x; for a fixed x(O), an infinity of different trajectories 
must be possible corresponding to different realizations of E;(t). An ensemble 
of these trajectories can be averaged at every instant t to obtain the time­
dependent averages that might be calculated from a Fokker-Planck equation. 
Such a mathematical description directly simulates processes as they are ob­
served in the laboratory. If, for a given Fokker-Planck equation, we can find a 
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set of stochastic differential equations that produce the same averages as the 
Fokker~Planck equation (of course, this must include all multi-time averages), 
we can speak of an equivalence between descriptions in terms of the Fokker~ 
Planck equation and the stochastic differential equations. Such an equiva­
lence can be set up for every Fokker~Planck equation. Since the stochastic 
differential equations are sometimes more manageable computationally, we 
now spend a little time discussing this equivalence. For an in depth study 
of stochastic differential equations there are many books available [5.3, 5.4, 
5.18, 5.19]. The book by Gardiner [5.3] is very useful as a practical guide 
through the labyrinth of more formal mathematical treatments. 

5.3.1 A Comment on Notation 

The choice and consistent use of notation in a discussion of stochastic pro­
cesses can be a bit of a headache. Generally, throughout this book we do not 
bother to distinguish between random variables and the values they take. 
Thus, the quantity inside the average (x) is a random variable; the condi­
tional distribution P(x, t!x0 , 0) is a function of the possible values taken by a 
random variable. Time dependence leads us into further notational subtleties. 
The solutions to Fokker~Planck equations are probability densities showing 
an explicit dependence on time. Is the time dependence in (x(t)) on the aver­
aged quantity, or on the quantity averaged? The former sense seems to be the 
more natural expression of the explicit time dependence in the probability 
density. However, now that we are speaking of ensemble averages of trajecto­
ries, we are surely averaging time-dependent quantities. While elsewhere we 
can afford to be a bit sloppy, in this section on stochastic differential equa­
tions notational niceties affect the clarity of the presentation. It will perhaps 
be helpful if we are a little pedantic about notation here. 

First, we must distinguish between random variables and the values they 
take. We use uppercase letters for random variables (or a caret ' on Greek 
characters) and lower case letters for the values they take. Second, when 
describing a stochastic process we deal either with sequences of random vari­
ables in discrete time, or families of random variables in continuous time. 
Thus, for a process that evolves over the discrete times t 0 , ti, ... , separated 
by time step L1t, we define the sequence of random variables Xo, XI, ... , 
and denote the values these random variables take by x0 , XI, .... Note that 
different random variables describe the statistics at different times. These 
random variables may be independent or they may be correlated. For a pro­
cess evolving in continuous time we define the family of random variables Xt, 
parameterized by the timet, and let Xt denote the values taken by Xt. Condi­
tional probability densities are now written P(xn, tn!x0 , t 0 ) or P(xt, t!x0 , 0), 
where 

P(xn, tn!xo, to)dxn = Prob(xn:::; Xn < Xn + dxn!Xo = xo), 
P(xt, t!xo, to)dxt = Prob(xt :S: Xt < Xt + dxt!Xo = xo). 

(5.113a) 

(5.113b) 
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The probability density for realizing a particular sequence of outcomes 
{x0 ,x1, ... ,xn} in discrete time, given X 0 = x 0 , is written P(x1 , t 1 ; ... ; 

Xn, tnlxo, to), where 

n 

P(xb h; ... ; Xn, tnlxo, to) IT dxi 
i=l 

= Prob(xi:::; xi< Xi+ dxi, Vi= 1, 0 0 0 ,niXo = xo). (5.114) 

5.3.2 The Wiener Process 

The Wiener process plays the important role of providing the elementary 
fluctuating terms that go into the construction of stochastic differential equa­
tions. We will discuss the Wiener process in one dimension. Its generalization 
to many dimensions is a simple extension to a collection of independent one­
dimensional processes. 

The Wiener process is described by the Fokker-Planck equation with zero 
drift and unit diffusion. In our new notation, 

8P(wt,tlwo,O) _ ~~P( I O) 
Ot - 2 ow¥ Wt, tWo, . (5.115) 

The Green function solution to this equation provides the familiar description 
of Brownian motion, or unconstrained diffusion. From (5.19) [or (5.78)], we 
have 

1 [ 1(wt-wo)2 ] P(wt, tlwo, 0) = v'27ft exp -2 t ; (5.116) 

the initial 8-function distribution evolves with constant mean 

(5.117a) 

and a variance increasing linearly in time: 

(5.117b) 

Correlations at unequal times are obtained from (5.93a) and (5.93b) with 
A=O: 

{ 
((Wt - wo) 2 ) 

((Wt'- wo)(Wt- wo)) = ((Wt' _ wo)2 ) 

= min(t',t). 

t' :::: t 
t' :::; t 

(5.117c) 

Now, in what sense can we define irregular trajectories whose ensemble 
averages reproduce (5.117a)-(5.117c)? Let us begin in discrete time. We de­
fine a sequence of random variables {W0 , W1 , ... , Wn} corresponding to the 
times t 0 = 0, h, ... , tn, separated by the time-step L1t. The value the random 
variable wi takes is denoted by Wi, -oo < Wi < 00. The initial condition in 
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(5.116) requires that W0 = w 0 with unit probability. Then, a discrete tra­
jectory, at resolution L\t, is defined by a sequence { wo, w1, ... , wn}, where 
each random variable Wi adopts a value wi chosen from some distribution 
P( Wi, ti). We obtain the Wiener process when the Wi, i = 1, ... , n, are chosen 
from a series of Gaussian distributions, P(wi, tilwi_1, ti_r), each conditioned 
on the value taken by the random variable one step earlier in time. Specifi­
cally, we write 

1 [ 1 (wi- wi_r) 2 ] P(wi, tilwi-1, ti_r) = J exp --2 · 
2n(ti- ti-l) ti- ti-l 

(5.118) 

Then the probability density for a prescribed sequence { w0 , w1, ... , Wn} is 
given by 

Note 5.3 The process we construct in this way is Markovian. Fokker-Planck 
equations describe Markov processes, and the Wiener process is an example 
of a Markov process. A discrete Markov process is completely defined by the 
conditional probability connecting the values taken by the random variables 
at successive times. The probability density for a complete sequence is then 
constructed as a product of conditional distributions as in (5.119) [5.20]. 

In order to compare ensemble averages of the trajectories defined in this 
way with (5.117a)-(5.117c), we first write the distribution (5.119) in standard 
form. Replacing Wi- Wi-l by (wi- wo)- (wi-l - wo), and summing the 
exponents in the product of exponentials, we rewrite (5.119) as 

P(w1, t1; · · ·; Wn, tnlwo, 0) 

1 [ 1 T 1 ] ----;===c===:==oexp - 2(w- w0 1) M- (w- wol), 
J(2n)ndetM 

(5.120) 

where w is the column vector constructed from w1, ... , Wn, and 1 is the 
column vector with every entry equal to unity; M-1 is the n x n matrix 

2 -1 0 0 0 0 0 
-1 2 -1 0 0 0 0 
0 -1 2 -1 0 0 0 

M-1 = __1_ 
0 0 -1 2 0 0 0 

(5.121) L\t 

0 0 0 0 2 -1 0 
0 0 0 0 -1 2 -1 
0 0 0 0 0 -1 1 
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with detM-1 = (detM)-1 = 1/(L1t)n. It can be seen by direct multiplica­
tion that (5.121) has the inverse 

1 1 1 1 1 
1 2 2 2 2 
1 2 3 3 3 

M=L1t 1 2 3 4 4 (5.122) 

1 2 3 4 ... n 

Note 5.4 The matrix M-1 can be reduced by row operations to the matrix 
with plus unity everywhere along the diagonal, minus unity in the element of 
every row to the left of the diagonal, and zeros elsewhere: add row n to row 
n -1, then add row n- 1 to row n- 2, and so on. Using the reduced matrix, 
detM-1 = 1/(L1t)n follows immediately. 

Equation (5.120) now has the form of (5.82) and we can use the results 
of Sect. 5.2.2 to obtain moments. From (5.87) and (5.88) we obtain 

(Wi) = wo, 
((Wi- wo) 2 ) = iL1t = ti, 

((Wj- wo)(Wi- wo)) = min(j, i)L1t = min(tj, ti)· 

(5.123a) 

(5.123b) 

(5.123c) 

These results reproduce the continuous time results (5.117) at the discrete 
times 0, L1t, 2L1t, ... , nL1t. 

Exercise 5. 7 The probability that a trajectory wanders a distance wi -
wo in the first i steps is calculated by integrating (5.119) over all possible 
intermediate values w1 , ... , Wi-l· Show that 

1 [ 1(wi-wo)2 ] P(wi, tilwo, 0) = m::T exp -- . 
v 21fti 2 ti 

(5.124) 

This is the discrete-time version of (5.116). 

To recover the results for the Wiener process in continuous time we must 
take the limit of infinitely many infinitesimal steps, where the sequence of 
random variables W0 , W1 , ... is replaced by the family Wt. In the limit L1t --t 

0, i --t oo, j --t oo, with ti = iL1t = t and tj = jL1t = t' finite, (5.123a)­
(5.123c) reproduce (5.117a)-(5.117c), and (5.124) reproduces (5.116). 

Note that with L1t finite, (5.123a)-(5.123c) and (5.124) correspond ex­
actly to (5.117a)-(5.117c) and (5.116) at the discrete times t = 0, L1t, 2L1t, 
... , nL1t. The discrete trajectories generated by (5.118) describe the Wiener 
process at reduced resolution, not reduced accuracy; finite steps do not give 
an approximation that only approaches the Wiener process in the limit of in­
finitely many infinitesimal steps. This is in contrast to discrete valued (jump) 
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processes, which do only approach the Wiener process in this limit -- for ex­
ample, the random walk, which replaces the conditional distribution (5.118) 
with an equal probability for fixed jumps, +L1w or -L1w, at each time step 
[5.21]. In Volume 2 we will discuss the numerical simulation of stochastic 
differential equations as an approach to solving nonlinear problems where 
direct solution of the Fokker~Planck equation is not possible (Chap. 12). In 
such simulations the Wiener process is implemented in the discrete version 
described above. 

5.3.3 Stochastic Differential Equations 

Actually, in the simulation of stochastic differential equations we do not work 
with the Wiener process itself, but with the differential process, or Wiener 
increment, dWt = Wt+dt- Wt. We have seen how irregular trajectories can 
be generated by Wt. We must now define the sense in which these trajectories 
are solutions to some differential equation. First, however, we should perhaps 
consider whether or not we can even define the time derivative of Wt. 

Consider the probability that the absolute slope of a trajectory calculated 
over a short interval L1t is greater than some constant k. Using (5.116), this 
probability is given by 

(5.125) 

In the limit L1t --+ 0, this tends to unity for any k. Therefore, for L1t short 
enough, lwt+L1t -wti/L1t is almost certain to be greater than any number we 
care to choose. For almost all trajectories the time derivative of Wt must be 
infinite; the Wiener process is therefore not differentiable. 

Note 5.5 A series expansion for the integral in (5.125) can be given. The 
result of the integration is readily appreciated, however, from the following 
consideration. The required integral is the area under a normalized Gaussian 
whose width is v'Lfi, with a central slice of width kL1t omitted (Fig. 5.3). 
Since, as L1t --+ 0, kL1t becomes much smaller than v'Lfi,, no matter how 
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large k is chosen to be, the result claimed below (5.125) follows; the integral 
approaches the entire area under the Gaussian. 

A similar calculation shows that for any k, no matter how small, 

lim Prob(IWt+Llt- Wtl > k) = 0. 
Llt-+0 

(5.126) 

Trajectories Wt are therefore continuous, but everywhere nondifferentiable. 

In what sense can they be generated as solutions to a differential equation? 

Let us again begin by considering discrete time. Consider the sequence of 

random variables Z0 , Z1, ... , with 

i-1 
Zi = Zo + Llt 2:::: Sk, (5.127a) 

k=O 

or 
(5.127b) 

Here Z0 and 5 0 , 5 1, ... , are independent random variables, and the Si are 

Gaussian distributed with zero mean and variance 1/ .::1t: 

with 

(Si) = 0, 

(EjSi) = { ~/Llt i=/=j 
i = j. 

(5.128) 

(5.129a) 

(5.129b) 

(Si is a random variable; ~i denotes the value taken by the random variable.) 
From (5.127) and (5.129), we find 

and 

(Zi) = (Zo), 
i-1 i-1 

((zi- (Zo)) 2) = (.::1t)2"2:: Z:::(:::k:::k') 
k=O k'=O 

= i.::1t 

j-1 i-1 

( ( Zj - (Zo) )( Zi - (Zo))) = (.::1t) 2"2:: 2:::: (Etk Etk') 
k=O k'=O 

= min(j, i)Llt 

= min(tj, ti)· 

(5.130a) 

(5.130b) 

(5.130c) 
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Fig. 5.3 Probability distribution inte­
grated to obtain (5.125). The shaded re­
gion which is omitted from the range of 
integration contributes a term O(kLlt). 

Equations (5.130) reproduce the results (5.117) for the Wiener process in 
discrete time. We may now make the identification Zi = Wi and LlZi = LlWi. 
Thus, in the limit Llt ---+ 0, the Wiener process can be generated as the integral 
of the Gaussian white noise St. We write 

Wt = Wo + ltdt'St', 

dWt = Stdt, 

where the moments (5.129) become 

(St) = 0, 

(St'St) = 8(t'- t). 

(5.131a) 

(5.131b) 

(5.132a) 

(5.132b) 

We cannot write down a distribution for St as an ordinary function in the 
continuous time limit because the variance of (5.128) becomes infinite as 
Llt---+ 0. This infinite variance is carried by the 8-function correlations. The 
sense of the infinity is well defined, however, by the limiting procedure that 
led us to (5.131) and (5.132). 

Exercise 5.8 Use (5.131a) and (5.132) to arrive directly at (5.117a)­
(5.117c). 

Equations (5.131a) and (5.131b) define the way in which realizations of 
the Wiener process are generated as solutions to a differential equation. In 
the usual notation of differential calculus we would write 

However, although this notation is sometimes met in the literature, it is not 
strictly correct, because, as we have seen, Wt is not differentiable. It is only 
in the sense of the integral (5.131a) that the equation of motion for the 
trajectories Wt is defined. We now extend these ideas beyond the Wiener 
process itself to write an equation of motion for a random variable Xt driven 
by both deterministic forces and a fluctuating force derived from St. This 
gives the general stochastic differential equation in one dimension: 
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dXt = A(Xt)dt + B(Xt)Etdt 

= A(Xt)dt + B(Xt)dWt. (5.133) 

The interpretation of this equation is to be taken from the integral form 

(5.134) 

In numerical simulations the discrete process ..1 Wi = ..1tEi ( ..1tEi is Gaus­
sian distributed with variance ..1t) of Wiener increments between ti and ti-l 
provides the source of fluctuations. 

We have overlooked something here, however. There is a problem of in­
terpretation due to the appearance of the random variable Xt inside the 
second integral on the right-hand side. The problem is not apparent when we 
simply write down the standard integral notation in (5.134). But it quickly 
appears if we think carefully about how the integral is defined as the limit 
of a sum. We need to know how to interpret the integral in (5.134) when 
the random variable Xt appears in the integrand. In many applications this 
dependence is absent, and then the stochastic differential equation is said to 
involve additive noise. When the strength of the fluctuating force depends 
on the random variable Xt we speak of multiplicative noise. Typically, the 
examples of stochastic differential equations met in quantum optics have mul­
tiplicative noise. Often, however, a linearized analysis is performed using the 
system size expansion discussed in Sect. (5.1.3). In this case the multiplica­
tive noise is approximated by an additive noise, with Xt replaced by x(t) (the 
solution to the macroscopic law) to determine the noise strength B. 

5.3.4 Ito and Stratonovich Integrals 

To uncover the ambiguity of the stochastic differential equation (5.134) we 
consider the integral 

I = 1t Ft'dWt', 
to 

(5.135) 

where Ft describes some arbitrary stochastic quantity. Let us seek a definition 
for this integral starting with an approximation for discrete time. We divide 
the interval [t0, t] into i subintervals with time-step ..1t = (t- t 0 )ji, and 
tk = t0 + k.dt, k = 0, ... , i, as illustrated in Fig. 5.4. Within each subinterval, 
the time 

(5.136) 

lies a fraction a, 0 ::::; a < 1, of a time-step from the lower limit of the 
subinterval. Now set 

i-1 

Ii = L FTk (Wtk+l - Wtk). 
k=O 

(5.137) 
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One possible choice for Ft is Wt. With this choice we are able to calculate 
the average value of the integral using (5.117c). We obtain 

i-1 

(Ji) = L ( (Wrk Wtk+ 1 ) - (Wrk Wtk)) 
k=O 
i-1 

= L {[w6 + min(Tk, tk+I)]- [w6 + min(Tk, tk)]} 
k=O 

= a(iL1t) 

= a(t- to). (5.138) 

The answer can take any value between 0 and (t-to) depending on our choice 
of a. 

Prj -------------------------
Fro ------------

to Fig. 5.4 Subdivision of the range of integra­
tion in the stochastic integral (5.135). 

Different choices for a define different stochastic integrals. Two choices 
have received wide use. The first sets a = 0 and evaluates Ft at the beginning 
of each interval. This choice gives the definition of the Ito stochastic integral 
[5.22] as the mean square limit of the sequence of approximations 

i-1 

I}to = L Ftk(Wtk+l - Wtk). 
k=O 

(5.139) 

The second choice sets a= ~'evaluating Ft at the midpoint of each interval. 
This gives the definition of the Stratonovich stochastic integral [5.23] as the 
mean square limit of the approximations 

i-1 

Jptrat = LF~(tk+,+tk)(Wtk+,- Wtk). 
k=O 

(5.140) 

For given functions A(Xt) and B(Xt), (5.134) defines two quite different 
equations depending on the interpretation given to the stochastic integral. 
The stochastic calculus derived on the basis of the Ito integral is quite differ­
ent from that based on the Stratonovich integral. The Stratonovich integral 
leads to conventional rules of calculus; the Ito integral defines a new calculus. 
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From the point of view of analysis it might seem preferable to always work 
with Stratonovich integrals and conventional calculus. However, calculations 
that are quite straightforward using Ito calculus can be quite difficult in the 
Stratonovich form. The details of this comparison are beyond the scope of 
this book, however, we get a taste for the differences from the discrete time 
implementation of (5.134). Let us look briefly at this. A deeper discussion is 
given in the book by Gardiner [5.24]. 

The numerical simulations discussed in Volume 2 use the Cauchy-Euler 
procedure to generate approximate realizations of (5.134) interpreted as an 
Ito equation: 

i-1 i-1 

xi = Xo + L1t L A(Xk) + L B(Xk)(L1t€k); (5.141) 
k=O k=O 

the solution to (5.141) advances with 

(5.142) 

From (5.141 ), Xi depends on Xo and Ek, k = 0, ... , i -1. Since the Gaussian 
random variable Ei is a statistically independent quantity, in (5.142) B(Xi) 
and Ei are statistically independent. In continuous time, when (5.134) is an 
Ito equation, B(Xt) and dWt are statistically independent. This makes it 
rather easy to obtain an evolution equation for (Xt) from (5.134): 

(Xt) = (Xo) + lotdt'(A(Xt')) + lotdt'(B(Xt'))(dWt') 

= (Xo) +lot dt' (A(Xt')), (5.143a) 

where we have set (dWt') = 0 [Eqs. (5.131b) and (5.132a)]. In differential 
form, 

(5.143b) 

Using the more general statement that B(Xt) and dWt' are statistically in­
dependent for t' 2: t, we can derive an evolution equation for (Xt). From 
(5.134), we have 

(X f) = (X6) + 2 lot t' (XoA(Xt')) +lot dt' lot dt" (A(Xt' )A(Xt")) 

+ 2 lot dt'fot (A(Xt' )B(Xt" )dWt") 

+ lotlot (B(Xt' )B(Xt" )dWt'dWt") + 21t (XoB(Xt' )dWt' ). 

The statistical independence of B(Xt') and dWt' allows us to set the last term 
on the right-hand side to zero. Also, in the second-to-last term dW max(t' ,t") 
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is independent of the other three quantities in the average. The average is 
therefore zero for t' -=f. t". But when the time arguments are equal the prod­
uct B(Xt' )B(Xt") is independent of dWt'dWt". We can therefore factorize 
(B(Xt')B(Xtu)dWt'dWl") as (B(Xt')B(Xt"))(dWt'dWt"l· We now have 

(X'[) = (X;5) + 21t dt' (XoA(Xt' )) + lt dt'fot dt" (A(Xt' )A(Xt" )) 

t t' 

+ 21 dt'fo (A(Xt' )B(Xt" )dWt") 

Differentiating with respect to time, we obtain 

!(X'[)= 2([xo + lt dt'A(Xt') + lt B(Xt')dWt']A(Xt)) 

+ 21t dt' (B(Xt)B(Xt' ))8(t'- t) 

(5.144a) 

= 2(XtA(Xt)) + (B(Xt) 2 ), (5.144b) 

where we have used (5.131b) and (5.132b) to write (dWtdWt')/dt = dt'o(t'­
t). 

Now consider the discrete-time version of (5.134) in the Stratonovich in­
terpretation. In place of (5.142), we have 

(5.145) 

where Xi+~ denotes the random variable Xt with t = ~(ti+I + ti)· We cal­
culate (Xi+ll- (Xi), from which results equivalent to (5.143a) and (5.143b) 
will follow. Since B (Xi+~) is evaluated at a slightly later time than 5i, we 
should not assume that these two quantities are statistically independent. 
Instead we must calculate both B (Xi+~) and A (Xi+~) in some approximate 
way in terms of 5i, and A(Xi) and B(Xi)· The calculation only needs to be 
correct to lowest order in Llt. We first use linear interpolation to write 

(5.146) 

and then expand A(Xi+~) and B(Xi+~) to first order about Xi. Equation 
(5.145) becomes 

Xi+l =Xi+ Llt[A(Xi) + ~(Xi+l- Xi)A'(Xi)] 

+ [B(Xi) + ~(Xi+l- Xi)B'(Xi)](Llt5i)· 

Here Xi+1 appears on both sides of the equation. Solving for Xi+l to lowest 
order in Llt, we have 
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(5.147a) 

Substituting this result back into the original equation, we obtain 

Xi+l =Xi+ LltA(Xi)[1 + ~B'(Xi)(LltEi) + ~A'(Xi)] 
+ B(Xi)(LltEi) [1 + ~B'(Xi)(LltEi) + ~A' (Xi)Llt]. (5.147b) 

It appears that (5.147b) includes four corrections of order Llt2 when it is 
compared with (5.147a). But this is not so. After taking the average we see 
that the term ~B(Xi)B'(Xi)(LltEi)2 is really of order Llt, since (El) = 1/Llt 
[Eq. (5.129b)]; we should view (LltEi) as a term of order JLft", so that (5.147b) 
is an expansion in powers of JM. Then to lowest order we arrive at the result 

(5.148) 

This equation of motion for the mean is not the same as the equation of 
motion obtained from the Ito interpretation of the integral [Eq. (5.143b)]; 
it includes the additional term ~B(Xt)B'(Xt) on the right-hand side. The 
additional term reflects the fact that in (5.145), B(Xi+!) and Ei are not 
statistically independent. In continuous time, when (5.134) is a Stratonovich 
equation, B(Xt) and dWt are not statistically independent. 

We must remember then, that for given functions A(Xt) and B(Xt), 
(5.134) describes different stochastic processes depending on the interpre­
tation of the stochastic integral. This has given rise to extensive debate 
about the "correct" interpretation [5.25, 5.26]. The debate has content when 
a stochastic differential equation, formulated in a phenomenological manner, 
provides the fundamental basis for a stochastic model. The physical argu­
ment (for external noise) is then that the Stratonovich interpretation holds, 
because "real" noise is never exactly white; the unconventional Ito calculus 
stems from the extreme irregularity of truly white noise. For our purposes, 
however, this debate is of no importance. We always obtain our stochas­
tic differential equations from a previously derived Fokker-Planck equation. 
The Fokker-Planck equation unambiguously defines the stochastic process. 
Stochastic differential equations equivalent to the Fokker-Planck equation 
can be written in either Ito or Stratonovich form. The equations will look 
different, but each is to be solved using its own calculus, and a consistent 
application of the correct calculus to each equation will produce the same 
result. 

5.3.5 Fokker-Planck Equations and Equivalent Stochastic 
Differential Equations 

If we compare the moment equations (5.143b) and (5.144b), with (5.11) and 
(5.12), a relationship between the Ito stochastic differential equation (5.133) 
[or (5.134)] and the one-dimensional Fokker-Planck equation (5.7) suggests 
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itself. It seems these may be equivalent if we identify the functions D(x) 
and B(x )2 . This is indeed so. With a little imagination we might even guess 
the form of the Ito stochastic differential equation equivalent to the multi­
dimensional Fokker-Planck equation (5.1). We state the result, which cer­
tainly seems eminently reasonable, without proof; the proof is not difficult, 
but it requires further excursion into the Ito calculus [5.27]: The Ito stochastic 
differential equation equivalent to the multidimensional Fokker-Planck equa­
tion (5.1) is given by 

(5.149) 

where Xt is the column vector formed from the families of random variables 
X It, ... , Xnt, A(x) is the column vector of the drifts A1 ( x), ... , An (x ), the 
matrix B ( x) is defined by the factorization 

D(x) = B(x)B(x)T (5.150) 

of the positive definite diffusion matrix, and Wt is a column vector of n 
independent Wiener processes. 

For the same Fokker-Planck equation an equivalent Stratonovich stochas­
tic differential equation exists. An educated guess as to its form can be made 
on the basis of a comparison between (5.148) and (5.143b). The Stratonovich 
interpretation of the Stochastic integral adds the term ~B(Xt)B'(Xt) to 
the evolution equation for (Xt)· If the same stochastic process is to be de­
scribed by both Ito and Stratonovich stochastic differential equations, the 
Stratonovich equation must have a different function A(Xt), so that the ad­
dition of this term gives the same evolution equation for (Xt)· This suggests 
that 

AStrat(Xt) = A(Xt)- ~B(Xt)B'(Xt). 

This is indeed the correct relationship defining the Stratonovich stochas­
tic differential equation equivalent to the one-dimensional Fokker-Planck 
equation (5.7); the functions B(Xt) are the same in the equivalent Ito and 
Stratonovich equations - BStrat(Xt) = B(Xt) = JD(Xt)· More gener­
ally, the Stratonovich stochastic differential equation equivalent to the multi­
dimensional Fokker-Planck equation (5.1) is 

(5.151a) 

with 

A7trat(x) = Ai(x)- ~ t Bkj(x) 0~k Bij(x). 
k,J=l 

(5.151b) 
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5.3.6 Multi-Dimensional Ornstein-Uhlenbeck Process 

To close this section let us see how the results of Sect. 5.2 are obtained in 
the language of stochastic differential equations. Specifically, we will rederive 
the results for means, variances, and correlations (Sect. 5.2.3). From these all 
other moments follow. 

The stochastic differential equation corresponding to the linear Fokker­
Planck equation (5.5) is 

(5.152a) 

with 
(5.152b) 

where A and B are constant matrices. The stochastic process described by 
(5.152) is known as the multi-dimensional Ornstein-Uhlenbeck process. This 
process involves only additive noise, and therefore the issue concerning the 
difference between Ito and Stratonovich integrals does not arise. The formal 
solution to (5.152a) is 

Xt = AfotdsXs + B fotdWs 

=A fotdsXs + B(Wt- Wo). (5.153) 

The equation of motion for the means, and hence its formal solution 
(5.90), follows trivially on averaging (5.153): 

(Xt) = A1t ds(X8 ). (5.154) 

The autocorrelation matrix is then calculated as 

C(t',t) = ((Xt'- (Xt'))(Xt- (Xt){) 

= ( [A lot' ds'(Xs'- (Xs,))+ B(Wt'- Wo)] 

x [A fotds(Xs- (Xs))+ B(Wt- Wo)r) 

t' t 
=A 1 ds'1 ds((Xs'- (Xs,))(Xs- (Xs))T)AT 

t' 

+A 1 ds'((Xs'- (Xs,))(Wmin(s',t)- Wo)T)BT 

+ B 1tds((Wmin(t',s)- Wo)(Xs- (Xs))T)AT 

+ BBT min(t', t). (5.155) 
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We have used the statistical independence of Xs' and Wt - Ws' for t > 
s', and of Xs and Wt' - Ws for t' > s. Also, the last term in (5.155) is 

obtained using ((Wt'- W 0 )(Wt- Wo)T) = Inmin(t',t); this follows from 
(5.117c) [generalized as in (5.130c) to allow for a distribution over w0 ] and 
the independence of the components of Wt. Now, differentiating (5.155) with 
respect to t', for t' > t, 

d~' C(t', t) = A\(Xt'- (Xt')) 

x [1tds(Xs- (Xs))T AT+ (Wt- Wo{BT]) 

= A((Xt'- (Xt'))(Xt- (Xt))T) 

= AC(t', t), t' > t, (5.156a) 

where the term in the square bracket is set equal to (Xt - (Xt) )T using 
(5.153) and (5.154). Similarly, differentiation with respect to t, for t' < t, 
gives 

!!:_C(t' t) = C(t' t)AT 
dt ' ' ' 

t' < t. (5.156b) 

These differential equations give the formal solutions (5.93a) and (5.93b). 
Finally, setting t' =tin (5.155) and differentiating with respect tot, we have 

d 
dt C(t, t) 

= A\(Xt- (Xt)) [1tds(Xs- (Xs) {AT+ (Wt- W 0 )T BT]) 

+([A 1tds'(Xs'- (Xs'))+B(Wt- Wo)](Xt- (Xt))T)AT 

+BBT 

= A((Xt- (Xt))(Xt- (Xt){) + ((Xt- (Xt))(Xt- (Xt){)AT 
+BBT. 

From (5.152b) and the definition of C(t, t), this gives 

d 
dt C(t, t) = AC(t, t) + C(t, t)AT + D, (5.157) 

which reproduces the equation of motion (5.99) for the covariance matrix. 



6. Quantum-Classical Correspondence 
for Two-Level Atoms 

After our brief diversion we now return to the theme of Chaps. 3 and 4, 
namely, the transformation of an operator description for a quantum-optical 
system into the language of classical statistics. So far we have met methods 
that accomplish this task for systems described entirely in terms of harmonic 
oscillator creation and annihilation operators. At least we have seen that 
a Fokker-Planck equation description is possible for the damped harmonic 
oscillator, in a variety of versions defined by representations based on dif­
ferent operator orderings. We noted also that there is no guarantee that a 
system of interacting bosons can be described using a Fokker-Planck equa­
tion; although, as attested to by the example of the laser (Chap. 8), there are 
certainly nontrivial examples that can. The methods used to derive phase­
space equations for systems of bosons can be generalized to the treatment 
of two-level atoms, or more generally, multi-level atomic systems. We now 
develop the representation for atomic states that is needed for our treatment 
of the laser. 

6.1 Haken's Representation and the Damped 
Two-Level Atom 

A variety of phase-space distributions are available for representing atomic 
states. We will briefly mention some of this variety later on. In general, how­
ever, our attention will focus on the representation introduced by Haken and 
co-workers as a direct extension of the Glauber-Sudarshan P representation. 
Like the P representation, this is a representation based on a characteristic 
function in normal order. We must define here what we mean by normal or­
der. The two-level atom is described by pseudo-spin operators u _, u +, and u z 

(Sect. 2.1). By normal order we mean an ordered operator product u~u~u'!_, 
with every u+ to the left, every u_ to the right, and Uz sandwiched in be­
tween. Averages for such ordered operators can be calculated from a normal­
ordered characteristic function and corresponding distribution defined in the 
manner of (3.70)-(3.74). This representation for atomic states was introduced 
by Haken, Risken, and Weidlich in their theory of the laser [6.1]. It is dis­
cussed in this context in Haken's book on laser theory [6.2]. A treatment of 
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atomic damping using this representation, developed for three-level, rather 
than two~level atoms, can be found in the book by Louisell [6.3]. Both of 
these authors consider a collection of many atoms which, of course, is what 
must be done to develop a theory of the laser. We begin by considering a 
single atom and then extend our results to many atoms. Our first objective is 
to derive a phase-space equation of motion equivalent to the master equation 
for the damped two-level atom. 

6.1.1 The Characteristic Function and Associated Distribution 

We introduce the normal-ordered characteristic function 

XN(~,C,TJ) = tr(peiC"'+ei'l"'•eie"'-), (6.1) 

where ~ is a complex variable, C is its complex conjugate, and TJ is real. From 
this characteristic function we can calculate the normal-ordered operator av­
erages 

(aP ar aq) = tr(paP ar aq) +z- +z-
aP+r+q I 

= a(ie)Pa(iry)ra(i~)qxN e=e·=7)=o · 
(6.2) 

The distribution P(v, v*, m) is defined as the three-dimensional Fourier trans­
form of XN (~, ~*, ry): 

with the inverse relationship 

XN(~, C, TJ) = j d2v j dm P(v, v*, m)eWv* eievei'lm 

=I: d19 I: dcp I: dm P( 19 + icp, 19 - icp, m) 

Then, from (6.2) and (6.4), 

aP+r+q I I 
(a~a;a'!..) = o(i~*)Po(iTJYo(i~)q d2v dmP(v, v*, m) 

X eie*v* eievei'lml 
e=e·=7)=o 

(6.3) 

(6.4) 

(6.5a) 
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with 

(6.5b) 

6.1.2 Some Operator Algebra 

The derivation of a phase-space equation of motion for the damped two­
level atom is carried out in essentially the same way as the derivation of 
the Fokker-Planck equation for the damped harmonic oscillator [Sect. 3.2.2]. 
Because, however, of the different operator algebra obeyed by a_, a+, and 
a z, the strategy for obtaining the equation of motion for the characteristic 
function x N ( ~, C, rJ) is slightly different. Actually, the algebraic form of the 
equation of motion we are going to derive is not unique. This is because of 
the relationship that exists between products of the Pauli spin operators and 
linear combinations of these operators. Use of this relationship will be a nec­
essary part of the calculation when we consider many atoms, and we therefore 
pattern the single-atom calculation after the approach that is required in the 
many-atom case, even though a closer parallel with the harmonic oscillator 
example could be maintained for one atom. Our strategy will be to arrange 
all terms in the master equation involving products of a_, a+, and az -for 
example a_pa+- so that the operator products can be replaced by a sum of 
operators taken from the set a_, a+, a z, and 1. This is obviously possible, 
because a two-state basis 11), 12) has only four outer products, 12)(21, 11)(11, 
12)(11, and 11)(21; clearly, any operator can be expanded in terms of these. 
Specifically, collecting results together from (2.25), (2.45), and (2.132), we 
have 

a!= 12)(112)(11 = 0, 

a:_= 11)(211)(21 = 0, 

(6.6a) 

(6.6b) 

a;= (12)(21-11)(11) (12)(21-11)(11) = 12)(21 + 11)(11 = 1, (6.6c) 

a+az = 12)(11(12)(21-11)(11) = -12)(11 =-a+, 

a_az = 11)(21(12)(21-11)(11) = 11)(21 =a_, 

a+a- = 12)(111)(21 = 12)(21 = ~(1 + az), 

a_a+ = 11)(212)(11 = 11)(21 = ~(1- az)· 

(6.6d) 

(6.6e) 

(6.6f) 

(6.6g) 

In addition to these relations we will need the following three identities: 

Proposition 6.1 
(6.7) 
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Proof. The left-hand side of (6.7) may be viewed as the formal solution to 
an operator equation of motion with ie as the independent variable [iea_ 
replaces ( -iH /n)t in the formal solution of a Heisenberg equation of motion]. 
Define 

a z( ie) = eif;,U- a ze-if.<L 

with az(O) = az. Then, differentiating with respect to (ie), we obtain 

where the commutator is taken from (2.11). Thus, 

D 

Proposition 6.2 
(6.8) 

Proof. Following the same approach, we define 

with a_(O) =a_. Differentiating with respect to (iry), we have 

= -2a_(iry). 

Integration of this equation gives 

a_(iry) = e-2i1Ja_(O) = e-2iTJa_. 

D 

Proposition 6.3 

(6.9) 

Proof. Define 
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with a-+(0) =a-+. Differentiating with respect to (i~), we obtain 

= -O"z- 2i~O"_. 

The commutator is taken from (2.11) and the last line follows from (6.7). 
Integrating this equation gives 

O"+(i~) = 0"+(0)- i~O"z- (i~) 2a-_ 

= 0"+- i~O"z- (i~) 2 a-_. 

D 

We now have all the pieces we need to derive a phase-space equation of 
motion for the damped two-level atom. 

6.1.3 Phase-Space Equation of Motion 
for the Damped Two-Level Atom 

The master equation for a radiatively damped two-level atom is given by 
(2.26): 

p = -i~wA[O"z,p] + ~(n + 1)(2a-_pa-+- a-+a-_p- pa-+a--) 

+ ~n(2a-+w-- a-_a-+p- w-a-+)· (6.10) 

Our first task is to derive an equation of motion for the characteristic function 
XN· Using (6.1) and (6.10), we have 

axN 
at 
= :t [tr(peWu+eiryu.ei~u- )] 

= tr0eiCu+eiryu.ei~u-) 

= tr{[ -i~wA(O"zP- PIJ"z) + ~(n + 1)(2a-_pa-+- O"+O"-P- pa-+a--) 

+ ~n(2a-+pa-_- a-_a-+p- pa-_a-+)] eWu+eiryu.ei~,._}. (6.11) 

Now, as in Sect. 3.2.2, our aim is to express each term on the right-hand 
side of ( 6.11) in terms of X N and its derivatives. As mentioned above, the 
strategy here will be a little different from the one followed in Sect. 3.2.2. We 
wish to eliminate all quadratic terms in the operators a-_, a-+, and a-z using 
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(6.6a)-(6.6g). All but two of these can be removed immediately; using (6.6f) 
and (6.6g), (6.11) becomes 

axN 
at 

= tr{[ -i~wA(azp- paz)+ ~(n + 1)(a_pa+- ~azp- ~paz- p) 

(6.12) 

To reexpress (6.12) in terms of XN and its derivatives we proceed as follows. 
Consider first the terms involving azp and paz. These are treated in 

a straightforward fashion, using (6.7) to pass az through the exponentials 
eiCu+ and ei~u- so that it is positioned next to eirw •. It may then be brought 
down from the exponential by differentiating with respect to (iry). We obtain 

and 

tr(azpeiCu+ei'JO"zei~u-) = tr(peiCu+ei'Ju,ei~u-az) 

= tr[peiCu+ei'Ju, (ei~u-aze-i~u- )ei~u-] 

= tr[peWu+ei'lu•(az + 2i~a-)ei~u-] 

tr(pazeiCu+ei'Ju,ei~u-) = tr[peiCu+ (e-iCu+azeiCu+ )ei'Ju,ei~u-] 

= tr [peiCu+ (a z + 2i~* a+ )ei'Ju, eil;u-] 

(6.13) 

(6.14) 

The treatment of the term involving a_pa+ is no more complicated; but 
in accordance with our general strategy, it must begin with some method for 
replacing the quadratic dependence on atomic operators by a linear depen­
dence. This is not the only way to proceed. We could write 

tr( a _pa+eiCu+ ei'~u• ei~u-) = tr(pa+eiC u+ ei'~u• ei~u- a_) 

82 
(6.15) 

which is completely analogous to the treatment of the corresponding term 
for the damped harmonic oscillator [Eq. (3.77)]. We will see shortly, however, 
that while (6.15) works for a single atom, it does not work for many atoms. 
For the single atom case we therefore have a choice: we can use (6.15) or the 
approach that generalizes to many atoms. Because of choices like this the 
equation of motion we derive for a single atom is not unique. 



6.1 Haken's Representation and the Damped Two-Level Atom 201 

The procedure that generalizes to many atoms first uses (6.8) to pass a_ 
through the exponential eirw z. This sets a_ and a+ next to one another so 
that we may replace their product by a+a- = ~(1 + az)· Thus, 

tr(a_pa+eiCa+eirJazeit,<L) = tr(peiCa+a+eiryaza_eit,a_) 

= tr [peiC a+ a+ ( eirJaz a _e-i17az) eirJaz eit,a _) 

= tr [peiC a+ a+ ( e-2iry a_ )eirJaz eit,a _] 

= e-2irytr[peiCa+ ~( 1 + az)eiryazeit,a_] 

- -2iry1 ( a ) 
- e 2 1 + 8(iry) Xw (6.16) 

The philosophy is the same for the final term- a+pa_ -but the algebra is 
now a little more complicated. We first use (6.9) and its Hermitian conjugate 
(taken with~____, -~) to write 

tr(a+pa_eiCa+eirJazeit,a_) 

= tr(pa_eiCa+eiryazeit.a-a+) 

= tr[peiCa+ (e-iCa+a_eiCa+ )eirJaz (eit,a_a+e-it,a_ )eit,a_] 

= tr [peiC a+ (a_ - iC a z - ( iC)2a + )eirJaz (a+ - i~a z - ( i~) 2a _) eit,a-]. 

We now pass (a+- i~az- (i~?a _) through the exponential eirJaz using (6.8): 

= tr [peiCa+ (a- - ~* az - (iC)*a+) 

X (e2irya+- i~az- (i02e-2irya_)eirJazeit,a_] 

= tr{peiC a+ [ e2i17 ~ (1 - a z) + ( i~) ( iC) + ( i~) 2 ( iC )2e-2i17 ~ (1 +a z) 

- (i0(1 + (i0(iC)e-2i11)a-- (iC)(e2i17 + (iO(iC))a+] 

where in the last step all operator products are reexpressed as sums using 
(6.6a)-(6.6g). In this form the operators az and a+ appear in the appropriate 
places with respect to the exponentials so that they may be brought down 
from the exponents by differentiation. On the other hand, the operator a_ is 
not in the appropriate place. It must be passed back through the exponential 
ei1Jaz using (6.8) (taken with ry ____, -ry) to set it beside eit,a_. After taking this 
final step, we obtain 
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= [~ (e2i1J + (i~) 2 (iC)2e- 2i1J + 2(i~)(iC)) 

_ .!(e2i1J _ (i~)2(i~*)2e-2i11)~ 
2 8(zry) 

- i~(e2i1) + (i~)(iC)) a(~~)- iC(e2i1) + (i~)(iC)) a(~*)]xw (6.17) 

We may now use (6.13), (6.14), (6.16), and (6.17) to substitute for the 
various terms in (6.12). After a little algebra the equation of motion for XN 
reads 

axN ( * a a a) 7ft= D ~,~ ,ry, a( ae ary XN' (6.18) 

where D (~, C, ry, gf., 8~., g1J) is the differential operator 

The equation of motion for the distribution P now follows from a calcu­
lation analogous to that in Sect. 3.2.2. We first substitute XN as the Fourier 
transform of P [Eq. (6.4)] to obtain 

Jd2 Jd 8P( v, v*, m) iCv* it;v i1)m v mate ee 

- Jd2 Jd P( * )D (c c* 0 0 a) if.*v* if.v i1)m - v m v,v,m .,,.,,ry,aeae'ary e e e . (6.20) 

The action of the differential operators on the exponentials in (6.20) allows 
the replacement 

a . 
a~ ___. zv, 

a . * 
a~· ___. zv , 

.a 
-z ary ---> m. 

Then the terms in~, C, and e±2i1J in (6.19), may be passed to the right of 
the terms in v, v*, and m, which have replaced the differential operators, 
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and to the left of the exponentials; with this rearrangement we can make the 
substitution 

~* . a 
---* -z-8v*' 

Now, in (6.20), D (c C, ry, gf., a~·, J,) has been replaced by the differential 
operator 

+( * a a a) L v,v ,m, 8v' 8v*' om 

= -iwA (.!!_v - _!!_v*) av 8v* 

+ 1(n + 1) [(1 + m)(e-2 a~ -1)- v.!!_- v*_!!_] 
2 av av• 

'[ (28 84 28 + -n (1 - m) e am - 1) + (1 + m) e- am 
2 8v28v*2 

-2 v- +v*- e2 am + ---- +2--. ( a a ) ( a 82 1) a2 J 
av av• 8v8v* 2 8v8v* 

(6.21) 

Finally, we integrate each term by parts the required number of times to pass 
all of the differential operators from the product of exponentials onto P. Each 
derivative changes sign in the process and (6.20) becomes 

J 2 J ·c• • ·c · 8P d v dme•~ v e•~ve•"'mat 

= d v dm e•~ v e•~ v e'"'m L v v* m - - - P J 2 J ·c• • ·c · ( a a a ) 
' ' ' ov ' ov* ' om ' 

(6.22) 

where Lis the adjoint of the differential operator£+: 
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Equation (6.22) is the Fourier transform of the desired equation of motion. 
Inverting the Fourier transform, we arrive at the phase-space equation of 
motion for a radiatively damped two-level atom: 

aP ( * a a ) Ft = L v,v ,m, av' av* ,m P, (6.24) 

with L(v,v*,m, tv' a~., a~) given by (6.23). 
The first lesson to be learned from this calculation is fairly clear. Equation 

(6.24) has the form of (5.37); it has the form of a generalized Fokker-Planck 
equation, with derivatives beyond second order - up to infinite order in the 
inversion variable m. The quantum-classical correspondence provides a rep­
resentation for quantum-mechanical states in terms of phase-space variables, 
but there is no guarantee that the phase-space dynamics will be described 
by a Fokker-Planck equation. In fact, as we will see shortly, (6.24) is not 
strictly even a generalized Fokker-Planck equation, since its solution does 
not have the properties of a classical probability density. It is certainly a 
much more complicated equation than the Fokker-Planck equation obtained 
for the damped harmonic oscillator. The difference has arisen, of course, from 
the different algebras obeyed by a and at, and u _ , u +, and u z. Techniques 
for analyzing Fokker-Planck equations have nothing to offer with respect to 
an equation like (6.24), and, indeed, we appear to have made the problem of 
the damped two-level atom more complicated by using the quantum-classical 
correspondence. 

We saw in Chap. 2 that the damped two-level atom is readily analyzed 
using the optical Bloch equations and the quantum regression formula. The 
practical use for the representation defined in Sect. 6.1.1 comes from its ap­
plication to collections of many atoms, where we will find a way around the 
higher derivatives and again recover a Fokker-Planck equation. The single­
atom calculation is useful, however, first because it dispenses with some of 
the algebraic manipulations required to treat the many-atom case; but, more 
importantly, because we already have an exact solution to the single-atom 
master equation. Equations (6.1) and (6.3) may be used directly to construct 
the distribution P( v, v*, m, t) corresponding to the density matrix given by 
solutions to the optical Bloch equations. This distribution must satisfy (6.24), 
and its form should teach us something about the significance of the higher­
order derivatives in (6.24). In the many-atom calculation we will only be 
able to remove these derivatives by making an approximation, and an un­
derstanding of their significance is important to an understanding of that 
approximation. Thus, before tackling the extension to many-atoms, let us 
see what can be learned from the direct construction of P(v, v*, m, t). 

Exercise 6.1 The differential operator (6.23) does not include terms de­
scribing nonradiative dephasing processes, such as elastic collisions. When 
these processes are included the master equation has the additional term 
bv/2)(uzPCYz- p) [Eq. (2.66)]. Show that this adds the term 
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- [ f) f) * [)2 -2_§_ ] 
Ldephase = "(p fJv v + fJv* v + fJvfJv* e 11"' (1 + m) (6.25) 

to the operator appearing on the right-hand side of (6.24). 

6.1.4 A Singular Solution to the Phase-Space Equation of Motion 

We will construct the distribution P(v, v*, m, t) for a damped two-level atom 
explicitly using the solution for p(t) obtained in Chap. 2. We will then show 
that this distribution satisfies the phase-space equation of motion (6.24). 

We begin by evaluating xN(~,C,ry) in terms of the operator averages 
(a_), (a+), and (az)· Using (6.6a)-(6.6c), we write 

= ( "!:*)n 
eiCa+ = L _z_.,_l -af. = 1 + iCa+, 

n=O n. 

= ( -~)n 
eif.a_ = L _z-1-a~ = 1 + i~a_, 

n. 
n=O 

= ( · )n 
e i rJC7 z = " ..!:!.!...._ 

6 n! 
n=O 

CXl ( -1 )k,2k . CXl ( -1 )k,2k+l 

= ~ 2k! + zaz~ (2k + 1)! 

= cosry + iaz sin 'Tl· 

Then, from the definition of X N ( ~, C, 'Tl) [Eq. ( 6.1)], we have 

XN (~, C, ry) = tr[p(1 + ie*a+)(cos 'Tl + iaz sin ry)(1 + i~a- )] 

= H1 + (az) )(ei"'- C~e-i"~) + H1- (az) )e-i"' 

+ (a_)i~e-irJ + (a+)iCe-i"~. 

(6.26a) 

(6.26b) 

(6.26c) 

(6.27) 

We should still be able to calculate all operator averages by taking derivatives 
of XN (~, C, ry) [Eq. (6.2)]. All we have done is simplify the form of XN (~, C, ry) 
by using the relationships (6.6) a priori. Thus, (6.27) shows once again that 
all operator averages for the two-level atom can be expressed in terms of 
expectation values of a_, a+, a z, and 1 alone. 

Exercise 6.2 Verify that (6.2) and (6.27) produce the correct operator 
averages up to second order; show that 

[)2 I 
fJ(ie)2xN = o =(a!), 

C=f.=rJ=O 

[)2 I 
fJ(i!:)2XN = 0 =(a~), 

<, f.*=f.=rJ=O 

[)2 I 
fJ(i )2 XN = 1 = (a~), 

'Tl f.*=f.=rJ=O 
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a(-~~:(. ) XN I =-(a+)= (a+az), 
Z zry ~·=~='IJ=O 

8(i ~~(i~)XN I =-(a_)= (aza-), 
ry ~·=~='1}=0 

ac~~:("~)XN I = !(1 + (az)) = (a+a-). 
z z ~·=~='1}=0 

Clearly, this agreement extends to operator products of arbitrary powers. 
For example, from (6.27), anxN j8(iC)n = anxN j8(i~)n = 0 for n > 1; all 
averages evaluated using (6.2) with p > 1 or q > 1 are therefore zero, as 
required by (6.6a) and (6.6b). 

We now construct the distribution P(v, v*, m, t) by taking the Fourier 
transform of (6.27). The transform with respect to the variable ry is straight­
forward; we have 

P(v, v*, m) =:: 2~3 J d2~ J dry xNe-Wv* e-i~ve-i'lm 

= 2~3 J d2~ J dry {! (1 + (az) )(ei'l- c~ e-i'lj) 

+ !(1- (az))e-i'l 

+ (a _)i~ e-i'l + (a+)iCe-i'l }e-Wv* e-i~ve-i'lm 

= : 2 j d2 ~ {! ( 1 + (a z)) (6 ( m - 1) - C ~ 6 ( m + 1 )) 

+ !(1- (az))6(m+ 1) 

+ (a_)i~ 6(m + 1) + (a+)iC6(m + 1) }e-iCv* e-i~v. 
(6.28) 

The remaining two-dimensional Fourier transform presents a difficulty, since 
it does not exist in the usual sense. We face a similar situation here to the one 
we encountered when deriving the Glauber-Sudarshan P representation for a 
Fock state [see the discussion below (3.28)]. The resolution of the difficulty is 
to allow P(v, v*, m) to be a generalized function. Specifically, we can evaluate 
the Fourier transform in (6.28) if we introduce derivatives of the 6-function, 
writing 

: 2 J d2~ e-iCv* e-i~v = 6(2)(v), (6.29a) 

2_jd2~ (i~)e-iCv* e-i~v = _ _Q_2_jd2~ e-iCv* e-i~v 
11"2 av 11"2 

=- :v 6(2)(v), (6.29b) 
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_!_jd2f, (if,*)e-iCv* e-iev = -~_!_jd2f, e-ie*v* e-iev 
~ ~·~ 

=- 8~.8(2l(v), (6.29c) 

_!_fd2f, (if,*)(if,)e-ie*v* e-iev = -~_!_fd2f, e-iCv* e-iev 
n2 8v*8v n 2 

82 
= ---8(2l(v). (6.29d) 

8v*8v 

Then, for the general time-dependent density operator 

p(t) = H1 + (az(t)))l2)(21 + H1- (az(t)))l1)(11 

+ (a_(t))l2)(11 + (a+(t))l1)(21, (6.30) 

the corresponding distribution P(v, v*, m, t) for a (radiatively damped) two­
level atom is given by 

P(v, v*, m, t) 

= H1 + (a2 (t)) )8(m- 1)8C2l(v) + H1- (az(t)) )8(m + 1)8C2l(v) 

- (a_(t))8(m + 1) 8
8 8(2l(v)- (a+(t))8(m + 1) 8

8 8(2l(v) 
v v* 

82 
+ H1 + (a z (t)) )8(m + 1) 8v8v* 8(2) ( v ). (6.31) 

This is a highly singular distribution. The singular character in the polar­
ization variable v can be traced to the requirement that a:. = a~ = 0. It is 
the vanishing of these operator products that gives x N (f., f,*, 'TJ) its truncated, 
polynomial form in the variables f. and C, and this then requires derivatives 
of the 8-function to appear in the Fourier transform. The singular character 
enables the distribution to reproduce the manifestly nonclassical moments 
required in the variables v and v*: while (a_) = ( ii) P and (a+) = ( V*) P 
are generally nonzero, all higher-order moments (a~) = ('iJQ)p, q > 1, and 
(a~) = (v*P)P, p > 1, must vanish; such behavior cannot be reproduced if 
P(v, v*, m) is an ordinary probability density. 

Exercise 6.3 The phenomenon of photon antibunching in resonance fluo­
rescence (Sects. 2.3.5 and 2.3.6) provides a good example of a situation that 
calls for nonclassical behavior in moments of the polarization. Show that (6.5) 
and (6.31) give 

(a+a-) = (v*v)p = H1 + (az) ), 

(a!a~) = (v* 2v2 )p = 0. 

(6.32a) 

(6.32b) 

From these equations the result gC2l(O) = 0 follows. Show also that (6.5) and 
(6.31) reproduce all of the moments given in Exercise 6.2. 
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The distribution (6.31) is also singular in the inversion variable m; al­
though, the 8-function singularity does not signify a nonclassical character 
as do derivatives of the 8-function. What we have here is consistent with 
a classical process that involves only discrete states, with the inversion re­
stricted to the values m = p22 - p11 = + 1, for the atom in its upper state, 
and m = p22- Pn = -1, for the atom in its lower state. Indeed, if we inte­
grate P(v, v*, m) over the polarization variable v, we are left with the reduced 
distribution 

P(m, t) = ! (1 + (az(t)) )8(m- 1) + ! (1- (a z(t)) )8(m + 1) 

= P22(t)8(m- 1) + Pn(t)8(m + 1), (6.33) 

where P22 and pn give the probabilities for finding the atom in its upper 
( m = + 1) and lower ( m = -1) states, respectively. In classical statistical 
physics the dynamics for such a discrete state system would be given by a 
jump process describing transitions between the two states. A closer look 
at the phase-space equation of motion (6.24) confirms the relationship to a 
jump process. The differential operators e±2ik appearing in (6.23) describe 
transitions between discrete inversion states. These are displacement, or shift 
operators, which generate steps of ±2 units in m, just what is required for 
transitions between atomic states with m = ±1. To show this we write e±2ik 
as a power series; then it acts on a function g(m) to give the Taylor series 
expansion for the shifted function g(m ± 2): 

(6.34) 

Armed with these observations let us now return to the phase-space equa­
tion of motion (6.24) and show that the distribution (6.31) does, indeed, sat­
isfy this equation. We will approach the demonstration in steps which bring 
out something of the structure of the dynamics. First, we explicitly display 
the confinement to discrete inversion states, writing 

with 

P(v, v*, m, t) = P1 2)(v, v*, t)8(m- 1) + .F'J 1>(v,v*, t)8(m + 1), 

I d2v l'J2)(v, v*, t) = P22(t), 

I d2v P11) (v, v*, t) = Pn (t). 

(6.35) 

(6.36a) 

(6.36b) 

This form is consistent with the explicitly constructed distributions (6.31) and 
(6.33), and with the observation that the operators e±2 ik are shift operators. 
The action of L(v, v*, m, tv, a~·, aC:,J on the variable min (6.35) follows from 
the relationships 
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(e2ik- 1)(1 + m)8(m- 1) 

= (3 + m)8(m + 1) - (1 + m)8(m- 1) 

= 28(m + 1)- 28(m- 1), 

(e-2ik- 1)(1- m)8(m + 1) 

= (3- m)8(m- 1)- (1- m)8(m + 1) 

(6.37a) 

= 28(m- 1)- 28(m + 1), (6.37b) 

(e2ik- 1)(1 + m)8(m + 1) 

= (3 + m)8(m + 3)- (1 + m)8(m + 1) = 0, 
(6.37c) 

(e-2ik- 1)(1- m)8(m -1) 

= (3- m)8(m- 3)- (1- m)8(m- 1) = 0, 
(6.37d) 

e-2 -Jk 8(m- 1) = 8(m- 3), 

e-2 /m 8(m + 1) = 8(m- 1). 

(6.37e) 

(6.37f) 

Each of these relationships preserves the restriction to inversion states m = 
±1, except for (6.37e). This equation permits the shift operator e±21m that 
appears in the last line of (6.23), without an accompanying multiplicative 
factor (1-m), to couple to the states m = 3, 5, .... This coupling must be 
suppressed by the v-dependence of J12>. Now, substituting (6.35) into (6.24), 
and using (6.37a)-(6.37f), we equate coefficients of the 8-functions to obtain 
the equations 

(6.38a) 

(6.38b) 

and 
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(6.38c) 

Equation (6.38c) suppresses coupling to inversion states other than m = ±1. 
The connection between the inversion dynamics and a classical jump pro­

cess can now be made more explicit. If we integrate (6.38a) and (6.38b) over 
v, and require Pll), P12), and their derivatives to vanish sufficiently fast at 
infinity, we obtain the equations 

fJ22 = -')'(n + l)p22 + ')'npu, 

Pu = -')'npu + 'Y(n + 1)P22· 

(6.39a) 

(6.39b) 

These are the equations of a random telegraph process [6.4]. They are often 
referred to as the Einstein equations in recognition of their use by Einstein 
in his phenomenological theory of spontaneous and stimulated emission [6.5, 
6.6]. We derived these equations directly from the operator master equation 
in Sect. 2.2.3. 

Instead of averaging over v we might average over the inversion to obtain 
an equation for the polarization dynamics. We do this by adding (6.38a) and 
(6.38b): 

d ( 0 n ) [(')' . ) 8 (')' . ) 8 * _ 82 

dt rll) + rl2) = 2 + 'lWA 8v v + 2 - 'lWA 8v* v + ')'n 8v8v* 

(6.40) 

The most important thing to observe here is the way in which this equation 
differs from the Fokker~Planck equation for the damped harmonic oscillator. 
The first line on the right-hand side describes a damped harmonic oscillator; 
however, there are two deviations from this simple form. First, we have not 
obtained a closed equation for the polarization dynamics; the last two terms 
on the right-hand side of (6.40) couple to the individual inversion states. 
Second, there are third-order derivatives added to the differential operator 
in the square bracket. Under certain conditions these complications can be 
removed - for example, by setting n to zero. However, this still does not 
recover the simple classical picture we reached in our treatment of the damped 
harmonic oscillator. It is still necessary to consider solutions in the highly 
singular form given by (6.31). The equation of motion might reduce to a 
simple form, but it must be solved for an initial state that is represented by 
a generalized function. 

With the phase-space equation of motion written as the coupled equations 
(6.38a) and (6.38b), it is now just a short step to show that the distribution 
(6.31) solves these equations. We first note that (6.38c) requires 



6.2 Normal-Ordered Representation for a Collection of Two-Level Atoms 211 

Pl2)(v,v*,t) = P22(t)6C2l(v), (6.41) 

consistent with (6.31), where the time-dependent function that multiplies 
the 6-function has been determined using (6.36a). The fact that (6.41) solves 
(6.38c) follows trivially from v6C2>(v) = v*6(2l(v) = 0. Equation (6.38c) also 
has solutions as ordinary functions - for example, in the form f(t)jvv* -
these, however, are not normalizable, and are not therefore consistent with 
(6.36a). Together with (6.41) we take Pl 1)(v,v*,t) in the form [Eq. (6.31)] 

Pll)(v, v*, t) = Pn(t)6(2l(v)- P21(t) :v &(2l(v)- P12(t) a~* 6(2l(v) 

a2 
+ P22(t)--6(2l(v). (6.42) 

avav• 

Then, substituting Pl2> and P1 1) into (6.38a) and (6.38b), and using the rela­
tionships v6(v) = v*6(v) = 0 and va6C2l(v)jav = v*a6C2l(v)jav* = -6(2l(v), 
we arrive at the equations 

and 

[,On + /TLPn - r(n + 1)p22]6(2) ( v) 

a 
- [.021 +r(n+ ~)p21 +iwAP2l]av6C2>(v) 

a 
- [Pl2 + r(n + ~)Pl2- iwAP12] av• 6(2l(v) 

a2 
+ [,D22 + r(n + 1)P22 -lfLPn] avav* 6(2l(v) = 0. 

(6.43a) 

(6.43b) 

By requiring the coefficients of oC2l(v), aoC2 l(v)j8v, 88(2 l(v)j8v*, and 
a 2&C2> ( v) 1 avav* to vanish, we reproduce the matrix element equations (2.36) 
derived directly from the operator master equation. Thus, the distribution 
(6.31) satisfies the equation of motion (6.24), so long as the expectations 
(CT-(t)) = P2l(t), (CT+(t)) = P12(t), and (CTz(t)) = P22(t)- Pn(t) obey the 
optical Bloch equations. 

6.2 Normal-Ordered Representation for a Collection 
of Two-Level Atoms 

We have now seen that although the quantum-classical correspondence is eas­
ily extended formally to the description of atomic states, it does not lead to a 
classical statistical picture for the damped two-level atom in any useful sense. 
Difficulties arise both with the representation of states, and with their dynam­
ical evolution. First, the distribution is always a generalized function, more 
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singular than a 8-function in the polarization variable, and with a 8-function 
singularity restricting the inversion to discrete states. Second, the phase-space 
equation of motion is not a Fokker-Planck equation. The inversion dynamics 
are described by a jump process, which introduces partial derivatives up to 
infinite order, as in the Kramers-Moyal expansion; the phase-space equation 
of motion is therefore really a pair of coupled partial differential equations. 
Even after averaging over inversion states, partial derivatives beyond second 
order remain in the polarization variable. 

Despite the poor prognosis, the representation discussed in Sect. 6.1 is 
actually very useful. We will use it later in this book to analyze quantum 
fluctuations in the laser, and again in Volume 2 to treat certain problems 
in cavity QED. The difficulties we have observed can be removed in the 
treatment of a macroscopic medium, a collection of N » 1 two-level atoms. 

6.2.1 Collective Atomic Operators 

We consider a collection of N two-level atoms with spatial positions rj, j = 
1, ... , N. A complete microscopic description for this system requires the 
specification of the state of each atom. For many purposes, however, such 
detail is not needed, a description of collective properties defined by the sum 
over all atoms is adequate. If the atoms can be considered as identical, then 
individual atomic properties can even be deduced from such course-grained 
information. We will consider a description in terms of the collective atomic 
operators 

N 

Jz = Lajz, 
j=l 

(6.44) 

where aj-, aj+, and ajz are pseudo-spin operators for atom j, and ¢i is an 
arbitrary phase. We will see shortly (Sect. 6.3.2), that when the atoms are 
identical, a closed dynamical description in terms of collective operators alone 
can be formulated. The representation we develop in the following sections 
presupposes such conditions. 

Note 6.1 When two-level atoms interact with optical fields, generally the 
field distribution will be spatially dependent. Then different atoms find 
themselves in different local environments and the atoms are not identi­
cal. If the interaction is with a single plane, traveling-wave mode, with 
wavevector k0 , the only difference between atoms is the phase of the field, 
exp[-i(w0t- ko·ri )], at the site of each atom. This difference can be removed 
by setting ¢i = ko · ri in (6.44); atomic states described by the phased op­
erators exp( -iko · rj)aj_, exp(ik0 · rj)aj+, and ajz are then identical. For 
this reason quantum-statistical theories for intracavity interactions have a 
preference for ring cavities over standing-wave cavities [6.7, 6.8]. 
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From the single-atom commutators (2.11), it is straightforward to show 
that collective atomic operators obey the same commutation relations: 

(6.45) 

This is expected, as both are formally angular momentum operators. The 
algebraic properties of collective operators are quite different, however, when 
we consider the relationships that allowed products of single-atom operators 
to be written as sums [Eqs. (6.6)]. There does exist a generalization of these 
relationships. However, now the set of operators needed to express all higher­
order operator products is larger than just J_, J+, 12 , and 1. Some of the 
generalized relationships are easily deduced. When N > 1 it is clearly possible 
for two or more quanta to be absorbed or emitted simultaneously; they can 
be absorbed or emitted by different atoms. We expect, however, no more than 
a maximum of N simultaneous absorptions or emissions. Thus, we expect to 
replace (6.6a) and (6.6b) by 

Jf+1 = Jf'!+l = 0. (6.46) 

Formally, this follows by applying aJ+ = aJ_ = 0 for each atom. The only 
nonvanishing terms in J!;! and J!! are products of N operators for different 
atoms: 

N 

Jf_ = N! II ei¢j aJ+, 

j=l 

N 

J'! = N! II e-i¢jaj-· 

j=l 

(6.47) 

These operators raise and lower the entire collection of atoms between the 
ground state, with all atoms in their lower state, and the fully excited state, 
with all atoms in their upper state. Every term in Jf-+1 and Jf!+l must 
contain a second or higher power of at least one single atom operator; from 
this (6.46) follows. 

It is also straightforward to deduce the generalization of (6.6c). We first 
write this equation in the form 

(az + 1)(az- 1) = 0, (6.48) 

or, multiplying by (~fiwA) 2 , 

(HA + ~nwA) (HA- ~fiwA) = 0. (6.49) 

The left-hand side of (6.49) is the polynomial (HA + EI)(HA + E 2 ) formed 
from the energy eigenvalues in such a way that the action of the polynomial 
on each energy eigenstate, and therefore on an arbitrary state, is zero. The 
energy eigenvalues for a collection of N identical two-level atoms are given 
by 

(6.50) 

where N1 2) and Nil) are the numbers of atoms in states 12) and 11), respec­
tively, with 
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(6.51) 

and M = -N/2,-N/2 + 1, ... ,N/2; 2M runs in steps of two units over all 
possible inversion states. Now, 

HA = ~fiwAJz, 

and the generalization of (6.48) is 

(Jz + N)(Jz + N- 2) · · · (Jz- N) = 0. 

(6.52) 

(6.53) 

This is a polynomial in Jz of order N + 1, allowing powers of Jz greater than 
N to be expressed as a sum over the operators 1, Jz, J';, ... , J:. 

Our interest is with normal-ordered products of collective atomic opera­
tors, products of the form J~J;J'!... Equations (6.46) and (6.53) state that 
all such products can be expressed in terms of those with p, q, r :::; N, i.e. 
in terms of (N + 1)3 operators. In fact the number of operators needed to 
construct arbitrary normal-ordered operator products is somewhat smaller. 
Further relationships between collective operator products exist. We will not 
attempt to construct a general algorithm giving them all, but can easily see 
that more exist. Consider the operator (q :::; N) 

J'!.. = L [ exp( -icf>jJail-J · · · [ exp( -icf>i. )ai.-J, 
{il ,-··,jq} 

(6.54) 

where the sum covers all sets of nonrepeating atomic labels j 1 , ... , jq. Clearly, 
the action of J'!.. on any state 1'¢) of theN-atom system gives a state with at 
least q atoms in their lower states, and at most N - q atoms in their upper 
states. The state J'!.. 11/1) must be a superposition of energy eigenstates having 
energies -N~IiwA, -(N- 2)~1iwA, ... , (N- 2q)~liwA. The possible inversion 
states in J'!..l'¢) are correspondingly 2M= N12) -Nil)= -N, -N +2, ... , N-
2q. Thus, 

(Jz + N)(Jz + N- 2) · · • (Jz- N + 2q)J'!_ = 0; (6.55a) 

from the conjugate relation, 

J~(Jz + N)(Jz + N- 2) · · · (Jz- N + 2p) = 0. (6.55b) 

Equation (6.55a) allows us to construct J; J'!.., for r > N -q, in terms of J; J'!.., 
r = 0, ... , N - q; Eq. ( 6.55b) allows us to construct J~ J;, for r > N - p, in 
terms of J~ J;, r = 0, ... , N - p. 

In fact, all operator products J~J; J'!.. with p+r+q > N can be expressed 
as sums of the operators J~J;J'!.., p + r + q :::; N. The total number of 
independent normal-ordered collective operator products is then 
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N N-qN-q-r 

2:2: 2: 1 
q=O r=O p=O 

N N-q 

=2:2:(N-q-r+1) 
q=O r=O 

N N 

= L(N- q + 1)(N- q + 1)- L ~(N- q)(N- q + 1) 
q=O q=O 

N 

= L(k + 1)2 - ~k(k + 1) 
k=O 

= i(N + 1)(N + 2)(N + 3). (6.56) 

The proof that operator products with p + r + q S N determine all others 
follows from two observations: 

1. Collective operator products can be expressed as sums of products be­
tween single-atom operators for different atoms, since products of single­
atom operators for the same atom can be replaced by sums using (6.6). 
Products between single-atom operators for different atoms can appear, 
at most, up to order N. 

2. In any collective operator product, single-atom operator products appear 
in a symmetric fashion with respect to permutations between atoms. 

From these observations all products of collective atomic operators can 
be expanded as sums over the operators 

A 1 L E k =-­
n, ,m - n!k!m! 

J1 , ... ,jn+k+m 

X exp [- i ( ¢Jn+k+I + · · · + ¢Jn+k+=)] 

(6.57) 

where n + k + m:::; N; the summation is over all permutations of n + k + m 
nonrepeating atomic labels. To generate all of these operators in a collective 
operator product expansion we must consider J~J;J'!_, p+r+q S N. These 
expansions give i(N + 1)(N + 2)(N + 3) linear relationships expressing the 
operators J~J; J'!_, p+r+q S N, in terms of the operators En,k,m, n+k+m S 
N. Inverting these relationships gives the operators En,k,m, n + k + m S N, 
in terms of the operators J~J;J'!.., p+r+q S N. The operators En,k,m then 
determine all remaining collective operator products, p + r + q > N. 

Exercise 6.4 For N = 2, i(N + 1)(N + 2)(N + 3) = 10. There are twenty­
seven collective operator products with p, q, r S N. Show that the following 
seventeen relationships hold: 
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J!Jz = -2J!, Jzf!_ = -2f!_, ) 

J!J_ = J+(Jz + 2), J+f!_ = (Jz + 2)L, 

J+f; = -2J+Jz, J; J_ = -2JzJ_, 

J+JzJ_ = -2J+J_ + ~(Jz + 2)Jz, 

(6.58a) 

J!J; = 4J!, 

J!JzJ_ = -2h(Jz + 2), 
J2J2 = 4J2 ) 

J+~J~ = -2(~z + 2)L, 

J!J?_ = (Jz + 2)Jz, 

J+J; J_ = 4hL - (Jz + 2)Jz, 

(6.58b) 

J!J;J_ = 4J+(Jz + 2), J+f1J?_ = 4(Jz + 2)L,} 

J!JzJ?_ = -2(Jz + 2)Jz, 
(6.58c) 

(6.58d) 

The ten operator products with p + r + q :SNare the unit operator, plus 

J+ = ei<l>'al+ + ei<1>2a2+, } 

Jz = O"lz + 0"2z, 
J_ = e-i<l>'al- + e-i¢2a2_, 

J~: 2ei(¢,+<1>2lal+a2+, } 

Jz - 2(1 + O"lziT2z), 

J?_ = 2e-i(¢,+<1>2lal-a2_, 

J J J + i¢, + i¢2 } + z = - + e a1+a2z e a2+a1z, 

J+J- = ~(Jz + 2) + ei(¢,-¢2lal+a2- + ei(¢2-¢,)a2+a1-, 

JzJ- = -J_ + e-i¢1 0"1-0"2z + e-i¢20"2-0"lz· 

6.2.2 Direct Product States, Dicke States, 
and Atomic Coherent States 

(6.59a) 

(6.59b) 

(6.59c) 

The master equation for a single damped two-level atom was readily analyzed 
using matrix element equations (Sects. 2.2.3 and 2.3.3). We have seen that a 

phase-space approach to this problem leads to a rather complicated picture. 
For many-atom systems the situation tends to be reversed. The large set of 
basis states needed for a many-atom system yields a large number of matrix 
element equations. These are generally not solvable analytically. There are 
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special cases where analytical solutions are possible [6.9, 6.10], and for mod­
erate numbers of atoms the numerical solutions of matrix element equations 
can be useful [6.11, 6.12] -indeed, with rapid advances in supercomputing 
the potential for numerical solutions is only beginning to be explored. For 
studying the true large N limit, however, phase-space methods like the one 
we describe shortly provide the most manageable and insightful approach. 
We will make little use, then, of matrix element equations when treating the 
laser, for example. Nevertheless, we should say something about the different 
basis states that are commonly used to derive such equations. 

An obvious basis for a collection of two-level atoms is provided by the 
states 

IJLihiJLz)z · · ·IJLj)j · · ·IJLN)N, 

where for the jth atom /Lj can take the values 1 or 2 to denote the lower state 
j1)j or upper state j2)j, respectively. There are 2N such states. We adopt a 
more compact notation, defining the direct product states by 

iu; M) := II (e~i</>k l2)k) II (e-~i<!>k l1)k), (6.60) 
kEu k~u 

where u = {j1, ... ,jN/Z+M} denotes a vector of N/2 + M nonrepeating 
atomic labels, and N /2 + M is the number of atoms in their upper states 
(2M = N12> -Nil) is the inversion); the phases are simply introduced for 
convenience in view of the arbitrary phases included in (6.44). These states 
are energy eigenstates, or eigenstates of the inversion operator Jz: 

Jzlu;M) = 2Mju;M). (6.61) 

The labels u distinguish between states that are [N!/(N/2 + M)!(N/2 -
M)!]-fold degenerate with respect to the inversion eigenvalue (summing this 
degeneracy over M = -N/2, ... , N/2 gives back 2N states). 

Direct product states do not behave in a very convenient way under the 
action of the collective operators J+ and J_. We have 

hlu; M) = { fk~u iu+k; M + 1) 

Lju; M) = { fkEu iu-k; M- 1) 

-N/2::; M < N/2 
M=N/2, 

-N/2 < M::; N/2 
M= -N/2, 

(6.62a) 

(6.62b) 

where u+k := {j1, ... ,jN/2+M+I} and u_k := {j1, ... ,jN/Z+M-I}, respec­
tively, add and delete one atomic label in the vector u labeling atoms in 
their upper states. Thus, J+ and J_ generate transitions up and down the 
ladder of inversion states; however, they generally connect one initial prod­
uct state to many final states. In his treatment of superradiance, Dicke [6.13] 
introduced alternative basis states chosen for their simple behavior under the 
action of J+ and J_. These states are often referred to as Dicke states; al­
though, as Dicke noted himself, they are formally the eigenstates of the total 
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spin constructed from the sum of N spin-! operators, and therefore familiar 
from the theory of angular momentum. 

The Dicke states are simultaneous eigenstates of the commuting operators 
Jz and 

j2 = (!Jx)2 + (!Jy)2 + (!Jz)2 

= !(J+J_ + J_J+) + ~J;. (6.63) 

We denote these states by I A, J, M). From the theory of angular momentum 
[6.14, 6.15], we have 

J2jA, J, M) = J(J + 1)jA, J, M), 

JziA, J, M) = 2MjA, J, M), 

(6.64a) 

(6.64b) 

with allowed values J = (0, !), (1, ~), ... , N/2 and M = -J, -J + 1, ... , J. 
The total number of allowed (J, M) values is (N/2 + 1)2 for N even, and 
[(N +1)/2+1](N +1)/2 for N odd. For N > 2 this is less than 2N. Therefore, 
states labeled by J and M alone must still be degenerate, and A distinguishes 
amongst the degenerate states. The action of J+ and J_ now connects a single 
state to a single state: 

J+IA, J, M) = { 0J(J- M)(J + M + 1)jA, J, M + 1) -J::; M < J 
M=J, 

(6.65a) 

J lA J M) = { J ( J + M) ( J - M + 1) I A, J, M - 1) -J < M ::; J 
- ' ' 0 M = -J. 

(6.65b) 

What is the degeneracy for a given J and M? First note that the degen­
eracy must be the same for all states with the same J. This follows because 
any state lA', J, M') produces a set of states with the same A= A', covering 
all possible M values, under the action of J+ and J_- the states jA', J, M), 
M = -J, -J + 1, ... , J. We may now use an iterative argument to deduce 
the degeneracy dv(J) of the Dicke states for a given J, from the degeneracy 

N! 
dv(M) = (N/2 + M)!(N/2- M)! (6.66) 

of the direct product states for a given M: 

1. There is one product state with M = - N /2; corresponding to this state 
there is one Dicke state with M = - N /2 and J = N /2; thus 

dv(N/2) = 1. 

2. There are dp( -N/2 + 1) = N product states with M = -N/2 + 1; there 
are dv(N/2) = 1 Dicke states with M = -N/2 + 1 and J = -N/2; the 
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only other value of J allowing M = -N/2 + 1 is J = N/2- 1, so there 
are 

dD(N/2- 1) = dp( -N/2 + 1)- dD(N /2) 
=N-1 

Dicke states with M = -N/2 + 1 and J = N/2- 1. 
3. There are dp( -N/2+2) = ~N(N -1) product states with M = -N/2+2; 

there are dD(N/2) = 1 Dicke states with M = -N/2+2 and J = N /2, and 
dD(N/2-1) = N -1 Dicke states with M = -N/2+2 and J = N/2-1; 
the only other value of J allowing M = -N/2 + 2 is J = N/2- 2, so 
there are 

dD(N/2- 2) = dp(-N/2 + 2)- [dD(N/2 -1) + dD(N/2)] 

= dp(-N/2 + 2)- dp(-N/2 + 1) 

= ~N(N- 3) 

Dicke states with M = -N/2 + 2 and J = N/2- 2. 
4. Iterating this argument gives 

dD(N/2- k) = dp(-N/2 + k)- [dD(N/2- k + 1) 

+ dD(N/2- k + 2) + · · · + dD(N/2)] 

= dp(-N/2 + k)- dp(-N/2 + k -1) 
N! N! 

(N- k)!k! (N- k + 1)!(k- 1)! 
N!(N- 2k + 1) 
(N-k+1)!k!. 

Setting J = N /2 - k, we finally obtain 

N!(2J + 1) 
dD(J) = (N/2 + J + 1)!(N/2- J)! (6.67) 

Of course, summing (6.67) over all states with the same value of M gives 

N/2 

L dD(J) = dp(M); (6.68) 
J=M 

with degeneracies accounted for, the direct product and Dicke bases both 
contain 2N states. 

Dicke states may be expressed as superpositions of direct product states, 
and an explicit Dicke basis may be constructed in an iterative fashion follow­
ing closely the steps of the argument giving dD(J): 
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1. Construct states with J = N /2: 
- set 

N 

11, N/2, -N/2) =I{ }; -N/2) = IJ (e-~i¢1 l1)j); (6.69) 
j=l 

- apply J+, N/2 + M times to 11, N/2, -N/2), to construct states 

1 
I1,N/2,M) = Jri;[M) L lu;M), 

dp(M) u 
(6.70) 

for M = - N /2,-N /2 + 1, ... , N /2, where the summation extends over 
the dp(M) labels u differentiating between product states with inversion 

2M. 
2. Construct states with J = N /2- 1: 

There is only dn(N/2) = 1 state with M = -N/2 + 1 included in (6.70); 

the state I1,N/2, -N/2 + 1) 
- construct dn(N/2- 1) = dp(-N/2 + 1)- dn(N/2) = N- 1 mutually 

orthogonal states, orthogonal to 11, N /2, -N /2+1), as linear combinations 

of the dp(- N /2 + 1) = N product states lu;- N /2 + 1), to obtain states 

IA,N/2 -1, -N/2 + 1), A= 1, ... ,N -1; 
- apply J+, N /2 + M- 1 times to each of these states to construct states 

lA, N/2-1, M), M = -N/2+ 1, -N/2+2, ... , N/2-1, A= 1, ... , N -1. 

3. Construct states with J = N /2 - 2: 
We now have dn(N/2) + dn(N/2 -1) = N states with M = -N/2 + 2; 
the states 11, N/2, -N/2+2) and lA, N/2-1, -N/2+2), A= 1, ... , N -1 

- construct dn(N/2- 2) = dp(-N/2 + 2)- [dn(N/2) + dn(N/2- 1)] = 
~N(N- 3) mutually orthogonal states, orthogonal to 11, N/2, -N/2 + 2) 
and lA, N/2- 1, -N/2 + 2), A= 1, ... , N- 1, as linear combinations of 

the dp( -N/2 + 2) = ~N(N- 1) product states lu; -N/2 + 2) to obtain 

states lA, N/2- 2, -N/2 + 2), A= 1, ... , ~N(N- 3); 
- apply J +, N /2 + M - 2 times to each of these states to construct states 

IA,N/2-2,-N/2+2), M = -N/2+2,-N/2+3, ... ,N/2-2, A= 
1, ... , ~N(N- 3). 

4. Construct states with J < N /2 - 2: 
- iterate the procedure. 

Exercise 6.5 For N = 2 define 

Ill)= I{ };-1) =e-~i(¢,+¢2 ll1hl1)2, 

lil) = 1{2};0) = e~i(¢,-¢2 )12)111)2, 

lli) = 1{1};0) = e-~i(¢,-¢2 )11)112)2, 

I H)= 1{1, 2}; 1) = e~i(¢,H2 ll2hl2)2. 

Use the above procedure to construct the Dicke basis 

(6. 71) 
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11,1,-1)=111), 11,1,0)= )2-(111)+111)), 

11,o,o) = )2-(IH) -Ill)). 

For N = 3 define 

11, 1, 1) = I H),} 

I 111) =I{ }; -3/2) = e-~i(<l>l+<t>2 +<t>3 li1)II1)zl1h 

1111) = 1{3}; -1/2) = e-~i(¢,+<t>2 -<~>3 ll1hl1)zl2)3, 

I H 1) = 1{2}; -1/2) = e-~i(¢,-<~>2 +<~>3 ll1hl2)zl1h 

I Ill)= 1{1}; -1/2) = e~i(¢,-¢2 -¢3 )12)II1)zl1)3, 

I HI)= 1{2, 3}; 1/2) = e-~i(¢,-<~>2 -<~>3 li1)II2)zl2)3, 

1111) = 1{1, 3}; 1/2) = e~i(¢,-¢2 +<1>3 )12)111)212)3, 

In 1) = I {1, 2}; 1/2) = e ~i(¢, +<~>2 -<~>3 l l2h 12)211)3, 

Inn= 1{1, 2, 3}; 3/2) = e~i(¢,+<~>2 +<~>3 ll2hl1)zl2h 

Show that a valid Dicke basis is given by 

11,3/2, -3/2) = I 111), 

11,3/2, -1/2) = )3 (I 11 I)+ I H 1) +I Ill)), 

11,3/2,1/2) = )J(Iill) +I HI)+ I HI)), 

11,3/2,3/2) =I HI), 

11,1/2,-1/2) = )2-(1111) -I Ill)) 

12,1/2, -1/2) = )6 (I HI)- 21 H l) +I ill)), 

11,1/2,1/2) = )2-(lill) -I HI)), 

12, 1/2, 1/2) = )6 (In 1) - 21111) + 11 H)). 

(6.72) 

(6.73) 

(6.74) 

Dicke states find their main use in the treatment of problems such as 
superradiance, superftuorescence, and cooperative resonance fluorescence, 
where J2 is conserved and the dynamics in subspaces with different J (and 
>.) are not coupled. This is not the case for the applications we discuss later 
in the book. For the problems we will be interested in the Dicke states do not 
provide a very convenient basis. For J2-conserving situations a further set of 
states has been introduced. These are variously called atomic coherent states, 
Bloch states, and coherent spin states [6.14, 6.15]. In the limit N---+ oo they 
may be connected formally to the coherent states of the harmonic oscillator. 
Within each subspace with fixed J and A they are defined by rotating the 
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Dicke state 1-A, J, J) through an angle (0, '¢)in angular momentum space. We 
denote them by I .A, J; 0, '¢). Their expansion in terms of Dicke states takes 
the form 

I .A, J; 0, '¢) 
J ! 

= ~ ( J !' M) 2 
cosJ-M (~0) sinJ+M (~O)e-i(J+M)'Ifi.A, J, M). 

M--J (6.75) 

An alternative parameterization I .A, J; z) with z = tan( ~O)ei'lf is also used. 
A geometrical relationship between the two parameterizations is obtained by 
representing ( 0, '¢) by a point on the unit sphere and z by a point in the 
complex plane drawn tangent to this sphere. Since we make no use of these 
states we will not investigate them further. Formal properties are discussed 
by Radcliffe [6.14] and Arecchi et al. [6.15]. Applications to superradiance, 
superfluorescence, and cooperative resonance fluorescence can be found in 
Refs. [6.11, 6.16-6.18]. (Arecchi et al. [6.15] also provide a nice discussion of 
Dicke states and their relationship to direct product states in group-theoretic 
language.) 

6.2.3 The Characteristic Function and Associated Distribution 

The normal-ordered representation for N two-level atoms is formally defined 
in an analogous fashion to the single-atom representation. Restricting our 
attention to collective operator averages, corresponding to (6.1) we define 
the characteristic function 

XN (~, C, TJ) = tr(peif;* J+ei"'J•eip_)' 

from which normal-ordered averages are calculated: 

(JP Jr Jq) = tr(pJP Jr Jq) + z - + z -

8P+r+q I 
= 8( ie )P8( iry y 8( i~)q x N e=e· ='1/=o · 

(6.76) 

(6.77) 

The distribution P(v, v*, m) is defined as in (6.3), with the inverse relationship 
(6.4). Then (6.5) becomes 

(J~J;J'! .. ) = Jd2vjdmP(v,v*,m)v*Pmrvq 

(6.78) 

Now, the central question! Can we expect P(v, v*, m) to be a well-behaved 
nonsingular function, recognizing that the single-atom distribution takes a 
highly singular form? 
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6.2.4 Nonsingular Approximation for the P Distribution 

Following the approach of Sect. 6.1.4 we can evaluate the characteristic func­
tion formally in terms of matrix elements of the density operator. Either 
direct product states or Dicke states may be used to evaluate the trace. The 
important features for our discussion are contained in (6.46) and (6.61) [al­
ternatively (6.64b)]. From these equations it follows that XN(~,C,ry) takes 
the form 

N N N/2 

( * ) '"""''"""' '"""' C ( iC)P ( i~)q 2iMTJ XN ~'~ ,ry = L...-L...- L...- p,q,M-1---1 e , 
p=O q=O M=-N/2 p. q. 

(6.79) 

where the Cp,q,M are constants determined by the matrix elements of p. If 
the trace is evaluated using direct product states, 

Cp,q,M = L(u; MIJ~pJ~Iu; M). 
u 

The Fourier transform of (6.79) gives the distribution 

P(v,v*,m) 
N N N/2 

(6.80) 

=2::2:: 2:: (-1)P+qc ()P+q 
-'-----'----..,.......,..P"-'-'q"-",Mc::..8(m- 2M) 8(2)(v), (6.81) 

p!q! Ov*P()vq 
p=O q=O M=-N/2 

where we have evaluated the Fourier transform over the complex variable ~ 
in the manner leading to (6.29): 

~~d2~ (i~*)P(i~)qe-Wv* e-i~v 
n ~~ 1/ = ( -1)P+q d2~ e-iCv* e-it;v 

ov*P()vq n 
av+q 

= ( -1)P+q 8(2)(v). (6.82) 
OV*P()vq 

The distribution (6.81) is still strictly singular, regardless of the state of 
the system (for any Cp,q,M ). If N is very large, however, there is a sense in 
which the singular behavior in both the inversion and polarization variables 
can be approximated by a well-behaved function. Consider first the depen­
dence on m. We again have a distribution confined to discrete inversion states, 
with M taking the values 2M= -N, -N + 2, ... , N; integrating (6.81) over 
v gives 

P(m) = J d2vP(v,v*,m) 

N/2 

L PM8(m- 2M), 
M=-N/2 

(6.83) 
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where 
PM= Co,o,M = L(u;Miplu;M) (6.84) 

u 

is the probability for the system to be found in any of the dp(M) config­
urations with inversion 2M. Thus, strictly, the distribution over inversion 
states takes the singular form illustrated by Fig. 6.1(a). But if N is very 
large, and the width of the PM distribution is large compared with the sep­
aration, 11M = 2, between neighboring states, and small compared to the 
range - N ::; 2M ::; N of allowable states, we might approximate the sin­
gular distribution by a smooth envelope function [Fig. 6.1 (b)], fitted with 
P(2M) ':::::!PM /11M= PM /2 to preserve the normalization J dm P(m) = 1. 

(a) (b) 
P(m) 

-N N -N N 
m m 

Fig. 6.1 (a) Discrete distribution over inversion states illustrating the singular form 
of the exact phase-space distribution. (b) Smooth approximation to the singular 
distribution in the limit of large N. 

In practice this approximation is imposed at the level of the phase­
space equation of motion. Shortly we will see that, just as for one atom, 
the inversion dynamics evolve as a jump process over the discrete states 
m = - N, - N + 2, ... , N, with transitions generated by the shift operators 
e±2 a~ . Reduction of the phase-space equation of motion to Fokker-Planck 
form will then be made using the system size expansion [Sect. 5.1.3], which 
truncates the exponential derivatives at second order (truncates the Kramers­
Moyal expansion). A slightly different view of this truncation can be given 
in the following way: The inversion dynamics obey the birth-death equation 
(Sect. 6.3.4) 

(6.85) 

where f is a linear function of the probabilities for occupying each of three 
neighboring states. We want to replace the right-hand side by a differential 
operator acting on a smooth interpolation function P(m) that fits the discrete 
distribution at m =2M, 2M+ 2, and 2M-2, and also allows P(m + 2) and 
P(m- 2) to be calculated in terms of P(m) and its derivatives (Fig. 6.2). 
The simplest such function is the parabola 



6.2 Normal-Ordered Representation for a Collection of Two-Level Atoms 225 

2P(m) =PM+ i(PM+l- PM-d(m- 2M) 

+ ~(PM+l- 2pM + PM-l)(m- 2M)2 , (6.86) 

where the factor two on the left-hand side is for normalization. The action of 
e2± a':.. on ( 6.86) truncates at the second-order derivative. This is the trunca­
tion used to reduce the phase-space equation of motion to a Fokker-Planck 
equation. The truncation is self-consistent with a polynomial interpolation 
between the three inversion states that appear on the right-hand side of 
(6.85). 

1 ( a a2 ) - 2P,..t+1 = P(m+2) = 1 +28m+ 28m2 P(m) 

!PM=P(m)-

1 ( a a2) ------ 2PliH = P(m-2) = 1-2Om+ 28m2 P(m) 

m-2 m m+2 

Fig. 6.2 Parabolic interpolation between discrete inversion states with PM+1 and 
PM-1 determined by PM = 2P(m) and the first two derivatives of P(m). 

The distribution (6.81) is also singular in the polarization variable v. In­
deed, it appears to be highly singular when written in this exact form, which 
involves high-order derivatives of the 8-function. Derivatives of 8-functions 
can be misleading, however. The singular form is required by the truncation 
of the p and q summations in (6.79); xN(~,t;,*,TJ) diverges for~---+ oo and 
its Fourier transform therefore only exists as a generalized function. But as 
N---+ oo the sum of derivatives of the 8-function can approach a well-behaved 
function. An example illustrating this possibility was given in Note 4.2. Us­
ing the definition of the 8-function as the limit of a sequence of Gaussians 
[Eq. (3.33)] we have 

exp(a~~v)8(v) = f av~:;vk u~~ ;e-nlvl2) 
k=O 

= lim ..!, _n_e-nlvl2 /(l+n) 
n--->oo 7r 1 + n 

= ..!.e-lvJ2. 
7r 

(6.87) 

If an infinite sum of singular functions can give a nonsingular function, we 
might expect that a sum truncated at some large N will closely approximate 
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a nonsingular function. Thus, we might write 

(6.88) 

The approximate equality must hold in the sense of moment calculations. 
From the distribution on the left-hand side moments can be calculated using 
(3.37): 

( v*Pvq) P = { ~!Dp,q p, q :S: N 

p,q>N. 
(6.89) 

Moments for the Gaussian distribution on the right-hand side are given by 

( v*Pvq) p = r= dr { 2
1r d<,/> rp+q+l ei( q-p) ~ e -r2 

Jo Jo n 
= p!8p,q, (6.90) 

where we have set v = rei¢. For this example, the moments agree exactly for 
p, q ::; N; only very high-order moments are sensitive to the approximation 
that replaces the singular distribution by a well-behaved function. In this 
sense, for large N, we can hope to find a distribution that is well-behaved 
in v and gives a good approximation for moments of low order compared 
with N. Again, the selection of a nonsingular approximation to the exact 
distribution will be made at the level of the phase-space equation of motion 
by truncating derivatives in v and v* to obtain a Fokker-Planck equation. 

6.2.5 Two-Time Averages 

Phase-space expressions for calculating two-time averages for collective atomic 
operators are derived following methods similar to those used in Sect. 4.3. 
We first generalize the notion of the phase-space distribution to set up a 
correspondence between an arbitrary system operator 6 and an associated 
function Fa ( v, v*, m), writing 

(6.91) 

and 

Fa(v, v*, m) = 2~3 j d2~ j dTJ Fa(~, C, TJ)e-it;*v* e-ieve-i'1m. (6.92) 

The inverse of the Fourier transform (6.92) gives 

Fa(~, C, TJ) = j d2v j dm Fa(v, v*, m)eWv* eievei11m. (6.93) 

These expressions generalize (6.76), (6.3), and (6.4), respectively; in the new 
notation, we have 
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xN(~,[,*,TJ) = Fp(~,[,*,TJ), (6.94a) 

P(v, v*, m) = Fp(v, v*, m). (6.94b) 

In place of the results (6.77) and (6.78) for calculating normal-ordered aver­
ages, we now have 

(6.95) 

The phase-space equation of motion for the master equation (3.1) is written 
formally as 

:t Fp(t)(v, v*, m) = F.cp(t)(v, v*, m), (6.96a) 

with 

F.cp(t)(v, v*, m) = L (v, v*, m, :v, a~*, a~) Fp(t)(v, v*, m). (6.96b) 

Then we can show that (see Sect. 4.3.2) 

L( * a a a ) F ~ (v v* m) = e v,v ,m, av' av* 'am T F ~ (v v* m) 
exp(£7)0 ' ' 0 ' ' · (6.97) 

For a single damped two-level atom L(v, v*, m, tv, a~·, a~) is given by (6.23). 
Shortly, we will see explicitly how the approximations we have just dis­
cussed lead to a Fokker~Planck equation for a (many-atom) damped two-level 
medium. In this case L (v, v*, m, tv, a~·, a~) will only involve up to second­
order derivatives. 

Note 6.2 The relationship between phase-space functions and operator 
power series expansions described in Sect. 4.3.1 is not directly transferable 
to atomic systems. 

We consider averages in the form (01 (t)Ch(t + 7)), 7 ~ 0, where 01 and 
02 may each be any one of the operators J~, J+, and Jz. We seek phase-space 
expressions for calculating these averages analogous to those of Sects. 4.3.3 
and 4.3.4. From (1.97), (6.95), and (6.97), we may write 

(01(t)02(t + 7)) 

= tr{(e£7 [p(t)01])62} 

= J d2 v J dm Fexp(£T)p(t)Ch ( v, v*, m )192 

= J d2 v J dm [ eL(v,v*,m, lv' a~*' a':n)T Fp(t)O, ( v, v*, m)] 192, (6.98) 

where 192 is the phase-space variable replacing 02 through the correspondence 
(J+, Jz, J~) <---+ (v*, m, v). We introduce the Green function solution to the 
phase-space equation of motion by writing 
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Fp(t)o 1 (v, v*, m) 

= 1 d2vo 1 dmo Fp(t)6 1 (vo, v~, mo)8(2)(v- vo)8(m- mo), 

(6.99) 

so that (6.98) takes the form 

A A 121 12 1 * (01(t)02(t+r))= dv dm dvo dmo1J2Fp(t)6 1 (vo,v0 ,mo) 

x P(v, v*, m, t + rlvo, v~, mo, t), (6.100) 

where P(v, v*, m, t + rlvo, v0, mo, t) is the Green function solution to the 
phase-space equation of motion (6.96). It remains for us to find the explicit 
form for Fp(t)61 (vo, v0, mo). The objective is to express Fp(t)61 (vo, v0, mo) in 
terms of a differential operator acting on the distribution Fp(t) ( v0 , v0, mo) = 
P(vo, v0, mo, t). Whether or not any derivatives appear will depend on the 
operator 61. From (6.91) and (6.92) we have 

Fp(t)6 1 (vo, v~, mo) = 2: 31 d2~ 1 drytr[p(t)61eie* J+ei'1J•eiU-] 

X e-iCv~e-i~voe-i7]mo. (6.101) 

We now consider the three possible choices for 61 separately. 
First, we take 61 = h in (6.101). This is the simplest case. We differenti­

ate tr[· ··]with respect to (i~*) to bring 61 = h down from the exponential. 
Then 

= v~Fp(t) ( vo, v~, mo) 

= v~P(vo, v~, mo, t), (6.102) 

where the second line follows from (6.92) after a single integration by parts. 
Second, we take 61 = Jz in (6.101). We write 

Fp(t)J.(vo, V0*,mo) 

= 2: 31 d2~ 1 drytr[p(t)eiC J+( e-ie* J+ JzeiC J+ )ei'1J•eiU-] 

X e-ie*v~ e-i~vo e-i7)mo. (6.103) 

Now J_, J+, and Jz obey the same commutation relations as the single-atom 
operators a_, a+, and az. Therefore the identities (6.7)-(6.9) also hold for 
collective atomic operators. In particular, corresponding to (6.7), we have 

(6.104) 
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[we have actually taken the Hermitian conjugate of (6.7) with~---+-~]. Using 
(6.104), (6.103) gives 

Fp(t)Jz (vo, v~, mo) 

= 2~3 J d2~ J d7] tr [p(t)eiC J+ (Jz + 2iC J+ )eiTJJzeiU- J 

= ( mo- 2 0~0 v~) Fp(t)(vo, v~, mo) 

= ( mo- 2 0~0 v~) P(vo, v~, m0 , t). (6.105) 

Here we have first integrated by parts, and then written iCe-iCv~ = 
-ae-Wv~ j8v0. 

Finally, we take 0 1 = J_ in (6.101). This last case is more complicated 
algebraically, but follows the same principles as above. The operator J_ must 
be passed through the exponentials inside the trace in (6.101) so that it can 
be brought down from the exponent by a partial derivative. We first write 

Fp(t)J_ (vo, v~, mo) 

= 2~3 J d2~ J d77 tr [p(t)eiC J+( e-iC J+ LeW J+ )eiTJJz eit.J_ J 

X e-iCv~ e-i~voe-iTJmo. (6.106) 

Corresponding to the identity (6.9) for single-atom operators, we have 

(6.107) 

[taking the Hermitian conjugate of (6.9) with~---+ -~]. Also, corresponding 
to the identity (6.8) (with 7]---+ -7]), 

(6.108) 

Now, (6.106) becomes 
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Fp(t)L (vo, v~, mo) 

= 2: 3 J d2~ J drytr[p(t)ei(.* J+ (L- iC Jz- (iC)2 h) 

= 2:3 J d2~ J dry [ (e2i77 8(~~) - iC o(~ry) - (iC)2 8(~*)) 
x Fp(t)(~, C, ry)] e-iCv~ e-ievoe-i11mo. 

Integrating by parts and replacing e2i71, iC, and ( iC )2 by partial derivatives 
acting on the product of exponentials, we have 

F ( * ) ( -2-a a o2 *) F ( * ) p(t)J_ Vo, Vo, mo = e 8 "'0 Vo + OVo mo - OVo2 Vo p(t) Vo, Vo, mo 

- ( -2~ y_ - _!!__ *) P( * ) - e avo+ OV0mo OV02 vo Vo,Vo,mo,t. 

(6.109) 

Equations (6.100) and (6.102) give three two-time averages that can be 
calculated by integrating against a two-time, or joint, distribution as in clas­
sical statistics ( T ~ 0): 

(J+(t)J+(t + T)) = (v*(t)v*(t + T))p, 

(h(t)Jz(t + T)) = (v*(t)m(t + T))p, 

(J+(t)L(t + T)) = (v*(t)v(t + T))p, 

(6.110a) 

(6.110b) 

(6.110c) 

where we define ( '!91 and '!92 are either v*, m, or v) 

and 

('f9t(t)'f92(t + T))p 

= J d2v J dm J d2vo J dmo '!910'!92P(v, v*, m, t + T; v0, v~, m 0, t), (6.111) 

P(v, v*,m, t + T;vo,v~, mo, t) 
= P(v, v*, m, t + Tjvo, v0, mo, t)P(vo, v0, mo, t) 

(6.112) 

is the two-time distribution. The complex conjugates of (6.110a)-(6.110c) 
give three more averages calculated in a similar manner (T ~ 0): 
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(L(t + T)L(t)) = (v(t + T)v(t))p, 

(Jz(t + T)L(t)) = (m(t + T)v(t))p, 

(h(t + T)L(t)) = (v*(t + T)v(t))p-

(6.113a) 

(6.113b) 

(6.113c) 

There are six more averages obtained from (6.100) using (6.105) and 
(6.109). These involve derivatives of the distribution P(v0 , v0, m 0 , t). Using 
(6.105) we find (T 2 0) 

(Jz(t)02(t + T)) 

= J d2v J dmj d2 v0 J dm0 {}2 [ ( mo- 2 8~0 v0) P(vo, v0, mo, t)] 
x P(v,v*,m,t+Tiva,v0,mo,t), (6.114) 

and, using (6.109) (T 2 0), 

(L(t)02(t + T)) 

= j d2v j dmj d2vo j dmo {}2 [ (e-28! 0 vo + 8~0 mo- 8~~2 vo) 
x P( vo, v0, mo, t)] P( v, v*, m, t + Tlvo, v0, mo, t), (6.115) 

where Ch and {}2 are, respectively, J +, Jz, or J _, and v*, m, or v. The complex 
conjugates of these equations give a further six averages (T 2 0): 

(02(t + T)Jz(t)) 

= J d2v J dm J d2v0 J dmo {}2 [ ( mo- 2 8~0 va) P(vo, v0, mo, t)] 
x P(v,v*,m,t+Tiva,v0,mo,t), (6.116) 

and 

(02(t + T)h(t)) 

= J d2v J dm J d2 v0 J dmo {}2 [ (e -2 a!a v0 + 8~0 mo- ::Z va) 

x P(vo, v0, mo, t)] P(v, v*, m, t + Tlvo, v0, mo, t), (6.117) 

It is important to stress again here, as we did in Sect. 4.3 [below (4.128)], 
that it is not possible to calculate every two-time average in terms of a "clas­
sical" integral. For example, the above results show that Jz must be evaluated 
at the later time t + T if an average involving Jz is to be calculated by direct 
integration against the joint distribution. It is also necessary that J + and J _ 
appear in normal order, to the left and the right of Jz, respectively. Clearly, 
more general results than those given above can be derived using the same 
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methods. In particular, a general expression for normal-ordered time-ordered 
averages similar to (4.100a) can be obtained: 

Exercise 6.6 Beginning from (1.102), show that (r ~ 0) 

(J~(t)N(t + r)J'!..(t)) = ((v*Pvq)(t)N(t + r))p, (6.118a) 

with 

((v*Pvq)(t)N(t + r))p = j d2v J dm J d2vo J dmo v~Pv6N(v,v*, m) 

x P(v, v*, m, t + r; vo, v0, mo, t), (6.118b) 

where N is the normal-ordered power series 

and 

N =: L Cp,q,rJ~J;J'!.., 
p,q,r 

N(v,v*,m) = L Cp,q,rv*Pmrvq. 
p,q,r 

6.2.6 Other Representations 

(6.119) 

(6.120) 

Equations (6.76) and (6.3) defining the normal-ordered representation for N 
two-level atoms can be generalized in the manner described in Sect. 4.1; 
by starting from different characteristic functions, representations giving 
antinormal-ordered and symmetric-ordered averages can be defined. In prac­
tice, only the Wigner representation (symmetric-ordered averages) has been 
used for applications in quantum optics. 

The Wigner representation is rather awkward to use for two-level atoms, 
in comparison with what we learned about it as a representation for the 
electromagnetic field. This is because disentangling the operators that ap­
pear in the exponent in the characteristic function is more complicated when 
these operators are J_, J+, and Jz, rather than a and at; the commutator 
of a and at is a constant, whereas the commutators of angular momentum 
operators are other angular momentum operators. Nevertheless, the Wigner 
representation has been used successfully; in particular, for the laser and 
optical bistability [6.19, 6.20]. Actually, if the Fokker-Planck form for the 
phase-space equation of motion is imposed a priori, it is quite straightfor­
ward to construct the appropriate drift and diffusion terms in the Wigner 
representation [6.20]. Of course, the resulting Fokker-Planck equation is an 
approximate equation of motion. The algebraic difficulty is met when we at­
tempt to derive an exact phase-space equation of motion along the lines of 
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Sect. 6.1.3 (Sect. 6.3.4 for the N-atom system). Since we will not make ex­
plicit use of the Wigner representation for atoms we will not spend any time 
on the details. 

One further representation deserves mention. In Sect. 6.2.2 we noted that 
a convenient set of basis states for J2-conserving systems is provided by 
the atomic coherent states. A diagonal representation for states within the 
subspace spanned by Dicke states of fixed J and >. can be defined, in close 
analogy to the Glauber-Sudarshan representation for the electromagnetic 
field [Eq. (3.15)]. In this atomic coherent state representation, 

p = j d2 z P(z, z*)j>., J; z)(>., J; zi, (6.121) 

where normal-ordered operator averages are given by 

Alternatively, this representation can be expressed in terms of the param­
eterization j>., J; (), '¢) for atomic coherent states, where P((), '¢) is then a 
distribution over the unit sphere. In (6.122) we do not have a simple clas­
sical relationship between operator averages and corresponding moments of 
the distribution P(z, z*); however, the atomic coherent state representation 
does led to equations of motion in the Fokker-Planck form for a number of 
interesting problems. More details about this representation and its use can 
be found in Refs. [6.14-6.18]. 

6.3 Fokker-Planck Equation for a Radiatively Damped 
Two-Level Medium 

6.3.1 Master Equation 
for Independently Damped Two-Level Atoms 

We will illustrate the use of the normal-ordered representation for a collec­
tion of two-level atoms by considering spontaneous emission in a two-level 
medium. 

In this system identical two-level atoms each couple to the modes of the 
electromagnetic field in the manner described in Sect. 2.2.1. Within our gen­
eral formulation for a system S coupled to a reservoir R (Sect. 1.3) we have 
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N 

Hs- ""'Hi -w s' 
j=l 

N 

HsR = L: Hfm, 
j=l 

(6o123a) 

(60123b) 

where H~ and H~R are defined as in (2o15a) and (2o15c), with <L, a+, and 
a z replaced by aj-, ai+, and ajz, and the dipole coupling constants lik,>. 

replaced by 

j - 0 ikor ~ A d (6 124) lik,>. = -ze 3 y ~ ek,>. o 210 0 

The reservoir Hamiltonian HR is given by (2015b); thus, each atom couples to 
the same electromagnetic field (the same reservoir), but at different spatial 
positions; the different spatial positions produce the different phases that 
appear in the coupling constants (60124)0 In the notation of (1.32) and (1.33), 
we have 

In the interaction picture 

and 

r2j = ri = L: lit>- rk,>. 0 

k,>. 

(60125a) 

(6o125b) 

(60126a) 

(6ol26b) 

(6o127a) 

(6o127b) 

The master equation in the Born approximation [Eqo (1.34)] for the reduced 
density operator of theN-atom system reads [compare (1.42)] 

N t 

p =- L: 1 dt' { [aj_az_p(t')- az_p(t')aj- ]e-iwA(t+t')(f}(t)f/(t'))R 
j,l=l 0 

+ [ai+al+P(t')- az+p(t')ai+ ]eiwA(t+t')(fj(t)fz(t'))R 

+ [aJ_az+p(t') - az+p(t')aj-] e-iwA(t-t') (f} (t)fz(t'))R 

+ [ai+az_p(t')- az_p(t')ai+] eiwA(t-t') (Fj(t)f/ (t'))R} + hocoo 
(60128) 
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Equation (6.128) will be greatly simplified if we can set all reservoir cor­
relation functions to zero for j "1- l, and retain only the nonvanishing cor­
relations given by (1.45) and (1.46) for j = l. Effectively, this amounts to 
coupling the individual atoms to N statistically independent reservoirs. Can 
this be justified in view of the fact that all atoms interact with the same 
electromagnetic field? Yes it can. Since the atoms are located at different 
positions r j, the question is one of spatial correlations in the electromagnetic 
field. The factor determining these correlations is the spatially-dependent 
phase appearing in the coupling constant (6.124). The atoms interact most 
strongly with a narrow band of frequencies centered about the resonant fre­
quency WA· The scale for measuring the spatial variation of the phases in 
the coupling constants K{ >. is then set by the wavelength AA = 21fc/wA. If 
the atoms are separated by large distances compared to this wavelength, cor­
relations between the reservoir operators fj, fJ and f1, f/, for j "1- l, can 
be shown to vanish; then atoms see statistically independent reservoirs. We 
can then pass immediately (see Sect. 2.2.1) to the master equation for N 
independent radiatively damped two-level atoms: 

N N 

p = -i~WA ~)O"jz,p] + ~(n + 1) L(2aj-P£Ti+- O"j+O"j-P- P£Tj+O"j-) 
j=l j=l 

N 

+ ~n L(2aHpaj-- O"j-O"i+P- P£Ti-aH)· (6.129) 
j=l 

Equation (6.129) is a rather obvious generalization of the master equation 
(2.26) for a single radiatively damped atom. It has the solution 

N 

p(t) =II Pj(t), (6.130) 
j=l 

where Pi(t) is the density operator for the jth independent atom. Since the 
atoms are identical, each Pi(t) obeys the matrix element equations (2.36). 
We therefore already know the exact solution to this problem. Nevertheless, 
(6.129) will form an important constituent in the master equations for the 
laser and optical bistability. In these systems additional interactions generate 
correlations between the atoms, and the master equation cannot be solved 
by such a simple matrix element approach; we will need to use phase-space 
methods. The solvable problem defined by (6.129) provides us with a good 
illustration of how these methods work for atomic variables. 

Note 6.3 If the assumption of statistical independence between the reser­
voirs seen by the different atoms is not justified, the problem of spontaneous 
emission in a collective atomic sample becomes much more complicated. Most 
generally, the detailed spatial distribution of the atoms is important; we must 
deal with the complicated spatial interference of radiation from the atoms, 
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plus the communication between atoms by way of this radiation. The modi­
fication to (6.129) required under these conditions can be found in the work 
of Lehmberg [6.21] and Agarwal [6.22]. There is one other set of conditions, 
however, that lead to an essentially simple description. If all atoms reside 
in a volume that is small compared to .A~, the phases in (6.124) differ very 
little for field modes with frequencies "'WA and we may drop the subscripts 
j and l from the reservoir operators in (6.128). The summations then replace 
single-atom operators Uj-, Uj+, and Ujz by collective operators J_, J+, and 
Jz. The resulting master equation reads 

p = -i~wA[Jz, p] + ~(n + 1)(2LpJ+- J+LP- pJ+L) 

+ ~n(2J+pL- Lhp- pLJ+)· (6.131) 

This equation describes Dicke superradiance and superfluorescence [6.13, 
6.16-6.18]. Actually, we are being a little glib here, since, as the atoms are 
brought closer together, an interaction energy between the atomic dipoles 
becomes important which adds level shift terms that depend on the spatial 
arrangement of the atoms to (6.131) [6.21, 6.22]. 

6.3.2 Closed Dynamics for Normally-Ordered Averages 
of Collective Operators 

We propose to use a phase-space representation for p defined in terms of 
collective atomic operators (Sect. 6.2.3). It is clear that a master equation 
like (6.131) can be converted to a phase-space equation of motion using such 
a representation. However, the right-hand side of (6.129) cannot be expressed 
solely in terms of collective atomic operators. Using (6.6f) and (6.6g), we are 
able to write (6.129) in the form 

p = -i~wA[Jz, p] + ~ (2 t Uj-PUJ+- ~Jzp- ~pJz- N p\ 
J=l J 

+on (t ai-P<'i+ + t ai+P<'i- - N + (6.132) 

The terms involving Uj-PUj+ and UJ+PUj- cannot be rewritten in terms of 
collective atomic operators. But the phase-space representation we propose 
to use only generates collective operator averages. It might seem that there is 
an inconsistency here. It is useful therefore, before deriving the phase-space 
equation of motion corresponding to (6.132), to see explicitly that, in spite 
of the presence of single-atom operators in (6.132), a closed set of equations 
involving only the normal-ordered collective operator averages does exist. 
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Exercise 6.7 Show that (6.131) conserves the magnitude of the total 
pseudo-spin [Eq. (6.63)] while (6.132) does not. It follows that matrix ele­
ment equations derived from (6.131) using a Dicke state basis are only cou­
pled within each subspace defined by a fixed J and >.; there is no coupling 
between subspaces. Matrix element equations for (6.132) couple subspaces 
with different J and >.. 

We will derive a coupled set of equations for the averages of all normal­
ordered operator products. Consider the average (J~J; J'!...). From the master 
equation (6.132) we obtain 

!(J~J;J'!...) = -i~wA((J~J;J'!...Jz)- (JzJ~J;J'!...)) 

+ ~ (2 t,(d;+,J'{J;~d;-)- ~(J'.'.I;~J.) 

- ~(J,J';J;~)- N(J'.'J;~~ 

+ ""(t, (dJ+J'.'Y. J'd;-) + t, (d;-J'.'J; ~d;+) 

- N (J'.'J; J~} (6.133) 

Our task is to write each term on the right-hand side in terms of normal­
ordered averages of collective operators. We first use the commutation rela­
tions (6.45) to write 

J'!...J; = J'!...- 1 (Jz + 2)LJ;-l 

= J'!...-2(Jz + 4)J'!.J;-1 

= (Jz + 2q)J'!...J;-l 

= (Jz + 2qt J'!_, 

and, from the Hermitian conjugate, 

Using these identities, we obtain 

(J~J;J'!...Jz) = (J~J;(Jz + 2q)J'!_), 

(JzJ~J;J'!...) = (J~(Jz + 2p)J;J'!...), 

(6.134a) 

(6.134b) 

(6.135a) 

(6.135b) 
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where the right-hand sides are now in normal order. The terms in (6.133) 
involving sums over single-atom operators involve a little more effort. 

The algebraic manipulations required here are very similar to those used 
to convert the master equation for a single damped two-level atom into phase­
space form (Sect. 6.1.3). The sums remaining in (6.133) are on terms that are 
quadratic in single-atom operators. The two single-atom operators in each 
product are, however, separated by collective operators; consequently, we 
are unable to use (6.6a)-(6.6g) directly to reduce the quadratic dependence 
to a linear dependence which is summable. We must first use commutation 
relations to pass the single-atom operators through the collective operators, 
then use (6.6a)-(6.6g). After this the sums will replace linear combinations of 
single-atom operators by the corresponding linear combinations of collective 
operators, and a final reordering into normal order gives the desired result. 
We will perform the simpler of the two remaining calculations in detail and 
leave the second as an exercise. 

Consider the average (aJ+J~J; J'!_aj-) = (J~aJ+J;aj_J'!_). We first pass 
O"j- to the left through J;. Using single-atom commutation relations, we have 

Then 

J;aj- = J;- 1aj-(Jz- 2) 

= aj-(Jz- 2r. 

N N 

"f)aHJ~J;J'!_ai-) = L(J~aJ+aj-(Jz- 2rJ'!_) 
j=1 j=1 

N 

= L (J~~(1 + aiz)(Jz- 2r J'!_) 
j=1 

(6.136) 

(6.137) 

where the second line follows from (6.6f). The last term in (6.133) -
(aj_J~J; J'!_aJ+) - is evaluated in a similar way, but requires rather more 
algebra: 

Exercise 6.8 Show that 

N 

L(aj_J~J;J'!_aJ+) 
j=1 

= (J~ [HN- Jz)- P- q] (Jz + 2r J'!_) + pq(3- p- q)(J~- 1 J;J'!_- 1 ) 

(6.138) 

We now use (6.135), (6.137), and (6.138) to write the moment equations 
(6.133) in the form 



6.3 Fokker-Planck Equation for a Damped Two-Level Medium 239 

! (J~J;J'!_) =- [iwA(q- p) + N~(2n + 1)] (J~J;J'!_) 
+ ~ [ (J~(N + Jz)(Jz- 2r J'!_) 

- (J~(Jz + p + q)J; J'!_) J 

+ 'Yn[(J~~(N + Jz)(Jz- 2r J'!_) 

+ (J~(~(N- Jz)- P- q)(Jz + 2r J'!_) 

+ pq(3- p- q)(J~-1 J;J'!_-1) 

+ pq(p- l)(q- l)(J~-2 ~(N + Jz)(Jz- 2r J'!_-2 )). 

(6.139) 

Equation (6.139) defines a coupled hierarchy of linear equations for 
normal-ordered collective operator averages. We have been able to obtain 
a closed set of equations because the atoms are all identical. A variation in 
resonant frequencies, replacing WA by WAj inside the sum in (6.129), would 
not change this situation; we can transform to the interaction picture and 
define J± as in (6.44) with c/>j = WAjt. However, if, for example, each atom 
had a different decay rate 'Yi, we would not obtain a closed set of equations 
for the collective operator averages. As stated in Note 6.1, a common situa­
tion in which members of an atomic population are not identical arises when 
the atoms interact with a spatially varying field mode - a Gaussian beam or 
standing wave for example. Actually, it is not necessary that the distinction 
between atoms enter the equations of motion explicitly. The atoms may be 
distinguished by selecting a non-permutationally-symmetric initial condition. 
For such initial conditions collective operators alone will not be adequate to 
completely describe the subsequent evolution. 

We observed from the permutational symmetry of the collective operators 
that there are actually only i(N + I)(N + 2)(N + 3) independent normal­
ordered collective operator products [Eq. (6.56)]. Thus, if this symmetry is 
used, (6.139) defines a closed set of i(N + l)(N +2)(N +3) equations. Sarkar 
and Satchell [6.12] have used the permutational symmetry to numerically 
solve matrix element equations for absorptive optical bistability in the bad­
cavity limit. They were able to reduce the 22N matrix element equations 
obtained from a naive use of the direct product state basis to a set of i(N + 
l)(N + 2)(N + 3) equations for independent matrix elements. 

Note 6.4 There is a trap for the unwary in the consideration of permuta­
tional symmetry and identical atoms. It is easy to be confused by what we 
have learned from quantum mechanics courses about indistinguishable par­
ticles [6.23]. From this background we might expect that we only have to 
deal with symmetric superpositions. (There are no antisymmetric superposi­
tions - except when N = 2 - since in our system the eigenvalue that distin-
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Fig. 6.3 Permutational symmetry of the matrix elements of the density operator 
for a three-atom system. For the pure state (6.140) the matrix elements within each 
block are equal to the value shown in the upper left-hand corner. For a mixed state 
the matrix elements within each of the four central squares are equal along the 
diagonal, and off the diagonal, but the matrix elements along the diagonal are not 
equal to those off the diagonal. 

guishes between single-particle states only takes two values.) For N two-level 
atoms the symmetric superpositions are the N + 1 Dicke states J1, N /2, M), 
M = - N /2, - N /2 + 1, ... , N /2. If these where the only states considered the 
density operator would have (N + 1? independent matrix elements rather 
than f;(N + 1)(N + 2)(N + 3) as claimed. The resolution of this apparent 
inconsistency lies in the fact that a dissipative quantum system evolves into a 
mixed state, rather than a pure state. The permutational symmetry require­
ments on a pure state 1'¢) impose a larger number of relationships between 
matrix elements of the density operator than are demanded for permutational 
symmetry of the density operator matrix elements themselves; extra relation­
ships are needed for the density operator to factorize in the form J¢)('¢J. A 
system of three atoms illustrates this point. The symmetric superpositions 
appear as the first four states listed in (6.74). The most general pure state 
constructed from these is 

I¢) = aJ111) + b )3 (Ill i) + 11 T 1) + IT 11)) 

+c)J(ITTl) +I Hi)+ I Hi)) +dJTTT). (6.140) 

Figure 6.3 displays the relationships between matrix elements of the den­
sity operator. Matrix elements within each block are equal and given by 
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the value shown in the upper left-hand corner of that block. The num­
ber of independent relationships represented by each block is one less than 
the number of elements in the block. Thus, there are 48 relationships and 
22N- 48 = 64- 48 = 16 = (N + 1)2 independent density matrix elements. 
However, if the permutational symmetry is only applied to density matrix 
elements (not to the wavefunction 1'1/1) ), the nine elements in each of the four 
squares at the center of Fig. 6.3 need not all be equal; instead, the three 
elements along each diagonal are equal and the six off the diagonal are equal; 
the three need not equal the six. Take the square labeled by lbl 2 for example. 
Down the diagonal we require 

(l! i IPil! i) = (!i! IPI! i!) = (i l! IPI i 1!), (6.141a) 

and off the diagonal we require 

(l! i IPI! i !) = (l! i IPI i !!) = (! i! IPI!! i) 
= (!i! IPI i !!) = (i!! IPI!! i) = (i!! IPI !i !). 

(6.141b) 

All of these relationships follow by interchanging a pair of single atom labels. 
It is not possible, however, to establish equality between the matrix elements 
of (6.141a) and those of (6.141b) by such an exchange. Now each of the 
squares in Fig. 6.3 represents 7, rather than 8, relationships between matrix 
elements, and the number of independent density matrix elements demanded 
by permutational symmetry is 64-44 = 20 = i(N + 1)(N + 2)(N + 3). 

6.3.3 Operator Averages Without Quantum Fluctuations 

We can use the moment equations (6.139) to illustrate the sense in which 
quantum fluctuations become a small perturbation on deterministic dynamics 
in the limit of large N. We will first develop a treatment to lowest order, not 
including quantum fluctuations, and compare it with exact results based on 
the factorized density operator (6.130). After this we will derive a phase-space 
equation of motion that includes quantum fluctuations to first order in 1/N. 

Let us define variables scaled by the system size, as in (5.38). We write 

L = NL, (6.142) 

Equation (6.139) defines a coupled hierarchy for the normal-ordered averages 
of J_, J+, and Jz: 

!!_ (JP Jr Jq) 
dt + z -

=- [iwA(q- p) + (p + q)~(n + 1) J (J~J; J'!_) 
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+ ~(J~(1 + Jz)N[(Jz- 2/NY- J;]J~) 

+ 1n{ (J~ ~(1 + Jz)N [(Jz- 2/NY- J;] J~) 

+ (J~ [~(1- Jz)- (p + q)/N]N[(Jz + 2/NY- J;] J~) 

+ N-2pq(3 _ p _ q)(J~-1 J;J~-1) 

+ N-3pq(p- 1)(q- 1)(J~-2 ~(1 + Jz)(Jz- 2/NY J~-2 ) }. (6.143) 

We have 
N[(Jz =t= 2/NY- J;] = =t=2rJ;-1 + 0(1/N), (6.144) 

and for p, q « N, to lowest order we find 

!!_ (JP Jr Jq) 
dt + z -

=- [ (p + q + 2r)~(2n + 1) + i(q- p)wA J (J~J; J~)- q(J~J;- 1 J~). 
(6.145) 

Equation (6.145) defines a coupled hierarchy for the operator averages 

( J~ J; J~), k = 0, 1, ... , r. The p and q dependence on the right-hand side is 

easily removed and the resulting equations solved by induction: 

Exercise 6.9 Show by induction (or otherwise) that 

r I 

((JP Jr Jq )(t)) = e-(p+q)(J/2)(2n+l)t ei(q-p)wAt ~(-1 )k r. 
+ z - L..- (r- k)!k! 

k=O 

[
1 _ - 1 (2n+1)t]k 

x e-(r-k)'Y(2n+1)t ;n + 1 ((J~J;-k J~)(O)). 

(6.146) 

In (6.146) we easily recognize the solution that preserves the initial fac­

torization 

( ( J~J; J~ )(0)) = (J+(O))P (Jz(O))r (L (OW 

= (ei<Piaj+(O))P(a1z(O)r(e-i<Pia_(OW: (6.147) 

For this initial state, (6.146) gives 

( ( J~J; J~ )(t)) = (J+(t))P(Jz(t)r (I_ (t))q 

= (ei<l>j O"j+ ( t) )P (ajz ( t)r (e-i<Pi a_ ( t) )q, (6.148) 

where 
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( e±i¢J O"j± ( t)) = e- h /2)(2n+1)t e'fiwAt ( e±i¢J 0 j± (O)), 

(ojz(t)) = e-1 (2n+1)t(Ojz(O)) 

(6.149a) 

_ (2n + 1)-1 [1 _ e-,(2n+1lt], (6.149b) 

are the solutions for a single radiatively damped two-level atom [solutions to 
(2.37)]. The index j on single-atom operators denotes any atom; all atoms 
are identical. 

This lowest-order treatment neglects quantum fluctuations, and even 
though there are no correlations between different atoms in the simple exam­
ple we are discussing - no unlike-atom correlations - quantum fluctuations 
are present due to correlations between operators for the same atom - like­
atom correlations. To illustrate that these like-atom correlations exist, and to 
show the form they take, let us derive exact results for the quadratic operator 
averages. 

In each of the following we use the independence stated by (6.130) to 
factorize averages involving operator products for different atoms, and the 
relations (6.6) to reduce products between operators for the same atom to 
linear functions of single-atom operators. We have 

and, similarly, 

N 

= N-2 L L(ei<i>Juj+)(ei<i>kuk+)- (J+)2 
j=1 k#j 

= N- 2 [N(N- 1)(ei¢JuJ+)2] - (J+)2 

= -N-1(J+)2, (6.150a) 

(J?:_) _ (1_)2 = -N-1(1_)2, (6.150b) 

(T;)- (Jz) 2 = N-1 (1- (Jz) 2 ), (6.150c) 

(J+}_)- (J+)(l_) = N-1 [H1 + (Jz))- (J+)(l_)J, (6.150d) 

(J+Jz)- (J+)(Jz) = -N-1((J+) + (J+)(Jz)), (6.150e) 

(Jj_)- (Jz)(L) = -N-1((1_) + (Jz)(L)). (6.150f) 

We see that corrections due to quantum fluctuations are of order N- 1 . The 
same approach can be taken to calculate normal-ordered collective operator 
moments of all orders; although, in the general case the bookkeeping becomes 
rather complicated: 
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(J~J;J~) 

= N-(p+r+q) ({ . L [exp(i¢j,)O"j1 +]· · · [exp(i¢JP)O"JP+]} 
{J,, ... ,Jp} 

x L~k,} a,,~ "'"~} 
x { L [exp( -i¢z, )O"z, -l· · · [exp( -i¢zq )O"tq-] }) 

{l,,-··,lq} 

= N-(p+r+q) {[N(N- 1) · · · 

· · · (N- p- r- q + 1)(ei<I>O"+)P(O"zr(e-i<I>(J_)q] 

( 
terms with two ) ( terms with three ) } 

+ atomic labels equal + atomic labels equal + · · · 

= [1- N-1 ~(p + r + q)(p + r + q- 1) + O(N-2 ) + · · ·] 

X (J+)P(Jzr(l_)q 

N-(p+r+q) [( terms with two ) ( terms with three ) .. ·] 
+ atomic labels equal + atomic labels equal + · 

(6.151) 

The first term on the right-hand side comes from the factorization of single­

atom averages in terms with all atomic labels different. When we restrict our 

attention to low-order moments, ~(p+r+q)(p+r+q-1) « N, corrections due 

to quantum fluctuations enter in powers of N- 1 . First-order corrections will 

be given by-N- 1 ~(p+r+q)(p+r+q-1) (J+)P(Jz)r (l_)q plus a contribution 

from the terms with the atomic labels equal. (There are fewer of these, by a 

factor of order N, than there are terms with all atomic labels different.) We 

will now see how the normal-ordered phase-space representation is used to 

derive a Fokker-Planck equation including the first-order corrections to the 

factorized dynamics. 

Note 6.5 Of course, it is not always the case that the atoms in an atomic 

population are statistically independent. This is not so, for example, when the 

atoms interact with a common field mode, as in a laser or a passive bistable 

system. Here, the interaction of the atoms with the field mode introduces 

correlations between different atoms. Then unlike-atom correlations do not 

vanish, and (6.150a)-(6.150f) no longer hold. We can still use the phase­

space approach, though, to find the expressions that replace these results. 

In Volume 2 we will go through the calculation explicitly for the case of 

absorptive optical bistability (Sect. 15.2.4). 
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6.3.4 Phase-Space Equation of Motion for Independently Damped 
Two-Level Atoms 

We wish to derive the phase-space equation of motion equivalent to the master 
equation (6.132) using the representation defined in Sect. 6.2.3. The calcu­
lation follows essentially the same steps as the single-atom calculation. Our 
first task is to derive an equation of motion for the characteristic function. 
Corresponding to (6.12) we obtain 

axN { [ ·1 7ft= tr -Z2WA(Jzp- pJz) 

+ ~(n + 1) {2 t aj-P'7j+- ~Jzp- ~pJz- N) 
\ J=l J 

+~•+ ~ a;+P<';- + p,p + ~pJ, - N p)] e«' J+ e'"J, ,•u-}. 
(6.152) 

Since collective atomic operators obey the same commutation relations as 
single-atom operators, most terms on the right-hand side can be evaluated 
as in Sect. 6.1.3; from (6.13) and (6.14), 

tr(J peiCJ+ei'fiJzeieJ-) = (-8 - + 2ic_!!_)x 
z 8( iry) <, 8( i~) N' 

(6.153a) 

(6.153b) 

we only need to give special consideration to the two terms that have not 
been expressed directly in terms of collective atomic operators. 

The treatment of these terms follows the principles used in (6.137) and 
(6.138) to obtain closed equations for the collective operator normal-ordered 
moments. If single-atom operators can be placed next to each other, their 
product can be reduced to a summable form using (6.6a)-(6.6g). We saw 
how this is done in Sect. 6.1.3. In that section the method used to derive the 
phase-space equation of motion for a single damped two-level atom was not 
actually unique; and therefore the form of the resulting equation of motion 
was not unique. We chose the method that preserves a close correspondence 
between the single-atom phase-space equation of motion and the many-atom 
equation of motion. In the many-atom calculation we do not have a choice 
about how to proceed. We must reduce all quadratic dependence on single­
atom operators to a linear dependence if we are to perform the sums and 
obtain a description in terms of collective operator averages alone. 
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Note 6.6 In the single-atom limit there is no difference between the master 
equations (6.129) and (6.131). For many atoms these equations are quite dif­
ferent and their corresponding phase-space equations of motion must reflect 
this difference. It is in the treatment of the terms L:f=1 Oj'fPOj± and J'fpJ± 
that the difference arises. The later may be treated after the fashion of (6.15); 
the former requires the method leading to (6.16) and (6.17), the method we 
now use to reduce the remaining sums in (6.152) to their phase space form. 

Following the derivation of (6.16), we use (6.8) and (6.6f) to obtain 

tr(t ai-Pai+ eiC J+ ei"'Jz eif;J-) 
J=l 

= tr [t peiC J+ai+ei'f/u;.ai- (ri ei"'"k·) eit;J_l 
J=l k#J 

= e-2i"' tr [t peW J+ !(1 + aiz)ei'flu;. (II ei'f/Ukz) eit;Ll 
J=l k#J 

= e-2i"~tr[peiCJ+!(N + Jz)ei'f!Jzeit;L] 

- -2i'f/1 (N a ) 
- e 2 + a(irJ) XN· 

A similar calculation, following the derivation of (6.17), gives 

tr (t aj+paj_eiC J+ ei'f/Jz eit;J_) 
J=l 

= [(N/2)(e2i"' + (i.;)2(i.;*)2e-2i"' + 2(i.;)(i.;*)) 

_ l(e2i'f/ _ (i.;)2(i.;*)2e-2i'fJ)~ 
2 a(~rJ) 

(6.154) 

-i.; ( e2i'fl + ( ic;) ( i.;*)) a(~.;) - ic;* ( e2i"~ + ( ic;) ( i.;*)) a(~*)] X N" 

(6.155) 

The derivation of the phase-space equation of motion is now concluded 
in exactly the same manner as in Sect. 6.1.3. We go immediately to the 
result. Comparing (6.23), we obtain the phase-space equation of motion for 
N independent radiatively damped two-level atoms: 
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(6.156) 

with 

( * 8 8 8) 
L v,v ,m, av' av*' am 

. (8 8 *) =:' ZWA OV V- OV* V 

+ l(n + 1) [(e2 a~ - 1)(N + m) + !!_v + _..!!._v*] 
2 av av* 

+1n[(e-2 a~-1)(N-m)+ 04 e2 a~(N+m) 
2 8v28v*2 

+2 e- am + -- - - -v + -v + 2N-- . ( 
2 a 82 1) ( 8 8 *) ()2 ] 

avav* 2 av av* avav* 

(6.157) 

Exercise 6.10 Show that with dephasing processes included the term 
rp ( 2::~ 1 IJjzPOjz - N p) must be added to the master equation and the op­
erator 

[ 8 8 * ()2 -2..i!... ] 
Ldephase = /p av v + av* v + avav* e am (N + m) (6.158) 

must then be added to (6.157). 

The shift operators e±2~ appearing in (6.157) lead to a description for 
the inversion dynamics in terms of a jump process, evolving between discrete 
states, as in the single-atom case (Sect. 6.1.4). In place of (6.35) and (6.36) 
we may write 

with 

N/2 

P(v, v*, m, t) = L PM(v, v*, t)15(m- 2M), 
M=-N/2 

Jd2vPM(v,v*,t) =PM= L(u;Mip(t)lu;M); 
u 

(6.159) 

(6.160) 

PM gives the probability for the system to adopt the inversion state m = 2M, 
M = - N /2,-N /2 + 1, . .. , N /2, with N /2 - M atoms in their upper states 
and N /2 + M atoms in their lower states. Substituting the expansion (6.159) 
into (6.156), and applying the shift operators, we equate coefficients of the 
15-functions to obtain the coupled equations 
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aPM [('Y . ) a ('Y . ) a * _ a2 -- = - +zwA -v+ - -ZWA -v +N"(n--
at 2 av 2 av* avav* 

+'Yn a:;v* (:v v +a~* v*)- 'Y(N/2 + M + Nn)] PM 

+ (N/2 + M + 1) ["(n av~;v*2 + 'Y(n + 1)] PM+1 

+ ['Yn(! v +a~* v*) + "(n(N/2- M + 1)] PM_1, (6.161a) 

and 

(:v v +a~* v*) PN/2 = 0. (6.161b) 

For N = 1 these reproduce (6.38). After integrating over the polarization 
variable v we arrive at rate equations describing the evolution of population 
between discrete inversion states: 

PM= -'Y(N/2 + M + Nn)pM + 'Y(n + 1)(N/2 + M + 1)PM+l 

+ "(n(N/2- M + 1)PM-1· (6.162) 

The set of coupled partial differential equations (6.161) is equivalent to the 
phase-space equation of motion (6.156). The exact solution to this equation 
of motion is going to be a complicated singular function. When N is large, 
however, a much simpler and more transparent solution is available if we seek 
only a lowest-order treatment of the quantum fluctuations. 

6.3.5 Fokker-Planck Equation: 
First-Order Treatment of Quantum Fluctuations 

On the basis of the arguments offered in Sect. 6.2.4, in the large N limit 
we expect to be able to replace the strictly singular distribution representing 
the density operator by a nonsingular distribution. We hope, therefore, to 
obtain an adequate treatment of quantum fluctuations to first order in 1/N 
by replacing (6.156) and (6.157) by a Fokker-Planck equation. The procedure 
that formally takes us to such a description is van Kampen's system size 
expansion (Sect. 5.1.3). Corresponding to the scaled operators ]_, J+, and 
Jz introduced in (6.142), we define scaled phase-space variables v, v*, and m, 
with 

v = Nv, v* = Nv*, m = Nm. (6.163) 

To obtain a systematic expansion of the phase-space equation of motion in 
inverse powers of the system size, we write 

v = (L(t)) + N- 112 v, 

v* = (J+(t)) + N- 112v*, 

m = (Jz(t)) + N-1/ 2 p,. 

(6.164a) 

(6.164b) 

(6.164c) 



6.3 Fokker~Planck Equation for a Damped Two-Level Medium 249 

For the present problem we already have the time-dependent solutions for 
(L), (J+), and (Jz) [Eqs. (6.149)], and also the corrections due to quantum 
fluctuations (for quadratic operator averages) [Eqs. (6.150)]. Our objective 
is to use the system size expansion for the phase-space equation of motion 
to reproduce these results. We will obtain a macroscopic law governing the 
motion of (L), (J+), and (Jz), and a linear Fokker-Planck equation for the 
distribution 

P(v, v*, ft, t) = N 312 P(N(L(t)) + N 112v, N(J+(t)) + N 112v*, 

N(Jz(t)) + N 112ft, t); (6.165) 

the macroscopic law plus the Gaussian solution to the Fokker~Planck equa­
tion should reproduce (6.149) and (6.150). 

From (6.165) we write 

&P = N 3; 2( &P d(L(t)) + &P d(J+(t)) 
at &(L(t)) dt &(J+(t)) dt 

&P d(Jz(t)) &P) 
+ &(Jz(t)) dt + 8t 

= N112(&P d(L(t)) + &P d(J+(t)) + &P d(Jz(t))) 
&v dt &v* dt Oft dt 

+ :t(N3/2p). 

Then, substituting the phase-space equation (6.156) for &Pj&t, and using the 
scaling relations (6.163) and (6.164), we find 

&P- N1/2{&P d(L(t)) &P d(J+(t)) &P d(Jz(t)) 
at - &v dt + &v* dt + Oft dt 

+ :v [~(2n + 1) + iwA] [(I_(t)) + N~ 1 /2 v] 

+ &~* [~(2n + 1)- iwA ][(J+(t)) + N~ 112 v*] 

+ :ft '1(2n + 1) [(2n + 1)~ 1 + (Jz(t)) + N~ 1 /2 ft] 
[)2 &2 -

+ &vav*'Yn+ Oft21'[2n+1+(Jz(t))] 

&2 - &2 - } - ( 1/2) - &v&ft2')'n(L(t))- &v*&ft2')'n(J+(t)) p + o N~ . 

Collecting terms of order N 112 and N°, we have 
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c;: = N 112 { ~~ ( d(Jdt(t)) + [~(2n + 1) + iwA] (l_(t))) 

+ ;~ ( d(J;t(t)) + [~(2n + 1)- iwA J (J+(t))) 

+ ~: (d(~?)) +r(2n+ 1)[(Jz(t)) + (2n+ 1)-1])} 

+ { [ ~ ( 2n + 1) + iw A J :v v + [ ~ ( 2n + 1) - iw A J o~* v* 

a 
+ 1 (2n + 1) a,/" 

()2 - ()2 

+ rn ovov* +I [ (2n + 1) + (Jz(t))] OfL2 

- 82 - 02 } - ( 1/2) 
-2rn(L(t)) ovo - 2rn(J+(t)) ov*o P + 0 N- . 

fL fL (6.166) 

In the large N limit the terms of order N 112 vanish if (l_), (J+), and (Jz) 

obey the macroscopic law 

d(L) =- [1(2n + 1) + iwA] (l_), 
dt 2 

(6.167a) 

d(J+) [' - . ] ---;{t =- 2(2n + 1)- ZWA (J+), (6.167b) 

d~z) = -{(2n + 1) [(Jz(t)) + (2n + 1)-1]. (6.167c) 

Quantum fluctuations about this deterministic motion are described by the 

Fokker-Planck equation for a radiatively damped two-level medium: 

c;: = { [ ~ ( 2n + 1) + iw A J :v v + [ ~ ( 2n + 1) - iw A J o~* v* 

a 
+ r(2n + 1) OfLfL 

()2 - ()2 
+rnavov* +r[(2n+ 1) + (Jz(t))] 0 fL2 

- 82 - 82 } -
-2{n(L(t)) OVOfL- 2rn(J+(t)) ov*OfL P. (6.168) 

Note 6.7 When the dephasing term (6.158) is included, the damping rate 

/pis added inside the square bracket in (6.167a) and (6.167b), and inside the 

first two square brackets on the right-hand side of (6.168). Also, the term 

/p[1 + (Jz(t))]o2jovov* is added to the diffusion in (6.168). 
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Equations (6.167) are precisely the single-atom equations of motion (2.37), 
and reproduce the deterministic dynamics defined by (6.148) and (6.149). It 
remains to show that the quantum fluctuations described by (6.168) satisfy 
(6.150); from the definition (6.78) of the phase-space average, and the scaling 
(6.163) and (6.164), we must show that 

(v*2)P = N( (J'f_) _ (J+)2) = -(J+)2, 

(V2)P = N( (J~)- (L) 2 ) = -(L) 2 , 

(6.169a) 

(6.169b) 

(J;2)p = N((Jz2)- (Jz) 2) = 1- (Jz) 2, (6.169c) 

(v*v)P = N((J+L)- (J+)(L)) =HI+ (Jz))- (J+)(L), (6.169d) 

(v*JJ)p = N((J+Jz)- (J+)(Jz)) = -(J+)(l + (Jz)), (6.169e) 

(vJJ)p = N((Jj_)- (Jz)(L)) = -(L)(l + (Jz)). (6.169f) 

Since the Fokker-Planck equation (6.168) has a time-dependent diffusion, we 
cannot derive the covariance matrix directly from the results of Sect. 5.2.4. 
Nevertheless, it is not difficult to solve for the moments on the left-hand sides 
of (6.169); the calculation is made relatively easy by the diagonal drift. The 
details are left as an exercise. 

Exercise 6.11 Use the Fokker-Planck equation (6.168) to show that the 
elements of the covariance matrix obey the equations of motion 

~ (v*2)P = -2 [~(2n + 1)- iwA J (v*2)P, 

~ (V2)P = -2 [~(2n + 1) + iWA] (V2)P' 
d - - -
dt (JJ2)P = -2!'(2n + l)(JJ2)P + 21'[(2n + 1) + (Jz(t))], 

~ (v*v)P = -!'(2n + l)(v*v)P + !'il, 

:t (v*JJ)p =- [ 3; (2n + 1)- iwA J (v*JJ)p- 2/'n(J+(t)), 

:t (vJJ)p =- [ 3; (2n + 1) + iwA J (vJJ)p- 2/'n(L(t)). 

(6.170a) 

(6.170b) 

(6.170c) 

(6.170d) 

(6.170e) 

(6.170f) 

Solve (6.167a)-(6.167c) to define the noise sources, then solve (6.170a)­
(6.170f) and show that (6.169a)-(6.169f) are satisfied for all times. 
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6.3.6 Steady-State Distribution of Inversion 

The solution to the Fokker-Planck equation (6.168) is a multidimensional 
Gaussian distribution with time-dependent means and covariance matrix 
given by the solutions to (6.167) and (6.170). Moments of all orders can 
be constructed from the means and covariance matrix using the Gaussian 
moment theorem. We noted previously [below (6.151)] that first-order correc­
tions to deterministic dynamics, based on a large N limit, are only expected 
to be accurate when the order of the moments considered is much less than 
N. With this qualification, all normal-ordered operator averages constructed 
from (6.167) and (6.170) via the Gaussian moment theorem will agree, up to 
terms of order N- 1, with the exact results. In our present example, where 
all of the atoms are statistically independent, this is just a consequence of 
the central limit theorem. As a final illustration let us see how the exact and 
approximate distributions for the inversion compare in the steady state. 

In the asymptotic limit t --+ oo, solutions to (6.167) approach the steady 
state 

(6.171) 

The steady-state statistics are described by the Fokker-Planck equation 

0:: = {[~(2n + 1) + iwA] : 11 11 + [~(2n + 1)- iwA J 8~* 11* 

8 
+ r(2n + 1) 81-/.t 

82 n+1 82 }-+rn-8 8 + 4rn-_-- 8 2 P. 
11 11* 2n + 1 J.L 

(6.172) 

The steady-state distribution Pss(ll, J.L*, J.L) is constructed using (5.80): 

(6.173) 

with 

~-r ( *) _ 2n + 1 (- 2n + 1 1 l2) JVss II, II - _ exp _ II , 
1rn n 

(6.174a) 

M = _1_ 2n + 1 ex [-~ (2n + 1)2 2] 
ss(J.L) V2if J4n(n + 1) p 2 4n(n + 1)/.L . (6.174b) 

We will focus on the distribution over inversion states m = -N, -N + 
2, ... , N, or m = -1, -1+2/N, ... , 1; from the scaling (6.164c) and (6.174b), 
the steady-state distribution for m is given by 

- 1 
Mss(m) = fiC 

y27f 

N (2n + 1)2 [ 1 N (2n + 1)2 (- 1 ) 2
] 

4n(n+1)exp -2 4n(n+1) m+2n+1 ' 

(6.175) 
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where we have defined 
- - - 1/2 - ( 1/2 - - ) Mss(m) = N Mss N (m- (Jz)ss) . (6.176) 

The exact distribution over inversion states can be found from the statis­
tical independence of the atoms and the single-atom solution 

(ajz)ss = -(2n + 1)-1 . (6.177) 

Each atom is found in its upper state with the probability (Pi )22 = H 1 + 
(ajz)ss) = nj(2n + 1), and in its lower state with probability (pj)n = ~ (1-
(ajz)ss) = (n + 1)/(2n + 1). The probability fork atoms to be in their upper 
states and N - k atoms to be in their lower states is then given by 

N! ( n )k( n + 1 )N -k 
Pk = k!(N- k)! 2n + 1 2n + 1 ; 

(6.178) 

the inversion (per atom) in this state, with k excitations, is 

mk = [k- (N- k)]/N = 2k/N- 1. (6.179) 

Thus, the medium excitation obeys a binomial distribution, to which the 
Gaussian (6.175) is an approximation. The moments (kn) can be calculated 
using the generating function ( ekx): 

(kn) = dnn (ekx) I 
dx x=O 

dn N N! ( x n )k ( n + 1 )N -k I 
= dxnt;k!(N-k)! e 2n+1 2n+1 x=O 

dn ( n + 1 x n )NI 
= dxn 2n + 1 + e 2n + 1 x=O • 

(6.180) 

The mean and the variance for the inversion readily follow. We have 

and 

(k) N ( n + 1 x n )N-1 x n I 
= 2n + 1 + e 2n + 1 e 2n + 1 x=O 

= N__!!_ 
2n+ 1' 

(6.181a) 

(6.181b) 
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Then 

and 

1.0 

I~ .0.5 
~ 

0.0 

4.0 

I~ .2.0 
"' ~ 

0.0 

(6.182a) 

( n ) 2 4 n(n + 1) n ( 1 ) 2 
-4 -- +- -4-- 1- --
- 2n+1 N(2n+1)2 2n+1 + 2n+1 

4 n(n + 1) 
N (2n + 1)2 · 

(a) 

-1.0 0.0 1.0 
m 

-1.0 

j 

2.0 

I~ .1.0 
~ 

0.0 

l 
0.0 

m 

(6.182b) 

(b) 

.A lk 
-1.0 0.0 1.0 

m 

(c) 

1.0 

Fig. 6.4 Comparison of the exact (discrete) distribution over inversion states 
Pss(mk) = (N/2)pk [Eq. (6.178)] and the Gaussian approximation Mss(m) 
[Eq. (6.175)] for n = 1: (a) N = 4, (b) N = 16, (c) N = 64. 

We see that the exact mean and variance are correctly given by the ap­
proximate Gaussian distribution (6.175); indeed, this is so even if N is not 
large. The distributions, however, will approach a close functional similarity, 
in the sense of Fig. 6.2, only as N becomes large. The explicit comparison 
between Pss(mk) = (N/2)pk and M88 (m) is illustrated in Fig. 6.4. The dif­
ference between these distributions for finite N will show up in the higher 
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moments as corrections beyond the order N~ 1 . (When unlike-atom corre­
lations are present, the mean and variance will not be obtained exactly for 
finite N from the Gaussian approximation as they are here.) 

Exercise 6.12 Show that (6.175) and (6.178) give the following results for 
the third moment of the steady-state inversion: 

(m}) _ (m)3 = -N~ 1 12n(n + 1) 
M M (2n+1)3' 

((m )3)- (m )3 = -N~I 4n(n + 1) (3- 2/N) 
k k (2n+1)3 · 

(6.183) 

(6.184) 



7. The Single-Mode Homogeneously 
Broadened Laser 1: Preliminaries 

We have now developed the bulk of the formalism we need and can turn our 
attention to rather more ambitious applications than the damped harmonic 
oscillator and the damped two-level atom. We restrict our attention in this 
book to the single-mode laser. In Volume 2 we consider the degenerate para­
metric oscillator and cavity QED. As can be judged from a quick look at 
Haken's book on laser theory [7.1], the first of these examples can easily fill 
a book on its own. We will therefore have to be rather selective in what we 
cover in two chapters. Our main objective is to illustrate the things we have 
learned in a practical application: the derivation of a master equation and 
associated phase-space equation of motion, the reduction of the phase-space 
equation to a manageable form using van Kampen's system size expansion, 
and the extraction of useful results from the resulting stochastic model. The 
topics that we address are covered in sections V and VI of Haken's book. The 
treatment will be similar to the one found there; although, we do not follow 
Haken's notation, and we will fill in the details in some of his calculations. 
The laser Fokker-Planck equation is derived using somewhat different meth­
ods by Louisell [7.2]. Laser theory can also be built around density matrix 
equations, following the approach of Scully and Lamb [7.3]. For a comparison 
with the phase-space method, the Scully-Lamb theory can be studied in the 
text by Sargent, Scully and Lamb [7.4]. 

We are going to look into a small, and some might say dark corner of 
laser physics. We want to understand the fundamental statistical character 
of laser light resulting from the probabilistic nature of quantum mechanics. 
In the real world, the noise in lasers has more to do with practical engineering 
concerns, such as mechanical stability, hydrodynamic stability in a dye flow, 
and so on. The noise we are interested in - the quantum noise - is what 
remains after all of this is gone. 

The basic physics underlying laser action is simple. There is much beyond 
the basics; but this is all design and engineering - to achieve a different op­
erating wavelength, more power, a different pulse width. The physics behind 
the quantum fluctuations is also simple. One would hardly think so, how­
ever, after wading through master equations, phase-space representations, 
and system size expansions to arrive at an answer. We will therefore begin 
by deriving the laser Fokker-Planck equation using rate equations and a little 

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999



258 7. The Single-Mode Laser 1: Preliminaries 

intuition. Hopefully, we can then appreciate the simple physics before it gets 
lost in the mathematical details of the full quantum-statistical theory. 

7.1 Laser Theory from Einstein Rate Equations 

A conventional gas discharge generates light by spontaneous emission from 
an excited medium. The central idea behind laser action is to extract energy 
by stimulated emission. Two essential conditions must be met: The excitation 
(pumping) of the medium must produce population inversion on the lasing 
transition so that stimulated emission will dominate absorption, and the en­
ergy density in the laser mode must be raised sufficiently for the stimulated 
emission rate to exceed the total loss rate, including the removal of energy in 
the output beam. The means of achieving population inversion are as diverse 
as the types of available lasers. There is often much physics involved in the 
details of an inversion mechanism. For our purpose, however, this is a practi­
cal concern; certainly central to the design of a real laser, but not important 
for understanding generic quantum-statistical properties of the laser field. We 
will model the pumping process by a simple idealized scheme involving two 
or three levels. 

Control over the energy density of the laser mode is provided by an optical 
cavity. The output beam represents loss from this cavity, and therefore the 
laser mode must be modeled as a damped oscillator, driven by the inverted 
medium. Energy is injected by stimulated emission, and the rate at which 
energy is deposited in the field depends, nonlinearly (gain saturation), on 
the amount of energy already present. The dynamical paradigm is that of a 
driven damped nonlinear oscillator. Our goal is to find the oscillator equation 
in quantized form. 

7 .1.1 Rate Equations and Laser Threshold 

Lamb's semiclassical laser theory derives a classical oscillator equation from 
Maxwell's equations driven by a nonlinear polarization [7.5, 7.6]. Our first 
attempt at a quantum theory we will follow an equally simple, but different 
approach. This approach has the advantage that it is formulated from the 
outset in quantum-mechanical language, and naturally includes the source of 
quantum fluctuations. With the help of a little intuition it will lead us to the 
laser Fokker-Planck equation with considerably less labor than is required 
by the rigorous quantum theory. We focus on the energy exchange between 
the laser mode and the lasing medium, and accept quantum ideas at the 
level of Einstein's theory: the energy quantum (photon) is the basic unit of 
excitation for the laser oscillator, and the exchange of quanta by spontaneous 
emission, stimulated emission, and absorption [7. 7] describes the interaction 
of the laser light with the lasing atoms. 
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1 r, 

Y21i WB21i t W 
Fig. 7.1 Three-level model for the 
laser medium. The transition 12) --+ 

11) is the laser transition. 

A collection of N three-level atoms provides the simplest model for the 
laser gain medium capable of producing population inversion by incoherent 
pumping. For the full quantum-statistical theory there is advantage in the 
simplicity of a two-level model. But at least one more level is needed for the 
pumping process. We therefore start with a three-level model and see how 
this reduces to a two-level description later on. We adopt the level scheme 
illustrated in Fig. 7.1. The laser transition, 12)---> 11), interacts on resonance 
with a single cavity mode with frequency we; '/'31, '/'32, and '/'21 are decay rates 
for the various atomic levels, rPP is the incoherent pump rate, and WB21 is 
the stimulated emission and absorption rate for the laser transition, where 
W is the energy density per unit atomic linewidth in the laser mode, and 
B21 = B 12 is the Einstein B coefficient. 

If N1, N 2, and N3 denote the atomic state populations (N1 + N2 + N3 = 
N), the rate equations for the atoms are 

N1 = -rppN1 + '/'21N2 + (Fpp + ')'3I)N3 + WB21(N2- NI), (7.1a) 

N2 = -')'21N2 + '/'32N3- WB21(N2- N1), (7.1b) 

N3 = -(rpp + '/'31 + 'Y32)N3 + rpNl. (7.1c) 

The number of quanta in the laser mode is determined by the balance between 
stimulated emission and loss to the output beam: 

(7.2) 

where 2,; is the photon loss rate from the cavity, and for the present we 
neglect spontaneous emission into the laser mode. 

The energy density in the laser mode is given in terms of the photon 
number by 

- liwc W = n---.,.-.,.-,-
VqK('/'h/2)' 

(7.3) 

where Vq is the mode volume and 

(7.4) 

is the homogeneous width (half-width at half-maximum) for the laser transi­
tion. The term '/'p is added when phase destroying collisions are important. 
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To calculate B21 we use the relationship between the Einstein A and B co­
efficients [7.9]. From the result (2.33) for the Einstein A coefficient, we find 
(wA =we) 

where 

= (3d2
) ;r2c3 (-1- 4w~di2) 

di2 nw~ 41fEQ 3fic3 
2Vq;r 2 

= nwc g' 

wcd2 
g= 

21ieo Vq 

(7.5) 

(7.6) 

is the dipole coupling constant (assumed real) between the laser field and the 
laser transition [Eq. (2.16)]. We are considering a single laser mode with a 
particular polarization e; thus, the factor 3d2 1 di2, d = e. d12, appears on the 
right-hand side of (7.5) to remove the dipole orientation average (d2) = di2/3 
from the expression for the Einstein A coefficient. Equations (7.3) and (7.5) 
now give the stimulated emission rate into the laser mode: 

(7.7) 

Note 7.1 Einstein theory only provides an approximate treatment of the in­
teraction between light and atoms. It is normally used in situations involving 
broadband excitation, which corresponds to the conditions in the blackbody 
problem Einstein considered. But the interaction between the laser mode and 
laser transition is not broadband. Nonetheless, we can still use Einstein rate 
equations. Rate equations are valid for narrowband excitation so long as the 
homogeneous width is much broader than the natural width [7.8]. These are 
the conditions that justify our rate equation model for the laser. Under these 
conditions the energy density W that enters the stimulated emission rate is 
an average of W(w) for the exciting field over the atomic absorption line. It 
is for this reason that we find the homogeneous width '/h/2, rather than the 
laser linewidth, in the denominator of (7.3). The required energy density is 

- 100 - '/h/21f W = dw W( w) ...,----,---,-.,-:-....:--,----__,...,. 
0 ('/h/2) 2 + (w- WA) 2 

- r= dw [nnw '/L/21f ] '/h/2;r 
- lo Vq ('/L/2)2 + (w- WL) 2 ('/h/2)2 + (w- WA) 2 

nwL 1 
= nVq;r('/h/2) 1 + .12' (7.8) 
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where L1 = 2(wA- WL)/rh is a dimensionless detuning, and WL and /L/2 are 
the laser frequency and linewidth. To evaluate the integral we have assumed 
that /L « rh· With WL = WA =We, (7.8) reduces to (7.3). 

Note 7.2 The homogeneous width rh [Eq. (7.4)] is obtained by summing 
contributions from all decay and pumping rates out of states 11) and 12). 
This general rule can be derived from a master equation treatment of the 
incoherent transitions. For transitions li) --+ IJ), at rates rij, between an 
arbitrary set of atomic states, we obtain the master equation 

(/J). = ~ rij (2IJ)(ilpli)(JI-Ii)(ilp- Pli)(il). (7.9) 
tncoh L..:- 2 

2) 

This is the obvious generalization of (2.26), which describes two incoherent 
transitions: 12)--+ 11), at the rate 121 = r(n + 1) (with IJ)(il = 11)(21 = cr~), 
and 11) --+ 12), at the rate 112 = 1n (with IJ)(il = 12)(11 = cr+)· Now from 
(7.9), the equations of motion for the atomic coherences Pkl, k "I- l, acquire 
damping terms 

(Pkl L,. ~ - (~ ~) Okj + O+kl (7.10) 

The homogeneous width for the lk) --+ ll) transition is therefore ~ 'I:,j(rkj + 
rlj), which is the sum over all rates out of the states lk) and ll). 

The stimulated emission term in the rate equations (7.1) and (7.2) in­
troduces the nonlinearity that causes the laser threshold behavior. This term 
also couples the atomic populations to the photon number. When there are no 
photons in the laser mode the atomic populations settle into an equilibrium 
state balancing decay and incoherent pumping. Solving (7.1a)~(7.1c) with 
n = 0 and N1 = N2 = N3 = 0 gives the unsaturated steady-state inversion 

(7.11) 

Once photons appear in the laser mode the atomic populations change as 
the laser transition begins to saturate. If n(t) changes slowly compared with 
atomic decay and pumping rates, the atomic populations will follow adiabat­
ically, maintaining an equilibrium with the instantaneous photon number. 
Assuming that these conditions hold (this is true in the vicinity of threshold) 
we make an adiabatic elimination of atomic populations; the algebra is left 
as an exercise: 

Exercise 7.1 Solve (7.1a)~(7.1c) with N1 = N2 = N3 = 0 and show that 
the saturated steady-state inversion is given by 
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(7.12) 

where the saturation photon number nsat is 

'Yh b32(r~" + 'Y21) + 'Y21 (2r~" + 'Y3d] 
nsat = 8g2('Y32 + '/'31 + 3F!"/2) · 

(7.13) 

Note the relationship between (7.12) and the steady-state inversion for the 
driven two-level atom given by (2.120b). Show that the saturation photon 
number for the two-level atom is ')'2 /8g2 . 

Substituting (7.7) and (7.12) into (7.2), we obtain the photon number 
rate equation 

n = -2Kn (1- p ) , 
1 + n/nsat 

(7.14) 

where the pump parameter p is defined by 

2g2 0 0 
p = -(N2- N1). 

'/'hK 
(7.15) 

The steady-state photon number n 88 satisfies the quadratic equation 

(7.16) 

Solutions to this equation show the threshold behavior illustrated in Fig. 7.2. 

nss 

--l....---,// 
0 1 

p 

Fig. 7.2 Laser threshold behavior. 
The steady-state shown by the bro­
ken line is unstable. 

Below Threshold- p < 1: Below threshold the photon loss rate exceeds 
the stimulated emission rate. Since nss must be positive (7.16) has only one 
acceptable solution, 

(7.17) 

From (7.12) and (7.15) the below threshold inversion is 

( ) 0 0 '/'hK 
N2 - N1 < = N2 - N 1 = 292 p. (7.18) 
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At Threshold ~ p = 1: At threshold the photon loss rate is equal to the 
stimulated emission rate. Equation (7.16) has the doubly degenerate solution 

and the threshold inversion is 

_ thr 0 
nthr = nss = ' 

(N2- Nl)thr = N~- Nf = ~~;. 

(7.19) 

(7.20) 

Above Threshold~ p > 1: Above threshold the stimulated emission rate 
determined by the unsaturated inversion exceeds the photon loss rate. There 
are two acceptable solutions for n 88 : 

nss = 0, 

nss = nsat(P- 1). 

(unstable) 

(stable) 

The nss = 0 state is unstable; linearizing (7.14) about this state gives n = 

2K:(SJ- 1 )n > 0, and therefore any small nonzero photon number is amplified. 
Amplification stops when the saturation term (1 + n/nsat)~l brings the gain 
minus loss back to zero, which happens when 

The saturated inversion above threshold is 

/hi'i: 

2g2 

= (N2- Nl)thr· 

(7.21) 

(7.22) 

The saturated inversion is held at the threshold value for all p > 1, a phe­
nomenon known as inversion clamping (or inversion pinning). 

7.1.2 Spontaneous Emission and Thermal Photons 

Equation (7.14) describes the amplification by stimulated emission that leads 
to the lasing state above threshold. What, however, is to be amplified? Where 
does the first photon come from? According to (7.14) the laser will not turn 
on as the pump parameter is raised if the laser mode does not initially contain 
at least one photon. 

The answer, of course, is that we have omitted two photon sources. We 
have omitted the thermal source that brings the laser mode to thermal equi­
librium when the pumping is turned off. This is corrected by adding the term 
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2~~;n to (7.14), as in the equation of motion for the mean photon number 
of the damped harmonic oscillator [Eq. (1.79)]. We have also omitted spon­
taneous emission. Spontaneously emitted photons are included by adding a 
term "fsponN2 to (7.14); 'Yspon is the spontaneous emission rate into the laser 
mode. With the addition of these two terms the photon number rate equation 
becomes 

n = -2~~;n (1- ~ ) + 2~~;n + 'YsponN2. 
1 + n nsat 

(7.23) 

At optical frequencies n is negligible; therefore the first photon must be sup­
plied by spontaneous emission. At microwave frequencies n is not negligible; 
even at low temperatures (T rv 4 K) a few thermal photons are present. 

The rate 'Yspon is not equal to the Einstein A coefficient for the 12) ----> 11) 
transition. 'Yspon only accounts for spontaneous photons emitted into the laser 
mode, while A is the emission rate to all modes of the vacuum electromagnetic 
field. We can calculate 'Yspon , however, using the standard method for relating 
Einstein A and B coefficients. We write the stimulated emission term in (7.23) 
in the form (7.7), and then 

n = -2~~;n [1- 292 (N2 - N1)] + 2~~;n + 'YsponN2. 
"fh/1; 

(7.24) 

Now if the atomic populations are maintained in thermal equilibrium, with 

N1 = e(E2-E1)/kBT = eli.wc/kBT 

N2 ' 
(7.25) 

(7.24) must bring the cavity photons into equilibrium with the atoms. Thus, 
this equation must have the steady-state solution n 88 = n = (eli.wc/kBT -1)-1 
[Eq. (1.52)]. This requires 

'Yspon = 4g2 n (NNl - 1) = 4g2 . 
'Yh 2 'Yh 

After we substitute for nand NI/N2, the spontaneous emission rate into the 
laser mode is 

4g2 
'YsponN2 = -N2. 

'Yh 

With the help of (7.12) and (7.15), we write this in the form 

2g2 2g2 
'YsponN2 = -(N2 + N1) + -(N2- N1) 

'Yh 'Yh 

_ 21\; (c N21 + ~ P ) - Ng1 2 1 + n/nsat ' 

where 

(7.26) 

(7.27) 

(7.28) 



7.1 Laser Theory from Einstein Rate Equations 265 

and 
(7.29) 

is the total number of atoms distributed between the two levels of the laser 
transition. 

Exercise 7.2 For the three-level model illustrated in Fig. 7.1, show that 

where 

and 

N - N.O 1 + njn~at 
21- 21 1 + I , n nsat 

N.O = N 'Y32(rp + 'Y21) + 'Y21 (rp + 'Y31) 
21 - 'Y32(rp + 'Y21) + 'Y21 (2rp + 'Y3d' 

I - 'Yh['Y32(Fp+'Y2d+'Y21(Fp+'Y31)] 
nsat = 8g2('Y32 + '/'31 + rp) 

(7.30) 

(7.31) 

(7.32) 

We can now write down the complete photon number rate equation. Sub­
stituting (7.27) into (7.23) and using (7.30), we have 

(2K)-1n = -n 1- ov + jj, + C sat +- ov • ( 
IYl ) ( 1 + n/n' 1 IYl ) 

1 + n/nsat 1 + nfnsat 2 1 + n/nsat 
(7.33) 

This equation can be simplified considerably if the laser is not operated too 
far above threshold. Typically nsat and n~at are large numbers, and under 
normal operating conditions nfnsat « 1, and n/n~at « 1. Then we may 
neglect the saturation terms in the second bracket on the right-hand side of 
(7.33). We will discuss how to estimate nsat shortly (Sect. 7.1.4); for a He-Ne 
laser nsat rv 108 . Of course, we cannot neglect the saturation of the stimulated 
emission term appearing in the first bracket. It is this gain saturation that 
prevents the photon number from growing without bound above threshold. 
However, for n/nsat « 1, we only need to include the gain saturation to first 
order. Then the final form of the rate equation for photon number in the laser 
mode, including thermal and spontaneous emission sources, is 

(2K)-1n = -n(1 - gJ + pnfnsat) + ii + nspon· 

We have written (7.27) as 

(7.34) 

(7.35) 

nspon = C + ~ p is the spontaneous emission photon number - the number of 
photons in the laser mode due to spontaneous emission well below threshold. 
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The laser can now turn on above threshold using a thermal or spontaneous 

photon to start the amplification process. The steady-state photon number 

satisfies the quadratic equation 

(7.36) 

which has a single (positive) solution for all values of the pump parameter: 

nss =- 2~ nsat(1- p) + 2~ nsatV(1- p)2 + 4p(n + nspon)/nsat· 

(7.37) 

Note 7.3 We must not confuse the pump parameter p with the pump rate 

Tp. In particular, for rP = 0, all of the atoms are in the lower state of the 

laser transition (if n = 0), and for p = 0 (Tp = 121), the populations in 

the two states of the laser transition are equal. When rP < 121 the pump 

parameter takes negative values and the atoms act as an absorber rather than 

as a gain medium. The solution (7.37) is valid for both positive and negative 

values of p. 

In contrast to Fig. 7.2, the plot of (7.37) in Fig. 7.3 shows a smooth 

transition through the threshold region. The sharpness of the transition is 

determined by the ratio (n + nspon)/nsat· This ratio determines the range of 

the pump parameter over which the second term in the square root on the 

right-hand side of (7.37) is important. We define the laser threshold region 

by 

J1- PJ < J1- Plthr = 2 
n + nspon 

nsat 
(7.38) 

This should be a small number. If it is not, even spontaneous emission into the 

laser mode is sufficient to saturate the laser transition, which would negate 

the whole aim of building up a field by stimulated emission. The range of the 

threshold region in a He-Ne laser operated on the 0.63J.tm line is J1- Plthr,......, 

10-4 [7.10]. Since n is negligible at optical frequencies, if nsat ,......, 108 and 

J1- Plthr ,......, 10-4 , then nspon ,......, 1. We can estimate the change in photon 

number over the threshold region by using (7.37) to write 

n~r = ±~nsatl1- Plthr + ~nsatl1- Plthrh 

= ~nsatl1- Plthr(h ± 1), (7.39) 

where niJ,r and riU,r are the steady-state photon numbers at the upper and 

lower boundaries of the threshold region, respectively. Then 

niJ,r = v'2 + 1 ~ 6. 
nti,r v'2- 1 

(7.40) 

Thus, the photon number changes through the threshold region by approxi­

mately one order of magnitude. 
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Fig. 7.3 Passage from the nonlasing to the lasing state with thermal and sponta­
neous emission sources included. 

Equation (7.37) gives a number of results that are in rather remarkable 
agreement with those obtained from the full quantum statistical theory. 

Below Threshold- 1- p » 11- Plthr: With the inclusion of thermal and 
spontaneous photons the steady-state photon number below threshold is no 
longer zero. Expanding the square root in (7.37) to first order, we find 

n + nspon 
1-p 

(7.41) 

This agrees exactly with the result obtained from the full quantum-statistical 
theory (Sects. 8.1.3 and 8.1.4). 

At Threshold- p = 1: From (7.37) the threshold photon number is given 
by 

nthr = n~~r = Jnsat(fi + nspon) = Jnsat(n + C + ~p). (7.42) 

This result is larger, by the factor yfi72 ~ 1.25, than the result obtained from 
the full quantum-statistical theory (Sect. 8.2.2). (For nsat rv 108 , nspon rv 1, 
and n negligible, nthr rv 104 .) 

Above Threshold- 1 » p-1 » 11- Plthr: We restrict our attention to the 
region not too far above threshold. The requirement p - 1 « 1 ensures that 
n 88 /nsat « 1. Expanding the square root in (7.37) to first order gives the 
correction to the solution n> = nsat(P- 1) [Eq. (7.21)] due to the thermal 
and spontaneous emission sources: 

( ) - > ( ) n + nspon n + c + ~ p n> - nsat p - 1 = nss - nsat P - 1 = 1 = 1 · 
p- p-

(7.43) 

This result is a factor of four larger than that derived from the full quantum­
statistical theory (Sect. 8.3.3). 
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7.1.3 Quantum Fluctuations: A Stochastic Model 

The rate equation treatment including thermal and spontaneous emission 
sources provides a surprisingly accurate picture of laser operation. Neverthe­
less, it is, of course, limited in two major respects. First, the rate equation 
approach deals only with energy. It has nothing to say about the field. In 
particular, it provides no direct information on the laser linewidth. Second, 
(7.34) is a deterministic equation for a definite photon number n. In quantum­
mechanical language this assumes that the laser mode is always in a Fock 
state ln(t)). Surely this is not correct. Indeed, so far we have done nothing 
to explicitly incorporate the probabilistic character of quantum-mechanics 
into our theory, and we are therefore in no position to speculate on quantum 
states. Equation (7.34) should be interpreted as an equation for the mean 
photon number. 

One way to build a probabilistic theory around (7.34) is to "invent" an 
underlying birth-death equation for the probabilities, Pn, that there are n 
photons in the laser mode. Such an equation should produce (7.34), at least 
in some approximation, as the equation of motion for (n) = :L:~=O nPn. This 
approach leads to a connection with Scully-Lamb theory. Let us consider this 
connection briefly before turning to our main interest, a stochastic description 
in terms of the laser field. 

There are two approaches that we might take when inventing the underly­
ing birth-death equation. The first makes a mathematical extrapolation from 
(7.34) with little additional physical input. The approach is direct and simple; 
although, taken on its own it is somewhat unconvincing since the mathemat­
ical extrapolation is not unique. The more convincing approach builds upon 
well-defined physical arguments to construct a unique birth-death equation. 
We will look at both approaches. It as well to build some confidence in the 
mathematical extrapolation since this is the path we must follow to construct 
a stochastic laser model. 

In the mathematical approach we invent the underlying birth-death equa­
tion by first writing (7.34) as an equation for the mean photon number: 

(7.44) 

Something must be done about the nonlinear term (n) 2 appearing on the 
right-hand side, since such a term cannot appear in the exact equation for (n). 
In a statistical theory we expect the equation for the mean photon number 
to couple to equations for higher moments of n; therefore (n)2 must be a 
factorized approximation for (n2 ). The correct equation for the mean photon 
number must be 

(7.45) 

Each term in (7.45) now suggests a corresponding term in the underlying 
birth-death equation. We write F(n) ---> (f(n)) to mean L~=O nF(n) = 
(f(n)). Then the following correspondences hold: 
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(n) +--- Pn, (7.46a) 

(n) +--- nPn- (n + 1)Pn+l, (7.46b) 

(n2 ) +--- n2 Pn - (n + 1)2 Pn+1, (7.46c) 

1 +--- nPn-1- (2n + 1)Pn + (n + 1)Pn+l· (7.46d) 

The choice of terms on the right-hand sides is not entirely "black magic." 
Familiarity with the damped harmonic oscillator leads us to (7.46b) and 
(7.46d); these can be deduced from the birth-death equation obtained by 
taking diagonal matrix elements of the master equation (1. 73). The nonlinear 
term in (7.46c) can be found with a little trial and error. Note that each of 
the right-hand sides sums to zero, guaranteeing the conservation of total 
probability CE:=o Pn = 0). This removes some obvious ambiguities-the 
possibility of replacing (7.46b) by (n) +--- Pn, for example. Some ambiguities 
remain, nonetheless; based solely on the mathematics, the extrapolation we 
have made is not unique. For example, we can replace (7.46c) by (n2) +­

(n- 1)2 Pn-1 - n2 Pn, and (7.46d) by 1 +--- Pn-1 - Pn (which might seem 
quite reasonable for the spontaneous emission term if not for the source of 
thermal photons). We will return to this issue shortly. Continuing for the 
moment with what we have, after putting the pieces together we arrive at a 
probabilistic model in the form of the birth-death equation for photon number 
in the laser mode: 

(2~~:)- 1 Pn = -(1- p)[nPn- (n + 1)Pn+I] 

- (p/nsat)[n2 Pn- (n + 1)2 Pn+I] 

+ (n + nspon)[nPn-1- (2n + 1)Pn + (n + 1)Pn+Il· (7.47) 

We can now make a connection with Scully-Lamb theory. To do this we must 
rewrite (7.47) in a slightly different form. The details are left as an exercise: 

Exercise 7.3 Verify that (7.45) follows from (7.47). Then set N1 = NP = 0 
in (7.15) and (7.29), and show that if n is negligible, (7.47) can be written in 
the form 

Pn = A'[nPn-1- (n + 1)Pn]- B'[n2 Pn- (n + 1)2 Pn+I] 

- C'[nPn - (n + 1)Pn+1], (7.48) 

Equation (7.48) agrees with the first-order expansion - for nB' /A' = 
n/nsat « 1- of the Scully-Lamb laser equation (Eq. ( 4) of Ref. [7.3a]). Most 
of the parameters in the Scully-Lamb definitions of A', B', and C' (Eq. (5) of 
Ref. [7.3a]) may be identified in a one-to-one correspondence with parameters 
in our own theory. We haveN~<--> ra/'Ya, 'Yh/2 <--> 'Yab, nsat <--> 4g2 /'Ya"'fb, and 
2~~: <--> vjQ. Because, however, of the different pumping model used by Scully 
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and Lamb, there is no direct correspondence between the atomic decay rates 
appearing in their expression for nsat (nsat = 4g2 /!alb) and those appearing 
in ours (Eq. (7.13)]. 

Note 7.4 As it appears in the original papers [7.3], the Scully-Lamb laser 
equation assumes there is no population in the lower laser level. For this 
reason we set N1 = NP = 0 in order to make a connection with Scully­
Lamb theory. These conditions can be achieved with the appropriate pumping 
scheme [see the discussion below (7.75)] and in our notation give nspon = p; 
at threshold nspon = 1. Scully-Lamb theory may readily be extended to allow 
for a nonzero population in the lower laser level [7.11]. 

--;---,-----------.---,..-- ln+l} 

!~'N,(n+l)(n +1) j I ,:::N,(n)(n+l) n(n+l)l j (n+l)(n+l) 

;.~'N,(n)n j I ~i'N,(n-l)n ••I j (n+~~~-ll 
Fig. 7.4 A simple birth-death laser model. All transition rates are in units of 2t;;. 

We noted that there is some ambiguity in the correspondence (7.46). The 
ambiguity does not arise if we construct the birth-death equation starting 
from a physical picture of the elementary absorption and emission processes 
it must describe. These are the same absorption and emission processes ac­
counted for in the Einstein rate equations formulated in Sects. 7.1.1 and 7.1.2. 
Now, however, they are to be expressed in terms of transition rates governing 
the flow of probability between states of photon number n. The various tran­
sition rates are shown in Fig. 7.4. Reading from the left they describe: the loss 
of photons through the cavity mirrors, the absorption of photons through the 
cavity mirrors, stimulated and spontaneous emission into the laser mode, and 
the absorption of photons by the laser medium. N 2 (n) and N 1 (n) denote the 
numbers of atoms occupying states 12) and 11), respectively, given the photon 
number n; when the atomic populations may be adiabatically eliminated we 
write (Eqs. (7.12) and (7.30)] 

J\r ( ) _ No 1 ~No n/n~at 
H2 n - 2 + 21 , 

1 + n/nsat 2 1 + n/nsat 
(7.49a) 

N ( ) _ No 1 ~No n/n~at 
1 n - 1 + 21 · 

1 + nfnsat 2 1 + nfnsat 
(7.49b) 

The birth-death equation corresponding to Fig. 7.4 takes the form 
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Pn = -2;,(n + 1)[nPn - (n + 1)Pn+l] 

+ 2fi:n[nPn-1- (n + 1)Pn] 
4g2 

+ -[Nz(n- 1)nPn-l- Nz(n)(n + 1)Pn] 
'Yh 
4g2 

+ -[N1(n + 1)(n + 1)Pn+l- N1(n)nPn]· 
'Yh 

(7.50) 

In order to compare this equation with (7.47) we must expand the saturation 
terms to lowest order in the manner described below (7.33). We first separate 
the saturation terms in the expressions for the atomic populations, writing 
(7.49a) and (7.49b) as 

~r ( ) Mo nlnsat ( Mo 1 No I 1 ) 
1V2 n = 1Vz - I 1'2 - 2 2Jnsat nsat ' 

1 + n nsat 
(7.51a) 

N ( ) N o nlnsat (No 1 No I 1 ) 1 n = 1 - I 1 - 2 21 nsat nsat · 
1 + n nsat 

(7.51b) 

Then, with the help of (7.15), (7.26), (7.28), and (7.35), we write 

thus, 

292 N2(n) = nspon- S(n)(nspon- Cnsatln~at), (7.52a) 
"fhK 

2g2 I 
-N1(n) = (nspon- p)- S(n)(nspon- SJ- Cnsatlnsat), (7.52b) 
'Yh" 

where S(n) is the saturation factor given by 

S(n) = nlnsat 
1 + nlnsat 

Now the birth-death equation may be written as 

(2fi:)-l Fn = -(1- f!)[nPn- (n + l)Pn+l] 

- fl[S(n)nP,- S(n + l)(n + 1)Pn+l] 

+ (n + nspon)[nPn-1- (2n + l)Pn + (n + 1)Pn+l] 

+ (nspon- Cnsatln~at)[S(n -1)nPn-1 

- S(n)(2n + l)Pn + S(n + l)(n + l)Pn+ll· 

(7.53) 

(7.54) 

The second term on the right-hand side of (7.54) is a nonlinear correction­
due to gain saturation - to the first; the fourth term is a nonlinear correction 
to the third. We must keep the correction to the first term since this term 
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vanishes when p = 1. For nlnsat « 1, we include the correction to lowest 
order, setting S(n) = nlnsat· The nonlinear correction to the third term may 
be neglected entirely. In this approximation (7.54) reduces to the birth-death 
equation (7.47). 

The steady-state probabilities, p;._s, defined by setting Pn = 0 in the 
birth-death equation, can be found by referring to Fig. 7.4. The steady state 
is maintained by the balancing of transitions between neighboring photon 
states: 

(7.55) 

This is what is known as detailed balance. Equation (7.55) has the solution 

(7.56) 

P0" is determined by normalization. We can convert this solution into a sim­
pler form which satisfies (7.47) using (7.52a) and (7.52b) to write 

n + (2g2 hh,)N2(k- 1) 
n + 1 + (2g2 /rhK)N1 (k) 

n + nspon- S(k- 1)(nspon- Cnsat/n~at) 

n + nspon + 1- p- S(k)(nspon- p- Cnsat/n~at) 

n + nspon- pS(k) + 2:::~ 1 6j(k) 

n + nspon + 1 - fp 
(7.57) 

where the Dj(k) are saturation terms that follow by making an expansion in 
powers of S(k); for example, 

81(k) = pS(k)- S(k- 1)(nspon- Cnsat/n~at) 

) n + nspon ( I I ) + S(k 1 nspon- p- Cnsat nsat 
n + nspon + - P 

= [S(k)- S(k- 1)](nspon- Cnsatln~at) 

_ S(k)( 1 _ p) nsp~n- f?- Cnsat/n~at. 
n + nspon + 1 - p 

(7.58) 

When k I nsat « 1, all of the 8 j ( k) may be neglected. 61 ( k) is the dominant 
term, and noting that this term is negligible is sufficient. The contribution 
to 61 (k) proportional to [S(k) - S(k- 1)] is of order 1lnsat and clearly 
negligible. The contribution proportional to S(k)(1 - p) is negligible since 
all saturation terms are unimportant below threshold, while at, and not too 
far above threshold, the S(k)(1- p) in 81(k) is very much smaller than the 
pS(k) separated out explicitly in the numerator of (7.57). Thus, dropping 
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the sum and setting S(k) = k/nsat in (7.57), the steady-state probabilities 
(7.56) become 

pss = P.ss IIn n + nspon - f,Jk I nsat . 
n 0 1 ' 

k=l n + nspon + - f,J 
(7.59) 

this is the solution for the distribution of photon number in the laser mode 
in steady state which we obtain by applying the detailed balance condition 
to (7.47). 

Figure 7.5 illustrates the way in which the photon number distribution 
changes through the threshold region. Various approximate expressions for 
p~s capture this evolution well. Their derivation from (7.59) is left as an 
exercise: 

(a) (b) (c) 
1.0 1.0 4.0 (\ 

N ... liO 
0 0 0 ..... ..... ..... 
X X 0.5 X 2.0 00 00 

~ 
~ ~ o..:-

0.0 0.0 0.0 
) \ 

0.0 2.5 5.0 0.0 2.0 4.0 0.0 1.0 2.0 

n X 10-2 n X 10-·l n x 10- 5 

Fig. 7.5 Laser photon number distribution for n+nspon = 1, nsat = 108 (J1- S"Jithr "' 
10-4 ): (a) below threshold, 1- g-J = 10-2 ; (b) at threshold, g-J = 1; (c) above 
threshold, S'J - 1 = 10-3 . 

Exercise 7.4 Prove the following results from (7.59): 

Below Threshold - 1 » 1 - f,J » 11 - fi!lthr: The photon number is dis­
tributed according to the "ther:mal" distribution 

where 

( ) = ( ) < = n + nspon = n + c + ~ f,J n<-nss . 1-f,:J 1-f,:J 

Note the agreement between (7.60b) and (7.41) (also see 
8.1.4). 

(7.60a) 

(7.60b) 

Sects. 8.1.3 and 

At Threshold- fi! = 1: The photon number is essentially distributed con­
tinuously, with 
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pss = fj_ 1 exp [-! n 2 
] 

n V; Jnsat(n + nspon) 2 nsat(n + nspon) ' 

with mean threshold photon number 

(n)thr = (n)!~r = /!Jnsat(n + nspon) 

= /!Jnsat(n + C + ~). 

(7.61a) 

(7.61b) 

Note the agreement within a factor of y'2fii between (7.61b) and (7.42) (also 
see Sect. 8.2.2). 

Above Threshold~ 1 ~ g;:>- 1 > 0: The distribution (7.61a) generalizes as 

pss = fi 1 [1 + <~>(J2 g;:>- 1 )]~l 
n V; Jnsat(n + nspon) 11- gJithr 

[ 
1 (n- nsat(g;:>- 1)) 2 ] x exp -- -'------:----:-'---
2 nsat(n + nspon) ' 

(7.62) 

where <P denotes the Gaussian probability integral [7.12]. For g;:>-1 ~ 11-g;:>lthr 
the photon number has mean and variance 

(n)> = (n)?s = nsat(g;:>- 1), (7.63a) 

(n2)>- ((n)>) 2 = (n2)?.- ((n)?.) 2 = nsat(n+nspon) 

=nsat(n+C+~g;:>). (7.63b) 

Note the agreement (to dominant order) between (7.63a) and (7.43). Also, 
(7.63a) and (7.63b) indicate that the photon number distribution above 
threshold is significantly broader than a Poisson distribution (also see Sect. 
8.3.3). 

Equation (7.47) provides a simple probabilistic theory. But it is still lim­
ited to a description in terms of energy states. A second way to build a prob­
abilistic theory from the rate equation (7.44) is to "invent" an underlying 
stochastic model for the laser field amplitude a= eiwcta. Such a model can 
answer questions about the field~ questions like: what is the laser linewidth? 
A stochastic model provides a connection with the phase-space version of the 
full quantum-statistical theory which we will discuss shortly. 

To "invent" a stochastic model we must construct a Fokker~Planck equa­
tion for the probability density P(a, a*) that reproduces (7.44), with 

(7.64) 
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more precisely, our Fokker-Planck equation must give the mean value equa­
tion 

(7.65) 

which reduces to (7.44) after the factorization (10:1 4 ) ::::::! ( (10:1 2 ) ) 2 . It is not dif­
ficult to come up with the appropriate Fokker-Planck equation. The first two­
terms on the right-hand side of (7.65) describe cavity loss and saturable stim­
ulated emission gain. These are coherent processes. They remove and add en­
ergy by coherently decreasing and increasing the field amplitude, and should 
be contributed by deterministic (drift) terms in the Fokker-Planck equation. 
In contrast, the third term on the right-hand side of (7.65) describes the inco­
herent thermal and spontaneous emission energy sources. This term should 
be contributed by a noise (diffusion) term in the Fokker-Planck equation. 
Writing F(O:, 0:*) ----+ (!(0:, 0:*)) to mean J d2 0: liil 2 F(ii, 0:*) = (!(0:, 0:*)), 
the term by term correspondence is 

( li¥1 2 ) +--- P(a, a*), 

( lal 2 ) +--- -~(!a:+ a~* a:*) P(a:, a*), 

( lal 4 ) +--- -~(:a: a:+ 8~* a:*}al 2 P(a:, a:*), 

1 82 P-(- -*) 
+--- 80:80:* a, a . 

(7.66a) 

(7.66b) 

(7.66c) 

(7.66d) 

Again, familiarity with the damped harmonic oscillator helps us to select 
the right-hand sides; (7.66b) and (7.66d) are deduced from the terms on the 
right-hand side of the harmonic oscillator Fokker-Planck equation (3.52). 

Exercise 7.5 Show that the mean value equation (7.65) follows from the 
Fokker-Planck equation 

-laP [(a_ a -*)(1 1_121 ) "' Bt = /]0: a + /J(i* a - g;J + g;J a nsat 

82 ] -
+2(n + nspon) /J(i/J(i* P, (7.67a) 

with corresponding stochastic differential equation 

W1 and W2 are independent Wiener processes. 

Equation (7.67a) is the laser Fokker-Planck equation. From this equation 
results (7.60)-(7.63) can be recovered, together with new results, such as the 
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linewidth of the laser field. In fact, from this equation we can derive all of the 
results we will obtain from the full quantum-statistical theory. The role of 
the full theory is really only to show how (7.67a) can be rigorously derived; 
and to show in some detail what approximations are needed to arrive at this 
stochastic model. It is important to realize that what we have here is essen­
tially a classical stochastic description for the laser field. Although, one might 
choose to couch the theory in quantum-mechanical language, the fluctuations 
of the laser field are the fluctuations of a classical stochastic complex field 
amplitude. Generally, quantum probability cannot be accommodated within 
a classical stochastic description, and therefore some "reduction" of the quan­
tum mechanics must take place as we pass from a fully quantum-mechanical 
microscopic formulation to the macroscopic laser Fokker-Planck equation. 
We will see how this reduction is made in the next few sections. This is not 
to say that we cannot label the noise on the laser field, or part of it, as quan­
tum noise. Quantum mechanics leaves its mark in the diffusion coefficient 
nspon· The size of this coefficient, specifically its nonzero value, is a state­
ment from quantum mechanics. This statement is found in the relationship 
between (7.7) and (7.26): stimulated emission gain is necessarily accompa­
nied by spontaneous emission noise. This is something that Einstein theory 
tells us. But Einstein theory is ad hoc - it is not integrated with the mathe­
matical formulations of mechanics and electromagnetism. Our job now is to 
derive the stochastic model defined by (7.67) from the theory of quantum 
electrodynamics. 

7.1.4 Two-Level Model and Laser Parameters 

First let us look again at the model for the laser medium. It is cumber­
some to carry a detailed description of the pumping process through into 
the quantum-statistical theory. Moreover, the model shown in Fig. 7.1 is, on 
the one hand, an idealization of any real pumping process, and on the other, 
not the only reasonable idealized model that might be chosen (Ref. [7.13] 
describes a commonly used four-level model). We therefore build our mi­
croscopic theory around a two-level model of the laser gain medium, ex­
cluding all additional states needed to achieve population inversion. This 
model includes everything essential to our purpose. The model is illustrated 
in Fig. 7.6. It may be derived as a limiting case of our three-level model by 
taking -y32 » Tp + -y31> 'Y21· In this limit, negligible population resides in 
state 13), and the pumping rate to the upper level of the laser transition is 
determined by Tp. We set 

and (7.4), (7.11), (7.13), (7.30) and (7.31), and (7.32), now read 

'Yh = 'Yl + 'Yl ( +'Yv), 

(7.68) 

(7.69a) 
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No- No-N l'i - 1'1 
2 1 - /'j + 1'1' 

/'hbi + 1'1) 
nsat = Bg2 , 

N21 = N~1 = N, 

I /'hbj + /'1) 
nsat = nsat = Sg2 · 

--~----~--~~----12) 
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(7.69b) 

(7.69c) 

(7.69d) 

(7.69e) 

Fig. 7.6 Two-level model for the laser 
medium. The three-level model of Fig. 7.1 
reduces to this model when /32 » rp + 

---'-------''------'------'--- 11) /31' /21· 

It is useful to summarize the parameters controlling the behavior of the 
stochastic model (7.67). In developing the full quantum-statistical theory, 
we will use van Kampen's system size expansion (Sect. 5.1.3) to provide 
a description of fluctuations around a deterministic macroscopic state - a 
rigorous version of the addition of thermal and spontaneous emission noise 
to the noiseless laser behavior illustrated in Fig. 7.2. As we look at each 
parameter, we might take this opportunity to identify the role it plays in the 
context of the system size expansion. To this end, we first introduce a scaled 
time f and scaled field amplitude &, defining 

f := Kt, 
:::_ -1/2-
a = nsat a. (7.70) 

Then (7.67a) and (7.67b) become 

aP [(a = a "*) = 2 _ 1 _ 82 J = of = a& a+ oa* a (1- p +pial ) + 2nsat(n + nspon) oaoa* P, 

(7.71a) 

and 

the Wiener processes W1 and W2 have variances f (the processes W1 and W2 
have variances t). 

Equations (7.71) depend on four parameters: p, n, nspon, and nsat· The 
saturation photon number plays the role of the parameter [l characterizing 
the system size in Sect. 5.1.3. The macroscopic limit - the limit of zero 
fluctuations - is reached for nsat ---+ oo. In this limit the behavior of the laser 
is controlled by a single intensive parameter, the pump parameter 
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(7.72) 

with 

(7.73) 

In a system of finite size there are fluctuations about the macroscopic state. 
We will see shortly that the rigorous system size expansion needed to describe 
these fluctuations is different for operation below threshold, at threshold, and 
above threshold. However, in each case the fluctuations scale as an inverse 
power of nsat· After this scaling has been removed, the strength of the fluctua­
tions is determined by two intensive parameters: the thermal photon number 

(7.74) 

and the spontaneous emission photon number 

1 2N 92 It 
nspon = c + 2 p = ---'-'---

lh"' It + ll 
(7.75) 

The two-level model for the laser medium suppresses the details of the 
pumping mechanism. It does, however, allow the pump parameter to be 
changed in two different ways. In the first, It provides the control. This 
applies when the lower level of the lasing transition is populated at thermal 
equilibrium, with N~ = N for It = 0. When It = ll, the populations N~ 
and N~ are equalized, and gain is available once It exceeds ll· Generally the 
laser operates with It- ll ~It+ ll· Then, from (7.72), 2C must be large 
so that the small difference between It and ll translates into sufficient gain 
to reach threshold. Equation (7.75) gives nspon = C + ~p ~ 1. 

The second mode of operation applies in situations where the lower laser 
level is an excited state that is not normally populated at thermal equilibrium. 
If decay out of this state is fast enough, it may be assumed that this level 
remains unpopulated while the laser is in operation. This requires that we 
take It ~ ll in the two-level model. The pumping excites atoms from an 
energy state below the lower level of the laser transition into the upper laser 
level. Thus, control over the pump parameter p is provided by changing 
N~ = N (consequently changing C). A four-level scheme is needed to give the 
simplest complete description of this process [7.13]. Since N~ = 0 br ~ IJ), 
we find nspon = p; at threshold, nspon = 1. This is the situation in Scully­
Lamb theory [7.3]. 

Since the saturation photon number determines the importance of fluc­
tuations, let us spend a little time to give it special consideration. If we use 
(2.33) to express d~2 in terms of the radiative decay rate IJ, (7.69c) and (7.6) 
give 
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where we have written VQ = nw6L, where nw6 is the cross-sectional area of 
the laser mode and L is the cavity length; 

(7.77) 

is the weak-field absorption cross-section for the laser transition. 

Note 7.5 The cross-section a 12 can be calculated from the radiated power 
in weak-field resonance fluorescence. Using (2.127), (2.120b), (2.112), and 
(2.91), we have (Y2 « 1) 

where E is the electric field amplitude for the coherent excitation. The power 
density in W /m2 for the exciting field is 2E0 cE2 ; thus, a 12 is obtained from 
the statement of conservation of energy, 2E0 cE2a 12 = P: 

The physical content of (7. 76) can be appreciated by setting 'Yi = 0, so 
that the laser medium acts as a two-level absorber. The ratio (1/--n)-:- (L/c) 
is the number of times a photon inside the cavity revisits each atom during 
the atomic lifetime. (Photons remain in the cavity for many atomic lifetimes 
when ~ « 'Yl·) Equation (7. 76). can now be written as 

( (}12) 1hl 
n/nsat = 2n nwg L/c 

= 2 X (number of photons presented to each atom within) 
an absorption cross-section per atomic lifetime · 

(7.78) 

Thus, the condition n = nsat means that half a photon is presented to the 
atom within an absorption cross-section per atomic lifetime. [Note that the 
greatest rate at which a two-level atom can scatter photons is half a photon 
per lifetime, corresponding to full saturation (n/nsat » 1), for which the 
probability for the atom to be in its excited state is one half.] 

The saturation photon number must be large if the fluctuations are to be 
small. In this regard there is an important qualitative difference between the 
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contributions to the diffusion constant in (7.71) coming from n and nspon· 

The thermal photon number may be extremely small. At optical frequencies 
n ""' 10-33 at T = 300K. Thus, thermal fluctuations are not intrinsic to the 
quantum dynamics of the laser and may be negligible quite independent of 
the size of nsat· On the other hand, the fluctuations represented by nspon 

are intrinsic to the quantized dynamics; they cannot be reduced (beyond a 
certain limit) other than by increasing nsat· To see this, note that at threshold 
nspon = C +~'and, from (7.72), C has a minimum value C =~-Therefore, 
if the laser is to lase, it is necessary that nspon ;:::: 1; the minimum nspon = 1 
occurs when the laser operates with Nf = 0. 

The laser is therefore intrinsically aware of its "size," as measured by 
nsat· This is because the laser is a nonlinear device whose energy is quantized 
in "lumps" of finite size. There is an interplay between nonlinearity and 
the size of the lumps. The nonlinearity derives from the saturation of the 
laser transition. The degree of saturation depends on the energy density per 
unit atomic linewidth at the site of each laser atom. A characteristic energy 
density Wsat is needed to "turn on" the nonlinearity. The number of photons 
(lumps) that must be present in the cavity to provide this energy density 
scales proportional to the mode volume. The same energy density may be 
achieved in a cavity with a large mode volume or a cavity with a small 
mode volume. The smaller mode volume provides the same Wsat with fewer 
photons. In a small volume the fluctuations associated with the coming and 
going of the lumps are large relative to the mean energy needed to turn on 
the nonlinearity. 

The role of nsat as a measure of system size is displayed explicitly in (7.76). 
This expression is proportional to the mode volume VQ = 1rw6L. Choosing 
wo = 1 mm, L = 15 em, >. = 0.6p,m, 'YL ""' 107 s-1 , and 'YT ""' rh ~ 3 x 108 s-1 

- numbers appropriate for a He-Ne laser - we obtain nsat ""' 108 . 

7.2 Phase-Space Formulation 
in the Normal-Ordered Representation 

7.2.1 Model and Hamiltonian 

The microscopic model for the single-mode homogeneously broadened laser 
is built on our descriptions of the damped harmonic oscillator (Sect. 1.4) and 
the damped two-level medium (Sect. 6.3). The model is shown schematically 
in Fig. 7.7. We use a ring cavity rather than a standing-wave cavity to avoid 
the awkward problem of spatial effects (Note 6.1). 

Following the approach of Chap. 1, we formulate the mathematical de­
scription in terms of a system S interacting with various reservoirs R. Our 
main interest is in the system S, which is comprised of a single ring-cavity 
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Fig. 7. 7 Schematic diagram of 
the microscopic laser model. 

mode for the laser field, coupled to N identical two-level atoms represent­
ing the laser medium. In the dipole and rotating-wave approximations, the 
Hamiltonian for this coupled atom-field system is given by 

Hs = HA + HF + HAF 

= ~fiwcJz + fiwcata + ilig(at.J_- aJ+), (7.79) 

where J_, J+, and Jz are the collective atomic operators defined by (6.44); 
the phases c/>j in the definition of J± are c/>j = kc · r j, where r j is the position 
of the jth atom; for simplicity we assume exact resonance between the atoms 
and the field. 

Hamiltonian (7. 79) has been studied extensively. Jaynes and Cummings 
where the first to study its single-atom version [7.14] and the many-atom 
Hamiltonian was first studied by Tavis and Cummings [7.15]. In our laser 
model Hs is only part of the story. The laser is intrinsically a dissipative 
system, and we must add various interactions between S and the environ­
ment to account for the flows of energy into and out of the system. First, 
the ring-cavity mode has three perfectly reflecting mirrors and one partially 
reflecting output coupler. We model the loss of energy through the partially 
reflecting mirror by a weak interaction with a reservoir of electromagnetic 
field modes outside the cavity (see Sect. 7.2.5), and then use the formalism 
for the damped harmonic oscillator from Chap. 1. Second, each atom loses 
energy by spontaneous emission (fluorescence) out the sides of the cavity. 
This energy loss is described by coupling each atom to the many modes of 
the radiation field, as in Sect. 6.3.1. Third, we need a model for the pumping 
that injects energy into the system. In Sect. 7.1.4 we saw how the pumping 
mechanism might be reduced to a simple rate li for the transfer of popula­
tion from the lower to the upper state of the laser transition. From ( 6.129) we 
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see that this may also be modeled by the reservoir interaction used to treat 
atomic decay. The terms proportional to 'Y(ii + 1) and '}'ii on the right-hand 
side of (6.129) describe downwards and upwards transitions between the two 
atomic levels, respectively (see Sect. 2.2.3). By retaining the term describ­
ing upwards transitions, and dropping the second term, we obtain a simple 
quantum statistical model for the pump. 

Note 7.6 The upwards and downwards transition rates appear in (6.129) 
in the ratio n/(n + 1) = e-1iwA/kBT. Mathematically, then, exclusively up­
wards transitions can be modeled as damping by a thermal reservoir with 
a low negative temperature. There is a small technical problem here, how­
ever, if we use a reservoir of harmonic oscillators as we have done previously. 
For negative temperatures the thermal equilibrium density operator for the 
harmonic oscillator is not normalizable. This difficulty reveals itself in the 
fact that the mean photon number calculated from (1.47) is negative. To get 
around this problem we can form the pump reservoirs from collections of two­
level systems. The master equation for the damped two-level atom may be 
derived following an almost identical calculation to that of Sect. 2.2.1 using 
a reservoir of two-level systems rather than harmonic oscillators. In place of 
(2.15b) and (2.15c) we have 

HR = ~ L /'u.;.;kEkz, 
k 

HsR = L n(r;,ka_Ek+ + r;,j;,a+Ek-), 
k 

(7.80a) 

(7.80b) 

where Ek-, Ek+, and Ekz are pseudo-spin operators for the kth two-level 
system of the reservoir, with frequency Wk and coupling constant "'k· The 
thermal equilibrium density operator for the reservoir is 

(7.81) 

The only changes to the master equation (2.26) are the replacements 

(7.82a) 

(7.82b) 

and, of course, 'Y is not to be read as the Einstein A coefficient, but as Fp. For 
low negative temperatures, (7.82a) and (7.82b) approach the limits ii --+ 1 
and n+ 1--+ 0; in (2.26), only the term proportional to ii, describing upwards 
transitions, survives. 
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To complete our microscopic laser model we add the environmental in­
teractions, coupling the system S described by the Hamiltonian (7.79) to a 
reservoir R with Hamiltonian 

HR = H}:; +H~ +Hfv (7.83) 

where 

H}:; = 2:: IU.Jkr!rk, (7.84a) 
k 

H~ = 2:: IU.Jkr!,;..rk,>., (7.84b) 
k,>. 

H~ = t ( 2:: ~IU.JkEkz) · (7.84c) 
j=l k 

H}:; is the Hamiltonian for the electromagnetic field modes that couple to 
the laser mode through the output mirror; H ~ is the Hamiltonian for the 
free-space electromagnetic field that causes the radiative decay of the atoms; 
and H~ is the Hamiltonian for N independent two-level pumping reservoirs. 
The electromagnetic field modes in (7.84a) and (7.84b) are in thermal equi­
librium at the ambient temperature T, and each two-level system in (7.84c) 
is described by an equilibrium density operator of the form (7.81), at some 
low negative effective temperature Tp. The interaction between S and R is 
described by the Hamiltonian 

where 

H%R = n(art + atr), 
N 

HffR = 2:: n(oj_FJ + ai+Fj), 
j=l 

N 

H~R = 2:: n(aj_rJP + aj+rjp)· 
j=l 

(7.85) 

(7.86a) 

(7.86b) 

(7.86c) 

rt and rare defined in (1.39b); rJ and rj are defined in (6.125b); and 

r t -"" i* pj 
jp = ~ "'k LJk+' 

k 
rjp = 2:: "'kEL. (7.87) 

k 

Equations (7.79) and (7.83)-(7.86) define the complete laser Hamiltonian 

H = Hs +HR+HsR· (7.88) 
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7.2.2 Master Equation for the Single-Mode Homogeneously 
Broadened Laser 

The laser master equation is now derived using the formalism of Sects. 1.3.1-
1.3.3. We may pass directly to the general non-Markovian equation (1.34), 
with 4N + 2 system operators 

{si} = (a,at;al_,al+,···,aN-,aN+ial-,al+, ... ,aN-,aN+), (7.89a) 

which couple to 4N + 2 reservoir operators 

{ri} = (rt,r;rf,rb ... ,rt,rN;rfp,nP, ... ,rtp,rNp)· 

Operators in the interaction picture are defined by 

{si} = e(ifli)Hst { si}e-(i/li)Hst, 

{ fi} := e(ifli)Hnt { Ti}e-(i/li)Hnt. 

(7.89b) 

(7.90a) 

(7.90b) 

Two simplifications enable us to write down the master equation directly 
from results we have already derived. First, we note that the reservoir op­
erators { fi} are all statistically independent, except for the pairs (rt, r), 
( rJ, r 3), and ( rJ P, r 3 P). This follows because the reservoirs for damping the 
laser mode, damping the atoms, and performing the pumping, are statisti­
cally independent; and although the operators ( rJ' rj) are derived from the 
same reservoir for all j, the spatial distribution of the atoms ensures the inde­
pendence of these operators for different j [see the discussion below (6.128)]. 
We may now write 

(7.91) 

where each of the three terms on the right-hand side has the form (1.34), with 

(sb···,s2N)A = (al_,a-l+, ... ,o-N_,a-N+), 
- - - -t - -t -(r1, ... ,r2N)A = (r1,rb···,rN,rN), 

(s1, ... ,s2N)p = (al-,al+,···,a-N_,a-N+), 

(fb···,f2N)p := (ffp,flp,···,f1p,fNp)· 

(7.92a) 

(7.92b) 

(7.92c) 

(7.92d) 

(7.92e) 

(7.92f) 

One obstacle remains: the form of the Hamiltonian Hs that is to be substi­
tuted into (7.90a). This Hamiltonian includes the interaction HAF between 
the laser mode and the laser atoms. In the absence of this interaction, us­
ing the standard Markov approximation described in Sect. 1.4.1, (p)F and 

(P)A produce the terms on the right-hand sides of (1.73) and (6.129), respec­
tively; as we have noted, the contribution from (/J)P can also be deduced from 
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(6.129). The presence of the interaction term HAF means, however, that the 
three environmental interactions are not completely independent. Although 
the reservoir operators are statistically independent, there is a communica­
tion from one reservoir interaction to the other through the internal coupling 
in the systemS. We discussed the effects of such coupling in Sect. 2.3.2. The 
system S interacts with the reservoir R at the eigenfrequencies of the full sys­
tem Hamiltonian H s = H A+ H F + H AF, rather than at the frequencies of the 
decoupled components HA and Hp. But for reasonable coupling strengths, 
this change is negligible. This is shown explicitly for Scully-Lamb laser theory 
by Carmichael and Walls [7.16]. We therefore neglect the effects of HAF on 
the reservoir interactions by replacing Hs with HA + Hp in the definitions 
of {si} and jj; the interaction term [HAF, p]/in must then be added to the 
right-hand side of (7.91). With these modifications we may pass directly from 
(7.91) to the master equation for the single-mode homogeneously broadened 
laser: 

p = -i~wc[Jz, p] - iwc[at a, p] + g[at J_ - ah, p] 

+ "'(2apat- a tap- pat a)+ 2"'ii(apat +at pa- a tap- paat) 

+ ~! (t 2aj-paj+ - ~Jzp- ~pJz - N) 
J=1 J 

+ ~l (t 2aj+paj- + ~Jzp + ~pJz - N) . (7.93) 
J=1 J 

The damping terms for the laser mode are taken from (1.73) with 1 ~ 2"'; the 
terms describing the atomic damping and pumping are taken from (6.129) 
with l(ii + 1) ~ ll and Iii~ IT· 

Note 7.7 The thermal photon number (determined by the ambient temper­
ature) enters the atomic transition rates as well as appearing explicitly in the 
source term for the laser mode; the interaction H ff R between the laser transi­
tion and the free-space electromagnetic field generates transitions describing 
the absorption and emission of thermal photons. The upwards thermal tran­
sitions add to the pump transitions generated by H~R· Thus, if 1 is the 
Einstein A coefficient for the laser transition, IT :::::Iii+ Fp ~ Fw When the 
pump reservoirs are taken to be in a low negative effective temperature Tp, 
downwards transitions are only produced by HffR; 11 = 121 = l(ii + 1). 

Note 7.8 With nonradiative dephasing processes included, the term 

(P) = 1
2P (t ajzPajz - N~ 

dephase , 1 J= 

(7.94) 

is added to the master equation (7.93). 
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7.2.3 The Characteristic Function and Associated Distribution 

We wish to convert the operator equation (7.93) into a phase-space equation 
for the full laser system of atoms plus laser field. For this purpose we intro­
duce a distribution function in the normal-ordered representation using the 
Glauber-Sudarshan representation for the field, and Haken's representation 
for N two-level atoms. Combining the definitions of Sects. 3.2.1 and 6.2.3, 
we define the characteristic function 

(7.95) 

The normal-ordered averages for the field operators and collective atomic 
operators are given by 

(a tP' aq' JP Jr Jq) = tr (pa tP' aq' JP Jr JP) + z - + z -

ap' +q' +p+r+q I 
= 8(iz*)P' 8(iz)q' 8(ie)P8(iry)r8(i~)q XN z=z*=O 

e=e·='l)=o 
(7.96) 

The distribution P(a, a*, v, v*, m) is the five-dimensional Fourier transform 
of xN (z, z*, ~' C, ry): 

w +is, w _is, ry)e-2i(JJ.x-vy)e-2i(w!'J-scp)e-i'l)m, 

(7.97) 

with the inverse relationship 

XN (z, z*, ~' CTJ) 

= J d2a J d2v J dm P(a, a*, v, v*, m)eiz*a* eizaeiCv* eievei'l)m 

= I: dx I: dy I: d19 I: d<p I: dm P(x + iy, x- iy, 

19 + i<p, 19 _ i<p, m)e2i(JJ.x-vy) e2i(w!'J-scp) ei'l)m. 

(7.98) 
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From (7.96) and (7.98), we have 

<a tP' aq' JP JT Jq) + z -

ap' +q' +p+r+q J J J 
= a(iz*)P'a(iz)q'a(i~*)Pa(iry)ra(i~)q d2a d2v dmP(a,a*,v,v*,m) 

X eiz*a* eizaeiCv* eif.veiryml 

with 

z=z*=O 
f.=f.*=ry=O 

(7.99a) 

( a*P' aq' v*Pmrvq) P = J d2a J d2v J dm a*P' aq' z*Pmr vq P(a, a*, v, v*, m). 

(7.99b) 

7.2.4 Phase-Space Equation of Motion for the Single-Mode 
Homogeneously Broadened Laser 

Converting the master equation (7.93) into a phase-space equation of motion 
is now accomplished by a straightforward application of the techniques we 
have learned in Sects. 3.2.2, and 6.1.3 and 6.3.4. In fact, we have already 
derived most of the laser phase-space equation; the interaction term g[at J_­
aJ+, p] is the only term in (7.93) that we have not converted to phase-space 
form in one of our earlier calculations. Drawing on our previous results for 
the damped harmonic oscillator and the damped two-level medium, we may 
write the phase-space equation of motion for the single-mode homogeneously 
broadened laser in the form 

aP [L ( * a a a ) L ( * a a ) at= A V,V ,m, av' av*' am + F a, a' aa' aa* 

L ( * * a a a a a)] + AF a,a ,v,v ,m, aa' aa*' av' av*' am P, (7.100) 

where, from (6.157) [with J'(n + 1)---+ /'!, ')'ii---+ 'YiL 
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+2 e-2 arn: + ---- -v+ -v* +2N--; ( 
8 rP 1) ( a a ) a2 J 

avav* 2 av av* avav* 
(7.101a) 

and from (3.47) (with 1--+ 2K), 

LF(a,a*, :a' a~*) 
==:(K+iwc)aa a+(K-iwc)aa a*+2Knaaa2 

• (7.101b) 
a a* a a* 

The derivation of the one term we have not met previously is left as an 
exercise: 

Exercise 7.6 Show that the interaction term g[at J_- aJ+, p] in the master 
equation produces the differential operator 

L ( * * a a a a a) 
AF a,a ,V,V ,m, aa' aa*' av' av*' am 

{ [( _ 2 8 ) * a a2 J a = -g e am - 1 v + -m- -v a+ -v 
av av2 aa 

+ e- am -1 v+-m---v a +--v [( 2 8 ) a a2 *] * a *} fJv* av*2 fJa* 
(7.101c) 

in the phase-space equation of motion. 

Note 7.9 If the nonradiative dephasing term (7.94) is included in the master 
equation we add the term LdephaseP to (7.100), where Ldephase is given by 
(6.158). 

Equation (7.100) is considerably more complicated than the Fokker­
Planck equation we invented from the rate equation treatment of the laser 
[Eq. (7.67a)J. First, it describes not only the laser field, but also the atoms. 
Second, it is not a Fokker-Planck equation; the atomic variables introduce 
derivatives to all orders, and we cannot hope to find the exact solution for 
P(a, a*, v, v*, m). In fact, from the discussion in Sects. 6.1.4 and 6.2.4 we 
know that the exact solution to (7.100) is highly singular, and only approx­
imately represented by a smooth, well-behaved function. Our task now is 
to introduce the approximations that allow us to extract useful information 
from this equation. With the use of van Kampen's system size expansion and 
the adiabatic elimination of atomic variables, we will be able to connect the 
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complicated phase-space equation of motion (7.100) with the Fokker-Planck 
equation (7.67a). Before we begin this exercise we need to spend a little time 
on one last detail of our laser model. 

7.3 The Laser Output Field 

7.3.1 Free Field and Source Field for a Lossy Cavity Mode 

The master equation treatment of resonance fluorescence (Sect. 2.3) was built 
around a description of the source of the fluorescence, the driven two-level 
atom. The master equation (2.96) provided a mathematical description of the 
atomic dynamics. To obtain information about the fluorescence we needed 
a relationship between the atomic source and its radiated field; this was 
provided by the operator version of the dipole radiation formula, given by 
(2.76) and (2.83). 

We have an analogous situation here. The intracavity laser field is de­
scribed by the driven, damped oscillator, obeying the master equation (7.93). 
This is not, however, the laser output field. Classically, the field at the output 
of an optical cavity is obtained from the intracavity field after multiplying 
by a mirror transmission coefficient. Quantum mechanically, this simple rela­
tionship will not do. It asserts that the output field is described by operators 
../Tei<PTa and .;Te-i<PTat, where T is the transmission coefficient for the 
output mirror and ¢r is a phase change on transmission through the mir­
ror. But a and at obey the commutation relation [a, at] = 1, and therefore 
[../Tei<PTa, .;Te-i<PTat] = T < 1. As we saw at the very beginning of the 
book (Sect. 1.2), special care must be taken to preserve commutators when 
dealing with dissipation in quantum mechanics. 

What does the transmission of an intracavity field through an output 
mirror have to do with dissipation? Well, the cavity output field carries the 
energy dissipated by the laser mode. The energy lost from the cavity is not 
simply discarded, it is radiated into the many modes of the electromagnetic 
field outside the cavity. These modes form the reservoir that damps the in­
tracavity field, and it is these modes that carry the useful laser output. We 
modeled the laser mode losses by the reservoir interaction (7.86a). The mas­
ter equation describes one end of this interaction; by eliminating the reservoir 
variables, a simple description is obtained for the system S which retains the 
dissipative effects of the reservoir R. We must now consider the other end 
of the interaction - the effect of the system S on the reservoir R. We can 
construct the laser output field by calculating the source contribution from 
S to the reservoir mode operators rk and rt, a calculation analogous to that 
of Sect. 2.3.1. 

Figure 7.8 shows the laser cavity with external traveling-wave modes rk 
satisfying periodic boundary conditions at z = - L' /2 and z = L' /2. The 
field outside the cavity is described by the Heisenberg operator 
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Fig. 7.8 Schematic diagram of 
the laser cavity and output field 
modes. 

with 

where 

E(z, t) = _E(+l(z, t) + .E<-l(z, t), 

.E<+l(z, t) = ieo L J 2t.~~~ rk(t)ei[(wk/c)z+¢(z)l, 
k 

.E<-l(z,t) = _E(+l(z,t)t, 

z>O 
z < 0' 

(7.102a) 

(7.102b) 

(7.102c) 

(7.103) 

¢R is the phase change on reflection at the cavity output mirror. Of course, 
there are also counterpropagating modes, and modes polarized orthogonal to 
e0 ; but these can be neglected since they do not couple to the laser mode. 
Using the Hamiltonian (7.88), we obtain Heisenberg equations of motion 

(7.104) 

The term i!'Cfo..a couples energy from the intracavity field into the modes of the 
external field; for the present, the coupling constant "'k need not be specified. 
Integrating (7.104) formally, we have 

rk( t) = rk (O)e-iwkt - ii'C/:,e-iwct lot dt' a( t')ei(wk-wc )(t'-t)' (7.105) 

where a(t) is the slowly-varying operator 

a(t) = eiwcta(t). (7.106) 

Then the laser output field is given by 
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kC+l(z, t) = Ej+\z, t) + ki+l(z, t), (7.107) 

with 

E(+)(z t) = ie "'"""'J liwk r (O)e~i[wk(t~zjc)~¢(z)] 
f ' 0 L;- 2E0AL' k ' 

(7.108) 

and 

kC+l(z t) = e J n e~i[wc(t~z/c)~¢(z)J 
s ' 0 2EoAL' 

X L VWk h:k t dt' a( t')ei(wk~wc )(t' ~t+zjc). 
k Jo (7.109) 

This field decomposes into the sum of a freely evolving field Ej+) (z, t) (free 

field), and a source field Ei+)(z, t), in a manner analogous to the decompo­
sition (2. 76)~(2. 78) for resonance fluorescence. 

To express the source field in manageable form we introduce the density of 
states g(w) = L' /2nc for traveling-wave modes in one dimension, and perform 
the summation over k as an integral: 

Assuming that a(t') varies slowly compared with the optical period 2n/wc, 
we can treat the integrals in the manner described below (2.82) ~ we set 
yfwh:*(w) ~ Vwch:*(wc) and extend the range of the frequency integral to 
-oo; after evaluating the frequency integral, we obtain 

= eoJ liwc rv h:*(wc)e~i[wc(t~zjc)~¢(z)] rt dt' a(t')8(t'- t + z/c) 
2EoAc V --;; Jo 

{ rae fj' . eo -A -h:*(wc)e"<PRa(t- zjc) 
= 2Eo c c 

0 

ct>z>O 
(7.111) 

z < 0. 

Thus, for ct > z > 0, the source field is proportional to the intracavity field 
evaluated at the retarded time t - z /c. 

Note 7.10 The source field radiated by a standing-wave cavity can be found 
in much the same way. In this case the external reservoir field is expanded 
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in the standing-wave modes of a large external cavity of length L'. The time 
integral in (7.110) is taken over the sum of two terms, one proportional to 
exp[i(w-wc)(t' -t+z/c)], and the other proportional to exp[i(w-wc)(t' -t­
z/c)]; the two terms are contributed by the counterpropagating components 
of the reservoir modes. We expect the source field to propagate in only one 
direction, despite the presence of counterpropagating terms in the reservoir 
modes. This follows naturally from the mathematics. Two 8-functions, 8(t'­
t + zjc) and 8(t'- t- zjc), appear inside the integral leading to (7.111). The 
range of this integral selects the contribution from the 8-function that gives 
a retarded field propagating away from the cavity output mirror, and rejects 
the second contribution. [An analogous situation is illustrated by (2.82) and 
(2.83).] 

It is now time to determine the value of the reservoir coupling constant 
K*(wc). If (7.111) is to give the expected relationship, (a) ----+ Vf'ei<I>T(a), 
between the mean intracavity field and the mean output field, we must choose 

(7.112) 

where K = Tc/2L is the cavity decay rate appearing in the master equation 
(7.93). [Note that the field inside the laser cavity is expanded like (7.102a), 
with no sum, and with rk----+ a, wk----+ we, and L'----+ L.] We can also derive this 
relationship from (1.70a) (without the phase factor). In the present notation, 
(1.70a) gives 

2K = 27rg(wc)l~~;(wc)l 2 . 

Substituting g(wc) L' /27rc for the reservoir density of states, we find 
JV?CI~~;(wc)l =~'which is the modulus of the relationship (7.112). The 
final form of the source term in the cavity output field is now 

EA (+)( ) _ { ieoJ21iwAc .,f2;;,ei<I>Ta(t- z/c) 
s z, t - Eo c 

0 

ct>z>O 
(7.113) 

z < 0. 

In fact, (7.113) is the relationship we would write down directly from the 
classical result for the transmission of the intracavity field through the cavity 
output mirror; we could have constructed the complete expression (7.107) 
for the cavity output field from our understanding of the classical boundary 
conditions at the output mirror; the free-field term is just the contribution 
from the reflection of incoming reservoir modes into the cavity output (our 
theory assumes R = 1 - T ~ 1). The only difference between the quantum­
mechanical and classical pictures is that .E} +) ( z, t) and E~ +) ( z, t) are opera­
tors in the quantum-mechanical theory, and therefore play an algebraic role 
that is absent in a classical theory. The source field does not commute with 
the free field - the operators .Ej±) (z, t) and .E~'f) (z, t) do not commute; it is 
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their noncommutation that preserves the commutation relation for the oper­
ators, iJ<+>(z, t) and iJ<->(z, t), of the total field. Thus, the free-field term 
cannot be dropped from (7.107) even when the reservoir modes are in the 
vacuum state. On the other hand, when the reservoir modes are in the vac­
uum state this concern for algebraic integrity in the quantum theory really 
has little practical consequence, since we are generally interested in normal­
ordered, time-ordered operator averages, quantities that are insensitive to 
vacuum contributions. A discussion of these issues is given in Ref. [7.17]. 

Note 7.11 Equation (7.113) yields exactly what we would expect for the 
average photon flux from the laser cavity: 

2t::ocA A ( ) A (+) t TU.vc (E 8 - (z, t)E 8 (z, t)) = 2~~:(a (t- zjc)a(t- zjc)). (7.114) 

The right-hand side is the product of the photon escape probability per unit 
time and the mean number of photons in the cavity. 

Of course, the free-field term does contribute to normal-ordered, time­
ordered averages when the reservoir modes are not in the vacuum state. 
Moreover, there are situations in which non-normal-ordered, or non-time­
ordered averages are needed. Then things are not so straightforward; the free 
field contributes to the output, and to calculate its contribution we generally 
need nontrivial information about how it is correlated with the source. Now 
is a good time to see how this information can be obtained. 

7.3.2 Coherently Driven Cavities 

We start with a simple example. Consider an empty cavity driven by a coher­
ent field. The reservoir mode with frequency Wk = we is in the coherent state 
1,8), and all other modes are in the vacuum state. Thus, from (7.107), (7.108), 
and (7.113), the cavity is driven on resonance by the mean field (z < 0) 

(iJ<+>(z, t)) = (Ej+>(z, t)) 

_ ., J TU.vc /Q -iwc(tz-fc) 
- zeo 2t::oAL' fJe ' 

with mean output field (z > 0) 

(iJ<+>(z, t)) = (Ej+>(z, t)) + (E~+>(z, t)) 

= ieoJ TU.vc (ei<l>n,a 
2t::0 AL' 

(7.115) 

+~-.J2K,ei<l>r (a(t- zjc))) e-iwc(t-zfc). (7.116) 
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The geometry is shown in Fig. (7.8). The first term inside the bracket in 
(7.116) is the input field, reflected into the output, and the second term 
is the field radiated by the cavity. Since the cavity has only one partially 
transmitting mirror, in the steady state the two contributions must interfere 
to reconstruct the input amplitude, with a possible phase change. To check 
that this is so we need (ii)ss· This is obtained from the mean-value equation 

(7.117) 

where ~~;(we) is the system-reservoir coupling coefficient given by (7.112); the 
driving term in (7.117) is derived from the interaction Hamiltonian 

(7.118) 

Substituting the steady-state solution to (7.117), (a)ss = -i~~;(we)f3j~~;, into 
(7.116), we find (z > 0) 

(i.J<+l(z t)) = ieoJ hwe [eicf:>R(3 
' 2t:oAL' 

+JV/c..j2;,eicf:>T(-ff, ~{3 ei(cf:>R-c/:>T))] e-iwc(t-z/c) 

__ icf:>R ·• ~{3 -iwc(t-z/c) 
- e zeoy~ e . (7.119) 

This is the mean driving field amplitude multiplied by the phase factor -eicf:>R. 
We do, therefore, recover the anticipated result. 

Note 7.12 Equation (7.112) gives the phase of the coupling coefficient ~~;(we) 
as arg[~~;(we )] = ¢R- <Pr -rr /2. This phase was chosen so that it is consistent 
with the boundary condition that couples the field (a) out of the cavity. 
We might, alternatively, choose the phase of ~~;(we) so that the driving term 
-i~~;(we ){3 in (7.117) is consistent with the boundary condition that couples 
the external driving field into the cavity. This requires arg[~~;(we )] = <Pr -
¢R + rr/2. The two choices of phase are consistent if ¢R- <Pr = rr/2. It can 
be verified that this relationship between the phase changes on transmission 
and reflection at a mirror does, indeed, hold. It must hold for energy to be 
conserved. Consider fields of amplitude A and B incident on the two faces of a 
mirror such that the outgoing field amplitudes are C = ..fiieicf:>R A+ fieicf:>T B 
and D = ..fiieicf:>RB+fieicf:>T A. The incoming and outgoing energy fluxes are 
proportional to IAI 2 +IBI 2 and ICI 2 +IDI 2 = IAI 2 +IBI 2 +2vRTcos(¢R-¢r), 
respectively. Thus, we require ¢ R- <Pr = 1r /2 for the energy to be conserved. 

What happens if we allow the cavity in Fig. 7.8 to have two partially 
transmitting mirrors, with transmission coefficients T1 « 1 (~~; 1 = cTl/2£) 
and T2 « 1 (~~;2 = cT2/2L)? Let T1 refer to the mirror at which we input the 
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coherent amplitude (3, and T2 refer to a second cavity mirror with a vacuum 
field input. The mean output field at mirror 1 is given by (7.116) with"" ---+ "'I· 
The steady-state field amplitude is 

At mirror 2 the steady-state output field amplitude is given by a similar 
expression: 

(7.120b) 

In the mean-value equation (7.117) we now have "'I + ""2 in place of""' and 
"'(we)= -iVcTIJ~ei(c/>R-ci>r). Thus, 

(7.121a) 

and 

(7.121b) 

When ""2 = 0 we recover the result from (7.119) - the full input field ampli­
tude appears in the output at mirror 1, with no output at mirror 2. When 
"'I = ""2 the free-field and source-field contributions cancel at mirror 1; there 
is no output at mirror 1, and the full incident field amplitude is transmitted 
by the cavity through mirror 2. More generally, we obtain partial transmission 
and partial reflection by the cavity with leo(.Ei+)(z, t)W + leo(E~+)(z, tW = 
(nwc /2E0AL') 1;31 2 , as expected from the classical theory of interferometers. 
It is clear from this example that the free-field term in (7.107) is not always 
negligible. 

7.3.3 Correlations Between the Free Field and Source Field 
for Thermal Reservoirs 

Accounting for free-field contributions is more difficult when this field is not in 
a coherent state. It is common to encounter thermal reservoirs, as in our laser 
theory, and reservoirs with different statistical properties are also sometimes 
of interest - for example, squeezed reservoirs, where the free field is in a 
broadband squeezed state. We can appreciate the difficulties that arise, as 
well as the road to their resolution, by considering the first-order correlation 
function for the full cavity output field E(z, t). First, let us simplify the 
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notation in (7.107), (7.108), and (7.113) by scaling the field operators so that 
the source field appears in units of photon flux. We write (ct > z > 0) 

E(z, t) = Vcfilrt(t- z/c) + ~a(t- z/c), (7.122) 

where 

(7.123a) 

(7.123b) 

Then the normalized first-order correlation function for the field E(z, t) is 
given by 

g~!)(T) = ((£t£)ssr1 {(c/L1 )(rj(O)r1(T))+ 2~~;L~~ (at(t)a(t + T)) J 

+VciiJ~L~ (rj(t)a(t + T)) + t~~ (at(t)r1(t + T)) ]}, 

(7.124) 

with 

At A I t t r::7TI rn-( t t ) (£ £)ss=(c/L)(r1rt)+2~~;(a a)ss+vc/L1 v2~~; (r1a)ss+(a TJ)ss. 

(7.125) 

We need more than the source-field correlation function (at(t)a(t + T)) if 
we are going to calculate this quantity. The free-field correlation function 
(rj(t)rt(t + T)) is presumably straightforward to calculate, given the state of 
the reservoir. But how do we calculate the correlations between the free field 
and the source field, the correlation functions (rj(t)a(t+T)) and (at(t)r1(t+ 
T))? 

When the free field is in a coherent state these correlation functions fac­
torize; because they are in normal order, the action of r} and r f to the left 
and right, respectively, on the reservoir state, replaces the operators by co­
herent amplitudes. In general, however, there is no similarly straightforward 
procedure available. Gardiner and Collett [7.18) provide a method for calcu­
lating these correlation functions using an input-output theory built around 
quantum stochastic differential equations - a Heisenberg picture formulation 
of reservoir theory. We will follow a different approach which is more closely 
tied to the Schrodinger picture formulation of reservoir theory we have been 
using. It is not possible to perform a single calculation that is applicable to 
all master equations. As an illustration we consider a fairly general form of 
the master equation, with p = £p, where the action of £ is defined by 

A 1 A I A 
£0 = in [Hs, OJ +Lout+£ 0, (7.126) 
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.CoutO= K:(2a6at- a tab- bat a) 

+ 2K:n(a6at + at6a- a tab- Oaat), 

.c'6 = :~:::Cjk[ojo, 6k] + djk [6j, 66k]; 
jk 

(7.127a) 

(7.127b) 

6 is an arbitrary system operator; .Cout describes the interaction of the cavity 
mode (source) through the output mirror with a reservoir in thermal equilib­
rium, and .C' includes reservoir interaction terms involving system operators 
Oj and Ok that commute with a and at. The laser master equation (7.93) has 
this form, where the operators Oj and Ok are the Pauli pseudo-spin operators 
describing the lasing medium. 

We must begin our calculation at a level that still includes the reservoir 
operators explicitly. The master equation is of no direct use since the reservoir 
operators have been traced out of this equation. We return to the Heisenberg 
equations of motion. The Heisenberg equation for the mode operators of the 
reservoir field is given by (7.104). The Heisenberg equation for the lossy cavity 
mode is 

a= i~ [a,Hs + HR + HsR] 

1 F l =iii [a, Hs + HsR 

1 ·~ = 'li [a, Hs] - z L.,.; K:krk, 
z k 

(7.128) 

where we have used HfR = li(art + atr), with rt and r given by (1.39b). 
Substituting the solution (7.105) for rk(t), and treating the mode summation 
and time integral as we did in passing from (7.110) to (7.111), we have 

a= ·~[a, Hs] - e-iwct L IK:kl2 t dt'ii(t')ei(wk-wc)(t'-t) 
z k lo 
- i L K:krk(O)e-iwkt 

k 

= .;_[a,H8 ]- (L'/c)e-iwct_!_ (XJ dwiK:(wW ftdt'ii(t')ei(w-wc)(t'-t) 
zli 271' lo lo 
- i L K:krk(O)e-iwkt 

k 

= .~[a, Hs]- ~(L' /c)IK:(wcWa- i L K:krk(O)e-iwkt 
z k 

= .~[a, Hs]- K:a- i L K:krk(O)e-iwkt. 
z k 

(7.129) 
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The last term on the right-hand side of (7.129) describes the driving of the 
cavity mode by the freely evolving modes of the reservoir field. The cav­
ity mode will only respond to those free-field modes with frequencies close 
to we. For these frequencies we may read (7.129) with "'k = "'(we) = 
-iei(</>n-</>T)JC[JJ../2K,, and (7.123b) with Jwk/wc = 1. Thus, (7.129) may 
be written in the form 

(7.130) 

Equation (7.130) allows us to express the correlations between the free 
field and the source field in terms of averages involving system operators 
alone. By multiplying this equation on the left or right by an arbitrary system 
operator 6, we find 

JC[JJ~(O(t + r)rJ(t)) 

1 ' ' ' 
= in (O(t + r)[a, Hs](t))- "'(O(t + r)a(t))- (O(t + r)a(t)), 

(7.131a) 

JC[JJ~(rJ(t)O(t + r)) 
1 ' ' ' 

= in ([a, Hs](t)O(t + r))- "'(a(t)O(t + r))- (a(t)O(t + r)), 

(7.131b) 

and, for r > 0, 

..rcJij~(O(t)rJ(t + r)) 

( d ) ' 1 ' = - dr +"' (O(t)a(t + r)) + in (O(t)[a, Hs](t + r)), 

(7.132a) 

..rcJij~(rJ(t + r)O(t)) 

( d ) ' 1 ' =- dr +"' (a(t + r)O(t)) +in ([a, H 8 ](t + r)O(t)). 

We will use these relationships to prove 

..rcTfJ~(O(t + r)r1(t)) = { ~n([O~t+ 7), a(t)J) 

2"'n([O(t + r), a(t)]) 

and 

(7.132b) 

r<O 
r = 0 (7.133a) 

T > 0, 
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VcfiJ~(rt(t)O(t + T)) = { :(n + 1)([0~t + T), a(t)]) 
2K(n + 1)([0(t + T), a(t)]) 

T<O 

T=O 

T > 0. 
(7.133b) 

Most of the two-time averages appearing on the right-hand sides of (7.131a) 
and (7.131b), and (7.132a) and (7.132b), can be evaluated directly using the 
quantum regression formula in the version (1.97) or (1.98). A little thought 
is required, however, to evaluate the averages involving a. 

The proof of (7.133a) and (7.133b) draws on the explicit form of Lout, 
since it is through this operator that information on the state of the reservoir 
field enters. Specifically, we will need the following results: 

Exercise 7.7 For the superoperator Lout +L' defined in (7.127), show that 

tr[a(Lout + L')O] = -Ktr(aO), (7.134a) 

(Lout+ L1 )(a0) = a[(Lout + L1 )0] + KaO + K2n[a, OJ, (7.134b) 

(Lout+ L1 )(0a) =[(Lout+ L')O]a + KaO + K(2n + 1)[a, 0], (7.134c) 

where 6 is an arbitrary system operator. 

We will follow the proof of (7.133a) through in detail, and leave the similar 
proof of (7.133b) as an exercise. 

Proof of (7.133a}- T < 0: The vanishing of correlations between the free field 
and source field for T < 0 is expected on physical grounds. Correlations arise 
through the driving term proportional to TJ in (7.130). But this equation 
predicts that a(t) will only depend on rt(t') for t' ~ t. If TJ is correlated 
with itself at later times, correlations between a(t) and rt(t') fort' > t could 
still arise. However, r 1 appears as a 8-correlated field to the cavity mode. 
Of course, it is not strictly 8-correlated. But the cavity mode only responds 
to a narrow band of frequencies around we, in which case (7.123b) leads to 
8-correlated free-field fluctuations in the sense of the discussion below (1.52). 
We therefore expect that (O(t + T)rt(t)) = (O(t + T))(rt(t)) = 0 forT< 0. 

We prove this result from (7.132a). We must show that the correlation 
function on the left-hand side vanishes for T > 0. Notice that if the right­
hand side of (7.132a) is set to zero, we obtain the equation of motion for 
(O(t)a(t+T)) given by the quantum regression formula [in the form (1.107)] 
from the mean-value equation 

-(a) - K(a) + :n ([a, H 8 ]) = 0. 

The vanishing of the correlation function on the left-hand side is required, 
therefore, for the quantum regression formula to hold. More formally, from 
(1.97), we have ( T > 0) 
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c~ + K) (O(t)a(t + r)) = (d~ + K)tr{aec 7 (p(t)O)} 

= tr{ a(C + K)ecr (p(t)O)} 
1 c A 

= ilitr{a[Hs,e 7 (p(t)O)]}. 

where we have used (7.134a). Using the cyclic property of the trace, and again 
using (1.97), we find 

( d ) A 1 c A dr + K (O(t)a(t + r)) = iii tr{(a, Hs]e 7 (p(t)O)} 

1 A 

= iii (O(t)[a, Hs](t + r)). (7.135) 

Substituting (7.135) into (7.132a) gives (O(t)rJ(t + r)) = 0 forT > 0. 0 

Proof of (7.133a)- T = 0: We prove this result using (7.131a). To calculate 
the average (O(t)a(t)) we may write, for any two system operators 61 and 
62, 

(7.136) 

and 

(0102)- (0201) = trs0R{ x(t)(o1i~[62,H]- i~[61.H]62)} 
{

A 1 A A 1 A } 

= trs0R 02 iii [H, x(t)01]- 01 iii [H, 02x(t)] 

= trs{ 02.C(p(t)01]- 01.C[02p(t)l}, (7.137) 

where Hand x(t) are the Hamiltonian and density operator, respectively, for 
S ® R, and the trace over the reservoir is taken in the same Born-Markov 
approximation used to derive the master equation (Chap. 1). From (7.136) 
and (7.137), 

2(0102) = ~ (0102) + tr{ 02.C(p(t)01]- 01.C[02p(t)]}. (7.138) 

Equations (7.138) and (7.126), and the master equation p = Cp, now give 

2(0a) = !:...(oa) + tr{ a.C[p(t)O]- OC[ap(t)l} 
dt 

= tr[Oa.Cp(t)] + tr{ a.C[p(t)O]- OC[ap(t)l} 
1 A A A A 

= iii tr[OaHsp(t)- Oap(t)Hs + aHsp(t)O- ap(t)OHs 

- OHsap(t) + Oap(t)Hs] + tr{ Oa(.Cout + C')p(t) 

+ a(Cout + .C')[p(t)O]- O(.Cout + C')[ap(t)J}. (7.139) 
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We rewrite the second term in the curly bracket using (7.134a), and the third 
term in the curly bracket using (7.134b). Then, after reordering operator 
products using the cyclic property of the trace, we find 

' 1 ' ' ' 
(OiL) = in (O[a, Hs])- "'(Oa)- "'n([O, a]). (7.140) 

Substituting (7.140) into (7.131a) completes the proof of (7.133a) forT= 0. 
D 

Proof of {7.133a}- r > 0: The proof again follows from (7.131a). We now 
need the average (b(t + r)a(t)). For any two system operators b1 and b2, 
we have (r > 0) 

(b1(t + r)b2(t)) 

= tr {x(t)e(i/n)Hrb e-(i(/n)Hr ~[b H]} S®R 1 in 2, 

= trs0 R { b1e-(i(/n)Hr i~ [b2Hx(t)- Hb2x(t)] e(ifn)Hr} 

= trs®R{ b1e-(i(/n)Hr i~ [ b2(Hx(t)- x(t)H) 

- (Hb2x(t) - b2x(t)H) J e(ifn)Hr} 

= (~- .!!_)trs®R{ b1e-(i(/n)Hrb2x(t)e(i/n)Hr} 
dt dr 

= (!- d~ )trs{ b1eer[b2p(t)J} 

= trs{ b1eer(b2[Cp(t)]- C[b2p(t)])}. (7.141) 

The trace over the reservoir has again been taken in the Born-Markov ap­
proximation. We now calculate (b(t + r)a(t)), r > 0, from (7.141): 

(b(t + r)a(t)) 

= tr{ beer ( a[Cp(t)] - C[ap(t)])} 

= i~ tr{ beer [aHsp(t)- ap(t)Hs- Hsap(t) + ap(t)Hs]} 

+ tr{ beer(a[(Cout + C')p(t)]- (Lout+ C')[ap(t)])} 

= tr{ beer c~ [a, Hs]p(t) - "'ap(t)- "'2n[a, p(t)J)}, 

where the last line follows from (7.134b). Then, using (1.97) and (1.98), we 
find 
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A 1 A A 
(O(t + r)a(t)) = ifi (O(t + r)[a, Hs](t))- K(O(t + r)a(t)) 

- 2Kn([O(t + r), a(t)J). (7.142) 

Substituting (7.142) into (7.131a) completes the proof of (7.133a) for r > 0. 
D 

Exercise 7.8 Show that (r > 0) 

( d ) A 1 A 

dr + K (a(t + r)O(t)) = ifi ([a, Hs](t + r)O(t)), (7.143a) 

A 1 A A A 
(aO) = ifi ([a, H 8 ]0)- K(Oa)- Kn([O, a]), (7.143b) 

A 1 A A 
(a(t)O(t + r)) = ifi ([a, Hs](t)O(t + r))- K(a(t)O(t + r)) 

- 2K(n + 1)([0(t + r), a(t)J), (7.143c) 

and hence prove (7.133b). 

7.3.4 Spectrum of the Free Field plus Source Field for the Laser 
Below Threshold 

We can now evaluate all of the terms in (7.124) and (7.125) for a cavity mode 
radiating into a thermal reservoir. Using (7.133a) we have 

g~~)(r) = ((£t£)ss)-1 { (c/ L')(rj(O)rt(r)) + 2K [l~.~ (at(t)a(t + r))J 

+2Kn [l!.~ ([at (t), a(t + r)])]}, (7.144) 

with 

At A I t t - t (£ E)ss = (c/L )(rfr!) + 2K(a a)ss + 2Kn([a ,a])ss 

= (cjL')(r}rt) + 2K( (ata)ss- n). (7.145) 

To go beyond this point we must specify the details of the source that de­
termines the correlation functions (at(t)a(t+r)) and (a(t+r)at(t)). Before 
we perform the calculation for the laser, let us consider a simpler problem. 
The damped harmonic oscillator model of Chap. 1 provides a description of a 
cavity mode coming to thermal equilibrium with the reservoir field. In steady 
state the presence of the cavity should be invisible to a measurement made on 
the total reservoir field; effectively, the cavity mode is simply "absorbed" into 
the reservoir, becoming part of a slightly larger thermal equilibrium system. 
If we calculate the spectrum of E(z, t) (z > 0) from the source field alone, 
taking the Fourier transform of the correlation function (1.116), we obtain 
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a Lorentzian line with halfwidth /i. This is not correct since it is not the 
blackbody spectrum. Equations (7.144) and (7.145) give the correct result. 
From (1.80) and (1.116) we have 

and 

lim (at(t)a(t + r)) = fie-iwcr e-~<lrl, 
t-+OCJ 

tlim ([at(t), a(t + r)]) = -e-iwcte-~<lrl; 
-+OC! 

(7.146a) 

(7.146b) 

(7.146c) 

the correlation function limt_,oc;(a(t+r)at(t)) = (n+1)e-iwcte-~<lrl needed to 
obtain the commutator (7.146c) is calculated in a similar manner to (1.116). 
When these results are substituted into (7.144) and (7.145), we see that the 
interference term, 21ifi limt_,= ( [at ( t), a( t + r)]), between the free field and 
the source field cancels the source term 2!ilimt_,=(at(t)a(t + r)). Thus, 

g~;)(r) = ((r}rt))-1(r}(O)rt(r)) 

~ [~w,n(w,,T)r' ~w,n(w,,T)e_;w" 

[ = ] -1 r= = 1 dwwn(w, T) Jo dwwn(w, T)e-iwr 

= 62,P'(1+ir/tR), 
7r 

(7.147) 

where tR = fi/ksT is the thermal correlation time, and we have used (1.56) 
to calculate the normalization ,P'(l)-1 = 6j1r2 . This is the reservoir corre­
lation function plotted in Fig. 1.1(a). Its Fourier transform gives the (one­
dimensional) blackbody spectrum 

(7.148) 

The laser is a nonequilibrium device. Above threshold the photon flux 
21i(ata)> = 21insat(P- 1) will dominate any thermal background, since, by 
design, the laser is to act as a source of coherent radiation. Below threshold, 
from (7.41) and (7.60b) we have 

( t ) _ fi + nspon . aass- 1 , 
-p 

(7.149a) 

the mean-value equation (a) = -[iwc + !i(1- p)](a) [from (7.71b); also see 
(8.61b)] and the quantum regression formula [Eqs. (1.107) and (1.108)] give 
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lim (at(t)a(t+T)) = fi+nspone-iwcre-1<(1-p)lrl, 
t-->00 1- p 

lim ([at(t), a(t + T)]) = -e-iwcte-~<(1-p)lrl. 
t--.oo 

We then have 

with 

(7.149b) 

(7.149c) 

(7.150) 

(7.151) 

The Fourier transform gives a Lorentzian line with halfwidth ~(1- p) sitting 
on the background blackbody spectrum (7.148). The Lorentzian component 
signifies a departure from thermal equilibrium. It has two pieces. First, a 
Lorentzian proportional to nspon/(1- p) is added to the background black­
body spectrum due to amplified (p > 0) or deamplified (p < 0) spontaneous 
emission. Second, the blackbody spectrum is reshaped over the cavity band­
width due to the amplification or deamplification of thermal fluctuations by 
the laser medium. The second effect is accounted for by the term proportional 
to n/(1- p)- n = np/(1- p) in (7.151); for p > 0 thermal fluctuations are 
amplified over the cavity bandwidth, while for p < 0 they are deamplified, 
or absorbed. 



8. The Single-Mode Homogeneously 
Broadened Laser II: Phase-Space Analysis 

We now set about the task of reducing the laser phase-space equation of mo­
tion (7.100) to the Fokker-Planck equation (7.71a). There are two steps to 
be taken. We must eliminate derivatives beyond second order, and we must 
eliminate the explicit appearance of the variables v, v*, and m describing 
the laser medium. Actually, we are not quite going to pass directly from 
(7.100) to (7.71a). We eliminate derivatives beyond second order using van 
Kampen's system size expansion. But in Sect. 5.1.3 we discussed the fact 
that a systematic "small noise" expansion generally leads directly to a linear 
Fokker-Planck equation. The laser Fokker-Planck equation (7.71a) is nonlin­
ear. It is possible to arrive at this nonlinear equation from (7.100) by dropping 
derivatives and performing the adiabatic elimination of atomic variables. This 
approach, however, does not treat the fluctuations in a systematic way. Equa­
tion (7.71a) retains terms of the same order as terms that are dropped; at 
least it does so in certain operating regions. A systematic system size expan­
sion leads directly to the linearized version of (7.71). This expansion should 
tell us if, and when, the linearization breaks down. We will therefore first 
seek a self-consistent laser theory, including fluctuations, analogous to the 
theory of the radiatively damped two-level medium developed in Sect. 6.3.5; 
we seek a set of macroscopic equations like (6.167a)-(6.167c) and a linear 
Fokker-Planck equation describing fluctuations about the macroscopic state. 
We will find that this linearized theory holds below threshold. 

8.1 Linearization: Laser Fokker-Planck Equation 
Below Threshold 

8.1.1 System Size Expansion Below Threshold 

We observed in Sect. 7.1.4 that nsat provides a measure of the system "size"; 
it is a natural choice for the system size parameter Q (Eqs. (5.39)]. However, 
our microscopic laser model includes variables for the laser field and the laser 
medium on an equal basis. The natural system size parameter for the medium 
is N, the number of atoms occupying the states of the laser transition. At 
this stage it is simplest to use just one of these parameters to scale all of the 
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variables. It does not really matter which one we choose. Using (7.69c) and 
(7.73) we see that they are related by 

~ = 2~~: 
"'T + "fl 

(8.1) 

We must take ~ « 1 to justify the adiabatic elimination of atomic variables, 
and 4C need not be correspondingly large. It is possible then that N and 
nsat differ by a few orders of magnitude. But we can assume that both are 
much larger than their ratio, so either one can be chosen for the system size 
parameter and still be the largest parameter (orders of magnitude larger than 
1/~) in the problem. We choose N as the system size parameter, in keeping 
with the work of Haken [8.1]. 

The system size expansion begins with the definition of scaled variables. 
The appropriate scaling can often be determined by a combination of guess 
work and physical intuition. For example, our heuristic derivation of the 
Fokker-Planck equation (7.71a) can tell us how to scale n, and the size we can 
expect the fluctuations in n to be. The idea behind van Kampen's method, 
however, is that a systematic approach will tell us the scaling and the size 
of the fluctuations. We saw how this works for a one-dimensional example 
in Sect. 5.1.3. Although the algebra is a little tedious, we will perform the 
present calculation without making a priori assumptions about scaling. We 
set 

with 

where 

a= NPla, 

v = NP2 v, 

a= NP1 a, 
J_ = NP2]_, 

a* = NP1 a*, 
v* = NP2 v*, 

a= (a(t)) + N-q1 z, 

a*= (at(t)) + N-q1 z*, 

v = (L(t)) + N-q2 v, 

v* = (J+(t)) + N-q2 v*, 

m = (Jz(t)) + N-qa p,, 

at= NPlat, 

J+* = NP2J+, 

(8.2) 

(8.3a) 

(8.3b) 

(8.3c) 

(8.3d) 

(8.3e) 

(8.4) 

The laser equations themselves will determine the correct choices for p1 , p2 , 

p3, qt, q2, and q3. We define 

P(z z* v v* u t) = NP1 +P2+Pa-q1 -q2-q3 P(a(z t) n*(z* t) 
' '' '~"""' - ' ' ' ' 

v(v, t), v* (v, t), m(p,, t), t), 
(8.5) 

and then the phase-space equation of motion in scaled variables is 
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- ( a a ) +LF z,z*, az' az*'t 

_ ( a a a a a)]-
+LAF z, z*, v, v*, f-L, az' az*' av' av*' af-l' t P, (8.6) 

where 

- ( a a a ) 
LA\' v*, f-L, av' av*' af-l' t 

- L ( ( t) *( * t) ( t) NQ2-P2 a Nq2-P2 a NQ3-P3 a) = A v v, 'v 1/ ' 'm f-L, ' av' av* ' af-l ' 

(8.7a) 

L- ( * a a t) - L ( ( t) * ( * t) Nql -pl a Nql -pl a ) 
F z, z , az, {jz*, = F a z, , a z , , {jz, {jz* , 

(8.7b) 

and 

_ ( * * a a a a a ) 
LAF z, z 'v, 1/ , f-L, {jz' az*, av' {}v*' {jf-l, t 

= LAF ( a(z, t), a* (z*, t), v(v, t), v* (v*, t), m(J.L, t), 

Nql-Pl ~ Nql-Pl _!!__ NQ2-P2 ~ NQ2-P2 _!!__ NQ3-P3 .!!.__) 
{)z' {)z*' av' {}v*' af-l . 

(8.7c) 

Equation (8.6) includes terms of order Nq1 , Nq2 , and Nq3 . Since q1 , q2 , 

and q3 are positive, these terms diverge for large N unless their coefficients 
vanish identically. The requirement that their coefficients vanish determines 
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the macroscopic law, or the laser equations without fluctuations. It also fixes 
the values of Pl, P2, and P3· We substitute the explicit expressions (7.101a)­
(7.101c) into (8.7a)-(8.7c), and collect all first-order derivatives of P with 
constant coefficients (coefficients with no dependence on z, z*, v, v*, and J.L). 
This gives the equation 

aP { aP [d(a(t)) - = Nq1 - --- + (K: + iwc)(a(t)) 
at az dt 

-N-Pl+P2-l/2JN g(l_(t))] + c.c.} 

+Nq2{8P[d(L(t)) +('Yr+'Y! +iw )(J (t)) 
01/ dt 2 c -

-NP1-P2+P3-l/2JN g(Jz(t))(a(t))] + c.c.} 

+ Nq3 oP [d(Jz(t)) + ('Y + 'Y ) ((lz(t)) _ Nl-p3 'Yi- 'Y!) 
~ & r ! n+~ 

+NPl +P2-p3-l/22JlV g( (J+(t))(a(t)) + c.c.)] 

( 
first-order derivatives ) (higher-order) 

+ with nonconstant coefficients + derivatives · (8.8) 

If the coefficients of Nq1 , Nq2 , and Nq3 are to vanish, the individual terms 
inside each square bracket must first be of the same order inN. To determine 
these orders we must recognize that ../N g is to be treated as a term of order 
N°. This follows from (7.73), which gives 

N g2 = 2C 'Yh = 2C 'Yi + 'Y! + (2'Yp) 
K;2 2K: 2K: 

(8.9) 

We have divided by K:2 so that we can compare dimensionless quantities; the 
square root of the ratio on the left-hand side of (8.9) is the quantity that 
appears in (8.8) when time is scaled by K:- 1 . The adiabatic elimination of 
atomic variables will require 'Yh/2K: :» 1, and C may also be large [see the 
discussion below (7.75)]. Therefore VNgjK: may be much larger than unity. 
When we assert that it is of order N°, however, we claim only that it is much 
smaller than the lowest nonzero power of N appearing in the system size 
expansion. Assuming, then, that this is so, the requirement that all terms 
inside the square brackets in (8.8) are of order N° leads to the equations 

with solutions 

-pl +P2 -1/2 = 0, 

1- Pa = 0, 

Pl = 1/2, 

Pl - P2 + P3 - 1/2 = 0, 

P1 + P2 - Pa - 1/2 = 0, 

P2 = P3 = 1. (8.10) 
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Then the requirement that the coefficients of Nq, , Nq2 , and Nq3 vanish gives 
the macroscopic law (equations) 

d(a) r;:; -dt = -(K + iwc)(a) + v Ng(L), (8.11a) 

d(at) . -
----;It= -(K- zwc)(at) + VNg(J+), (8.11b) 

d(~-) =-Cr;-n +iwc)U-)+v'Ng(Jz)(a), (8.11c) 

d~+) =- C'i; ~'1 - iwc) (J+) + VNg(Jz)(at), (8.11d) 

d(dJz) = -br + 1'1) (Uz)- 1'i -1'1)- 2VNg( (J+)(a) + (L)(at)). 
t 1'i + 1'1 

(8.11e) 

The first two equations describe the damped field amplitude driven by the 
polarized laser medium. The last three equations are the optical Bloch equa­
tions for the medium [compare Eqs. (2.97)], driven, self-consistently, by the 
field. 

The powers, q1, q2 , and q3 , that govern the size of the fluctuations, remain 
to be determined. To do this we must look at the explicit form of the terms in 
(8.8) designated as "first-order derivatives with nonconstant coefficients" and 
"higher-order derivatives". Expanding these terms using (8. 7) and (7.101), 
and substituting the known values of Pl, P2, and p3 , we find 

~ = { :J(K + iwc)z- Nq,-q2 VNgv] + c.c. 

+ :v [ ( 1'i ; 1' 1 + iwc) v 

-N-q' +q2 VN g(Jz(t))z- Nq2 -q3 v'N g(a(t))JL] + c.c. 

+ :JL [br + 1'1)/1 + Nqa-q'2VNg((J+(t))z + c.c.) 

+ N-q2 +qa2.JN g( (a(t))v* + c.c.) J 
82 + N 2q' - 12Kn--

8z8z* 

+ N 2q2 - 1 [ 1'i 8:;v* + v'N g ((}_ (t)) (a(t)) ::2 + c.c.) J 

- Nq2 +qa-l21'i ((L(t)) 8~;/-L + c.c.) 
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( 
first-order derivatives ) ( second-order derivatives ) 

+ with nonlinear coefficients + with nonconstant coefficients 

(
higher-order)} F· 

+ derivatives ' (8.12) 

we have explicitly displayed the terms found in a linear Fokker-Planck equa­
tion - first-order derivatives with linear coefficients, and second-order deriva­
tives with constant coefficients; the remaining terms are 

and 

( 
first-order derivatives ) 

with nonlinear coefficients 

= -Nqz-q3 -q1 VN g (:vJ.LZ + c.c) + Nq3 -q1 -q2 2VN g :/-1 (v* z + c.c.), 

(8.13a) 

( 
second-order derivatives ) 

with nonconstant coefficients 

+ VNg (N-q,+2qz-1(l_(t)) {]2 z + Nqz-1\a(t)) 82 v 
8v2 8v2 

82 82 
- N 2q3-q1 - 12(J+(t)) 8112 z- N-qz+2qe- 12(a(t)) 8112 v* 

+N-ql +qz-1 ::2vz- N2q3-ql-qz-12 ::2 v* z + c.c)' 

(
higher-order) 

derivatives 

( 
derivatives higher ) 

+ than second-order in !"' • 

(8.13b) 

(8.13c) 

We hope to choose q1 , q2 , and q3 so that the terms appearing explicitly in 
(8.12) are of order N°, and every term in (8.13a)-(8.13c) vanishes, for large 
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N, as some negative power of N. All powers of N appearing explicitly in 
(8.12) are zero if 

q1 - q2 = q2- q3 = q3- q1 = 0, 2q1- 1 = 2q2- 1 = 2q3- 1 = 0, 

q2 + q3 -1 = 0. 

These equations are satisfied with 

1 q1 = q2 = q3 = 2. (8.14) 

Then, each term in (8.13a)-(8.13c) does, indeed, vanish as some negative 
power of N; these terms follow an expansion in powers of N-112. The terms in 
(8.13c) designated as "derivatives higher than second-order in p,'' come from 
third- and higher-order derivatives in the expansion of the shift operators 
e±2/,;:; in (7.101a) and (7.101c). We can be sure that they also vanish for large 
N since they are of higher-order in N-112 than the second-order derivatives 
in p, that are explicitly displayed. We have therefore found a self-consistent 
system size expansion. Fluctuations about the macroscopic state described 
by (8.11) obey the Fokker-Planck equation 

0:: = { :z [(~ + iwc)z- VNgv] + 8~* [(~- iwc)z*- VNgv*] 

+ :v [ ('Yi ; 'Yl + iwc) v- JN g( (Jz(t))z + (a(t))p,) J 

+ 8~* [ ('Yi; 'Yl - iwc) v*- VNg( (Jz(t))z* + (at(t))p,)] 

+ :1-t [ br + 1'1)1-t 

+ 2VN g( (J+(t))z + (a(t))v* + (}_ (t))z* +(at (t))v) J 

82 82 (- 82 
+ 2~n 8z8z* + 'Yi 8v8v* + VNg (L(t))(a(t)) 8v2 

+(J+(t))(at(t)) 8~:2)- 'YT ((L(t)) 8~;1-t + (J+(t)) 8~~1-t) 

+ [br + 1'1) (1- (Jz(t)) ~~ ~ ~~) 

-2VNg((J+(t))(a(t)) + (L(t))(at(t)))] ::2 }P. (8.15) 

Note 8.1 When the dephasing term LdephaseP [Eq. (6.158)] is included in 
the phase-space equation of motion, two changes are required in the linearized 
theory: In (8.11) and (8.15), 
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( 'Yr + 'Yt ± . ) ('~'r + 'Yt + 21'v ± . ) ('~'h ± . ) 2 zwc ---+ 2 zwc = 2 zwc ' (8.16a) 

and in (8.15), 

~ - ~ 
'Yl avav* ---+ br + 'Yp (1 + (Jz(t)))] avav*. (8.16b) 

8.1.2 Laser Equations Without Fluctuations 

Now that we have identified the scaling law for the variables a:, a:*, v, v*, 
and m, in terms of powers of N, it is convenient to fine tune the scaling 
relations to simplify the final equations of the linearized theory. It is natural 
to scale field variables in terms of nsat rather than N, and this choice leads 
to a simpler Fokker-Planck equation if atomic fluctuations are scaled in the 
same way. Also, judicious insertion of 2..;2C in the definition of ii (L) and 
ii* (J+), and 2C in the definition of m (Jz), helps simplify the equations. 
Thus, using (8.10) and (8.14), for the field variables we write 

with 

where 

1/2-
a:= nsat a:, * - 1/2 -* a: - nsat a: ' 

a= (a(t)) +n;..~12 z, 

a*= (at(t)) + n;,_!12 z*, 

- 1/2-a- nsat a, 

for the atomic variables we write 

2hCv = Nv, 2hCv* = Nv*, 2Cm=Nm, 

with 

- - -1/2 
V = (J_(t)) + nsat v, 

v* = (J+(t)) + n;,.!12v*, 
- - -1/2 
m = (Jz(t)) + nsat J.L, 

where 

(8.17) 

(8.18a) 

(8.18b) 

(8.19) 

(8.20) 

(8.21a) 

(8.21b) 

(8.21c) 

(8.22) 

We must now read the macroscopic equations (8.11) and the Fokker-Planck 
equation (8.15) with 
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- rn:;:;-
a--+ V Na, 

}_ --+ ]_ /2hC, 

v --+ {7V v /2hC, y-;;;;; 

-t rn:;:; -t 
a --+ V Na' (8.23) 

Jz --+ Jz/2C, (8.24a) 

JL --+ {7V JL/2C. y-;;;;; 
(8.24b) 

Now, in a frame rotating at the frequency we of the laser mode, the laser 
equations without fluctuations [Eqs. (8.11)] become 

where 

(8.25a) 

d(at) -
/i~ 1 ----;tt =-(at)+ (J+), (8.25b) 

~1 ::: ("i; 11) d(~t~) = -(1 ~) + (Jz)(a), (8.25c) 

~1 ::: 

(~'r;'n) d(~t) =-(l+)+(Jz)(at), (8.25d) 

1 d ( Jz) ( - ) 1 ( ::: - ::: - t ) br +1'1)~ ----;It=- (Jz)- g::~ -2 (J+)(a) + (J~)(a) , 

a= eiwcta, 

]~ = eiwctJ~, 
(it = e~iwctat, 

J::: = e~iwctJ-
+- +· 

(8.25e) 

(8.26a) 

(8.26b) 

We have used (8.1) and (7.72), and (8.9) with /'h = l'i + 1'1· 
We noted in Sect. 7.1.4 that the laser equations without fluctuations de­

pend on a single intensive parameter, the pump parameter g::~. This is the 
case in (8.25a)-(8.25e). These equations take the place of the rate equations 
(7.1) and (7.2) in our previous theory. They are more complete than the rate 
equations since they describe the laser field and the polarization of the laser 
medium rather than just the photon number and atomic populations. We are 
interested in steady-state operation. The steady-state solutions are 

(a)ss = I (a) Iss eicf>, 

("'t) I(-) I ~icf> a ss = a sse ' 

and 

(8.27a) 

(8.27b) 
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(8.27c) 

(8.27d) 

(8.27e) 

where the mean field amplitude obeys the quadratic equation 

(8.28) 

and the phase¢ is arbitrary. Solutions to (8.19) reproduce the laser threshold 

behavior illustrated in Fig. 7.2. 

Below Threshold - p < 1: Since I (a) 1;s must be positive, (8.19) has the 

single solution 
l(a)l< = l(a)l~ = O; (8.29) 

we then have 

(a)<= (a)~= o, (8.30a) 

::::t - ::::t <-(a )< = (a )ss- 0, (8.30b) 
- -

(J_)< = (J_)~ = 0, (8.30c) 
- -

(J+)< = (J+)~ = 0, (8.30d) 

(Jz)< = (Jz)~ = P· (8.30e) 

At Threshold- p = 1: Equation (8.19) still has the single solution 

I (a) lthr = I (a) ~~~r = 0, (8.31) 

and 

(::::) _ (") thr 0 a thr = ass = ' (8.32a) 

(''t) - (''t)thr _ 0 a thr = a ss - ' (8.32b) 

:::: _ :::: thr 
(J -)thr = (J -)ss = 0, (8.32c) 

:::: _ :::: thr 
(J+)thr=(J+)ss =0, (8.32d) 

- _ - thr 
(Jz)thr = (Jz)ss = 1. (8.32e) 

Above Threshold- p > 1: Equation (8.19) has two solutions. The solution 

I (a) Iss = 0 is unstable and for stable operation above threshold 

l(a)i> = l(a)l?s = ~- (8.33) 

We then have 
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- - > ~ "¢ (a)> = (a)ss = y p- 1 e' , 

(ath =(at)~= JP=le-i<P, 

(J_)> = (l_)~ = JP=lei<P, 

(J+h = (J+)~ = JP=le-i<P, 

(Jz)> = (Jz)~ = 1. 
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(8.34a) 

(8.34b) 

(8.34c) 

(8.34d) 

(8.34e) 

Note 8.2 Actually, the steady-state solution (8.34) is not always stable. Un­
der certain conditions a second laser threshold is reached beyond the threshold 
at p = 1. Above the second laser threshold the solution (8.34) is unstable 
and the laser settles into either a periodic oscillatory state or a chaotic state. 
This behavior is readily appreciated by noting the relationship between the 
laser equations (8.25) and the Lorenz equations [8.2] 

X= -a(X- Y), 
Y = -Y +rX -XZ, 

Z = -bZ +XY. 

(8.35a) 

(8.35b) 

(8.35c) 

The Lorenz equations have been extensively studied for their interesting non­
linear dynamics, in particular, for the chaotic solutions they exhibit [8.3]. If 
we assume that the phases of the laser field and the medium polarization are 
equal and constant in time, (8.25a)-(8.25e) are mapped into (8.35a)-(8.35c) 
by writing 

X= l(a)l, Y = I(L)I, (8.36) 

and 
2~ 

a= ' 
'Yi + 1'! 

b = 2, r= p. (8.37) 

Haken found this mapping connecting the single-mode laser equations with 
the Lorenz equations [8.4]. In recent years there has been a considerable 
amount of research in the area of laser instabilities. The field is reviewed by 
Abraham, Mandel, and Narducci [8.5], and Narducci and Abraham [8.6]. 

Note 8.3 We have derived the laser equations (8.25) with /'h = 'Yi + 1'!· 
When nonradiative dephasing processes are included, if]_ and J+ are defined 
by 

~ -
2v2CJ_ = NL, (8.38) 

! 

[in place of (8.22)] the laser equations without fluctuations take the same form 
as (8.25), with the replacement 'Yi + 1'! ---> /'h = 'Yi + 1'! + 2/'p in (8.25c) and 
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(8.25d). The identification with the Lorenz equations then requires a= 2"'/'Yh 
and b = 2br + 'Yt)hh· 

Exercise 8.1 In Note 7.1 we noted that rate equations are valid when the ho­
mogeneous width is much broader than the natural width bh = 'Y1+'Y1 +'Yp » 
'Yl + 'Yl)· When this condition is satisfied the polarization variables may be 
adiabatically eliminated. Show that adiabatic elimination of the polarization 
from (8.25a)-(8.25e) gives the rate equations 

br +'Yl)_ 1 d~z) = -(Jz)(1 + l(a)l 2 ) + p, (8.39a) 

(2"')_ 1 dl~;l 2 = -l(aW(1- (Jz)). (8.39b) 

Show that these equations are equivalent to (7.1) and (7.2) when the three­
level model of Sect. 7.1.1 is reduced to our current two-level model for the 
laser medium (for 1'32 » Fp + 'Y3b 1'21). Equations (8.39) always predict 
stable steady-state operation above threshold. The comparison between this 
prediction and the behavior of the Lorenz equations illustrates the limitations 
of a rate-equation description of laser dynamics. 

8.1.3 Linearized Treatment of Quantum Fluctuations 
Below Threshold 

We now use the Fokker-Planck equation (8.15) to describe the fluctuations 
about the steady-state (8.30). We saw in Sect. 7.1.2 that, in a rate equation 
theory, the inclusion of thermal and spontaneous photons gives a nonzero 
photon number in the laser mode below threshold. The laser equations with­
out fluctuations give l(a)l~ = 0; thus, in the present treatment, all of the 
energy in the laser mode below threshold is carried by the fluctuations. Our 
first task is to reproduce the rate equation result for the mean photon num­
ber [Eq. (7.41)]. Actually, we will derive a more general result which applies 
for arbitrary values of~= 2"'/br + 'Yl)· Equation (7.41) is recovered in the 
limit ~ « 1, the limit that justifies the adiabatic elimination of atomic vari­
ables. After making this elimination we will derive the laser linewidth below 
threshold, something the rate equation treatment was not able to give to us. 

Before we begin, we must rewrite the Fokker-Planck equation (8.15) to 
reflect the new scaling adopted in the last section. For the scaling defined by 
(8.17)-(8.22) the distribution P is given by 

P(z, z*, v, v*, J.L, t) 

= N3n~~/2 1
03 P(a(z, t), a*(z*, t), v(v, t), v*(v*, t), m(J.L, t), t). 

16 (8.40) 

Then, applying the transformations (8.23) and (8.24), and transforming to a 
frame rotating at the frequency we, (8.15) becomes 
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aP { a (- _) a (-* _*) 8t = '""az z - v + '""az* z - v 

+ l'r; 11 :v (v- (Jz(t))z- (a(t))f-L) 

+ l'r; 11 a~* (v*- (Jz(t))z*- (at(t))f-l) 

+ br + 1'!) ~ [1-l + ! ( (J +(t))z + (a(t))v* 

+ (l_(t))z* + (at(t))v)] 

[)2 [)2 
+ 2Kn £:}- £:}- + .;-12C1r £:}- £:~-uzuz* uvuv* 

+ c1~'r : ~'! ((J _ (t)) (a(t)) :;2 + (J + (t)) (at (t)) 8~:2) 

- C 11'r ((J _ (t)) 8~;1-l + (J +(t)) 8!~1-l) 
+ C 1C(/'r + 1'!) [ (1 - 462 (Jz(t))) 

- 4~((J+(t))(a(t)) + (l_(t))(at(t)))] ::2 }?, (8.41) 

P(z, z*, v, v*, f-l, t) = P(z(z, t), z*(z*, t), v(v, t), v*(v*, t), f-l, t), (8.42) 

with 

z = e-iwctz, 
v = e-iwctv, 

z* = eiwct z*' 
v* = eiwctv*. 

We have used (8.1) and (7.72), and (8.9) with /'h = /'i + 1'!· 

(8.43a) 

(8.43b) 

Equation (8.41) is more general than the equation we require here. It pro­
vides a linearized description of fluctuations about transient solutions to the 
macroscopic equations. After substituting the steady-state solutions (8.30), 
we obtain the much simpler equation 

(8.44) 
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This is the laser Fokker-Planck equation below threshold without adiabatic 
elimination of the medium polarization. 

Equation (8.44) can be solved by the separation of variables. We write 

with 

- - -
P(z, z*, v, v*, JL, t) = X(z1, i/1, t)Y(z2, i/2, t)M(JL, t), 

z = z1 + iz2, 

v = i/1 + ii/2, 

(8.45) 

(8.46a) 

(8.46b) 

Then (8.44) separates into three equations. There are two equations describ­

ing real and imaginary parts of the coupled fluctuations in the laser field and 

the medium polarization: 

(8.47a) 

(8.47b) 

and a third equation describing fluctuations in the atomic inversion: 

(8.47c) 

We are primarily interested in (8.47a) and (8.47b), since these equations con­

tain the information about the laser field. It is useful, however, to make one 

observation about (8.47c). This equation is equivalent to the Fokker-Planck 

equation governing inversion fluctuations in our treatment of the radiatively 

damped two-level medium (Sects. 6.3.5 and 6.3.6). Specifically, (8.47c) corre­

sponds to the Fokker-Planck equation derived from the third and fifth terms 

on the right-hand side of (6.172). To see this correspondence we use (8.1) and 

(7.72) to rewrite the diffusion term in (8.47c) as 

(8.48) 
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When we allow for the different definitions of J-l [Eq. (8.24b )], (8.48) repro­
duces the diffusion term in (6.172) with the identifications '/i ---+ ')'fi and 
1'1 ---+ ')'(fi + 1). So far as the inversion is concerned then, below threshold the 
laser medium behaves in the same way as the collection of statistically inde­
pendent atoms in our treatment of the radiatively damped two-level medium; 
of course, with the negative temperature pumping reservoirs needed to pro­
duce a positive steady-state inversion. We will see shortly that this connection 
can often also be made for the polarization, despite the fact that the individ­
ual atomic dipoles are coupled by their interaction with the common laser 
field. 

Equations (8.47a) and (8.47b) can be analyzed using results from the 
treatment of linear Fokker-Planck equations in Sect. 5.2. Fluctuations in 
the real and imaginary parts of the laser field and medium polarization are 
statistically independent, and have zero steady-state mean. Therefore, from 
the phase-space expression for operator averages [Eq. (7.99)] and the scaling 
(8.17)-(8.19), the average steady-state photon number is given by 

(8.49) 

Of course, the fluctuations in the laser field are phase symmetric, and there­
fore the two contributions to (at a)< are equal. Explicit solutions for X ss and 
Yss are given by (5.80). We do not need the distributions themselves, how­
ever, to solve for (at a)<· The variances appearing on the right-hand side of 
(8.49) can be found by solving directly for the steady-state covariance matrix 

(8.50) 

From (5.102a), Css satisfies the matrix equation 

(8.51) 

This provides us with a set of three simultaneous equations for the variance of 
fluctuations in the laser field, the variance of the fluctuations in the medium 
polarization, and the correlations between the field and polarization. The 
solution of these equations is left as an exercise: 

Exercise 8.2 Solve the matrix equation (8.51) to obtain 

(8.52a) 
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(8.52b) 

(8.52c) 

Equations (8.49) and (8.52a) give us the average photon number in the 
laser mode below threshold without adiabatic elimination of the medium po­
larization: 

(ata)< = n[2~(1- p) +'Yr +'Ytl +2C'Yr. 
(1- p)(2~+'Yr +'Yt) 

8.1.4 Adiabatic Elimination of the Polarization 
and Laser Linewidth 

(8.53) 

When the laser medium relaxes much faster than the field [for~= 2~/br + 
'Yt) « 1] (8.53) reduces to the expression 

( t ) _ n('Yr + 'Yt) + C('Yr + 'Yt) + C('Yr - 'Yt) 
a a<- (1- p)('Yr +'Yl) 

n+C+ ~P 
1-p 

n + nspon 

1- p 
(8.54) 

This is the result (7.41) obtained from the rate equation theory. The reason 
for this exact agreement can be appreciated more readily after we adiabat­
ically eliminate the polarization to obtain a stochastic model involving the 
laser field alone. The adiabatic elimination is made using the Ito stochastic 
differential equations equivalent to the Fokker-Planck equations (8.47a) and 
(8.47b). The equivalence between Fokker-Planck equations and Ito stochastic 
differential equations is defined by (5.149); in the present case it gives 

dzi = -~(zi- vi)dt + ~dw;, 

dvi = - 'Yr ; 'Yl (iii - pzi)dt + J ~- 1 C'Yr dW~, 

(8.55a) 

(8.55b) 

where w; and W~ are independent Wiener processes, and i = 1, 2. For~« 1, 
we set dvi = 0 on the left-hand side of (8.55b), and write 

iiidt = pzidt + ci ; 'Y!) -l J ~- 1 C'Yi dW~. (8.56) 

Substituting this result into (8.55a), we have 
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dzi = -~~:(1- p)zidt + ~dw; + ~J~- 1C,ndWi. (8.57) 

The last two terms on the right-hand side of (8.57) describe the two sources 
of fluctuations that drive the laser field: one from the thermal reservoir that 
damps the laser mode and the other from the laser medium. These fluctua­
tions are statistically independent, and therefore the sum of the two Wiener 
processes may be replaced by a single process whose variance is the sum of 
the individual variances. We write 

~~:n +~on=~~: [n + Cbr + 'Y!) + Cbr- 'Yt)J 
'Yi + 'YL 

=~~:(n+C+~p) 

= ~~:(n + nspon)· (8.58) 

The stochastic differential equations for the real and imaginary parts of the 
laser field amplitude are now 

dzi = -~~:(1- p)zidt + V ~~:(n + nspon)dWi. (8.59) 

The Fokker-Planck equations corresponding to (8.59) are 

ax [ a 1 a2 ] = ~~:- 1 7ft= (1- p) az1 z1 + 2(n + nspon) azr X, (8.60a) 

aY. [ a 1 a2 J = ~~:- 1 7ft= (1- p) az2 z2 + 2(n + nspon) az~ Y. (8.60b) 

Written in complex notation, the laser Fokker-Planck equation below thresh­
old is given by 

aP [(1 ) (a _ a -*) 2(_ ) a2 J P at = - p az z + az* z + n + nspon azaz* ' (8.61a) 

with corresponding stochastic differential equation 

dz = -(1- p)zdt + V(n + nspon) (dW1 + idW2), (8.61b) 

where 
f= ~~:t. (8.62) 

Equations (8.61a) and (8.61b) are the same as the equations obtained by 
linearizing the stochastic model (7.71) about the steady state (a)< = 0. In 
contrast to the heuristic derivation offered on the basis of rate equations, 
the self-consistent treatment we have just followed leads directly to a linear 
Fokker-Planck equation. This derivation also reveals the role of the adia­
batic elimination of the polarization, and the relationship between polar­
ization fluctuations and spontaneous emission into the laser mode. Let us 
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look at these issues briefly before proceeding with the derivation of the laser 
linewidth. 

Polarization fluctuations are fed into the stochastic differential equation 
for the laser field by the expression (8.56) for vidt. The first thing to note, is 
that in the adiabatic limit(~« 1), the polarization fluctuations are produced 
by statistically independent atoms. To confirm this assertion we calculate 
the strength of the polarization fluctuations assuming statistical indepen­
dence and compare it with (8.52b). For statistically independent atoms, with 
(J_)< = (J+)< = 0, we can write [Eq. (6.150d)] 

(hJ_)< = HN + (Jz)<), 

and using the scaling (8.20)-(8.22), and (Jz)< = p, we find 

(v1v1)x + (v2v2):Y = (J+L)< 

= 802 nsat N (1 + _£_) 
N 2 2 2C 

=It C· "' , 
(8.63) 

we have also used (8.1) and (7.72). This result agrees with that given by 
(8.52b) for ~ « 1. The second thing to observe is that the source of spon­
taneous photons in the rate equation theory is represented in the present 
theory, after adiabatic elimination, by the fluctuations from the medium po­
larization. The variance of these fluctuations- from the last term in (8.57) -
is 

~Cir = 2g2 (N It ) . 
/h lr +I! 

(8.64) 

This is just one half of the spontaneous emission rate /sponN2 [Eq. (7.26)] 
into the laser mode; the sum of the variances for the real and imaginary parts 
of the field give the full spontaneous emission rate. This relationship between 
polarization fluctuations and spontaneous emission illustrates the ambiguity, 
or flexibility, of interpretation that often arises in quantum mechanics. We 
can trace the source of the polarization fluctuations all the way back to the 
last term, /rEP jovov*, on the right-hand side of (7.101a). This origin sug­
gests that these fluctuations are introduced by the pumping process. Indeed, 
they are the analog from the pump reservoir of the thermal reservoir fluctu­
ations that drive the damped cavity mode through the term 2Kn82 I oaoa* 
in (7.101b). Is the source of fluctuations, then, the medium pump fluctua­
tions, or spontaneous emission? Well, for the model we are studying these are 
the same thing. The polarization fluctuations are certainly derived from the 
pump interaction and depend directly on the pump rate 'Yi. But this rate also 
determines the excited state population N2 = Ng = N1r /br +11), which de­
termines the rate of spontaneous emission. Thus, the strength of polarization 
fluctuations driven by the pump process is tied in a self-consistent way to the 
inversion achieved, and therefore to the spontaneous emission rate into the 
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laser mode. Pump fluctuations and spontaneous emission are two different 
views of the same thing. 

The interpretation in terms of spontaneous emission should, however, be 
reserved for those conditions that justify adiabatic elimination of the polar­
ization. It is really only under these conditions that the Einstein description 
of the quantum dynamics in terms of spontaneous emission and stimulated 
emission is well defined. We can appreciate from (8.52b) that a qualitative 
change takes place when adiabatic elimination of the polarization is not justi­
fied. For~= 2K)(r1 +1d '"" 1 the polarization fluctuations no longer take the 
form (8.63) derived for statistically independent atoms - even if we neglect 
thermal fluctuations. The atoms communicate with each other through their 
interaction with the laser field, and the dynamics are truly those of coupled 
field and polarization oscillators. We will return to the issue of atom-atom 
correlations in Volume 2 (Sect. 14.1.4). 

Exercise 8.3 When nonradiative dephasing processes are included the 
changes (8.16) are made in the Fokker-Planck equation (8.15). Show that 
if J+ and L are defined by (8.38), rather than (8.22), and iJ and v* are 
defined by 

~2V2Cv = Nv, V IT+ It 
~2V2Cv* = Nv*, V IT+ It 

(8.65) 

rather than (8.20), the Fokker-Planck equation (8.41) holds with the changes 

IT +It 
2 

lh 
2 ' 

(8.66a) 

The stochastic differential equation for the polarization [Eq. (8.55b )] is now 

Show that adiabatic elimination of the polarization still gives (8.59) with 
nspon = C + ~p. 

To complete our discussion of fluctuations below threshold we calculate 
the laser linewidth. The spectrum of the output field is given by the Fourier 
transform of the normalized first-order correlation function 
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g~)(T) 

= ((at a)<) -l [ lim (at (t)a(t + T))J 
t-+oo 

= ((ata)<f1e-iwcr[lim (z1 (t)z1 (t+T))_x +lim (z2(t)z2(t+T))y.]. 
t-+oo t-+oo 

(8.68) 

Recall that the laser output field is related to the intracavity source field 
by (7.107) and (7.113); we can drop the free-field term from (7.107) when 
evaluating averages that are normal ordered and time ordered (see Sect. 7.3). 
The correlation functions that appear on the right-hand side of (8.68) are 
calculated from the Fokker-Planck equations (8.60) using a trivial application 
of (5.93). We find 

(8.69) 

The Fourier transform is a Lorentzian and the laser linewidth below threshold 
(half-width at half-maximum) is 

(Llw) < = 1b(1- p) = /'b nttn)pon = 21'b2!iwc n +;spon, 
aa< < 

(8.70) 

where we have used (7.114) to express (at a)< in terms of the output power 
P<. 

Exercise 8.4 Green function solutions, X(zt,tlz~,O) and Y(z2,tlz~,O), to 
the Fokker-Planck equations (8.60a) and (8.60b), can be written down from 
(5.18). Use these to show by direct integration that 

g~)(T) 

= ((at a)<) - 2 [ lim (at (t)at (t + T)a(t + T)a(t))] 
t-+oo 

= ~ + ((at a)<) - 2 [lim (z~(t)z~(t + T) )x~ + lim (z~(t)z~(t + T) )y~ J 
t-+oo t-+oo 

= 1 + e-2~<(1-p)lrl. (8.71) 

This result shows the photon bunching of a "thermal" field [Eq. (1.122)]. Of 
course, this is expected since (8.61a) has the same form as the Fokker-Planck 
equation for an oscillator damped by a thermal reservoir; also, we saw that 
the photon number distribution below threshold is that of a "thermal" field 
[Eq. (7.60a)]. 
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8.2 Laser Fokker-Planck Equation at Threshold 

The linearized treatment of fluctuations breaks down at the laser threshold. 
For p = 1 the drift term in the Fokker-Planck equation (8.61a) vanishes, 
and then there is no restoring force to prevent the fluctuations from grow­
ing without bound. This breakdown is apparent from the result (8.52) for 
the steady-state covariance matrix. Fluctuations in both z and i/ diverge for 
p = 1. This problem arises at any critical point, or, more generally, at any 
bifurcation point where one of the eigenvalues of the linearized deterministic 
dynamics vanishes. In Sect. 5.1.4 we discussed the resolution of this prob­
lem for a one-dimensional example. If the linear coefficient of the first-order 
derivative term in the system size expansion vanishes, we are not justified 
in dropping the lowest-order nonlinear coefficient. With the nonlinear term 
included a new scaling can be found which gives a self-consistent description 
of fluctuations in terms of a nonlinear Fokker-Planck equation. 

Things are not quite so straightforward in a multidimensional problem. 
For example, none of the first-order derivative terms in the Fokker-Planck 
equation (8.44) vanish when p = 1; although, the problem of the divergence 
shown by (8.52) must be buried in there somewhere. To find it let us calculate 
the eigenvalues .>. of the deterministic equations 

(8.72a) 

(8.72b) 

derived from the drift terms in (8.44). The eigenvalues satisfy the character­
istic equation 

),2 +A(--+ 'Yi; 'Yl) + K 'Yj; 'Yl (1 _ p) = Q. (8.73) 

One of the eigenvalues vanishes for p = 1. If the Fokker-Planck equation 
(8.44) is written in terms of new variables determined by the eigenvectors 
of its drift matrix, the coefficients of the first-order derivatives are just the 
eigenvalues .>. (see Sect. 5.2.1); then some of the first-order derivative terms 
do vanish for p = 1, and nonlinear contributions to the coefficients of these 
derivatives must be retained in the system size expansion. 

The general approach in the multidimensional case starts, therefore, with 
the diagonalization of the linear drift to determine the "slow" variables - the 
eigenvectors whose eigenvalues vanish at the bifurcation point. In the laser 
example, however, we need not perform the diagonalization if we plan to 
adiabatically eliminate the atomic variables. It is clear that after the atomic 
variables have been eliminated the "slow" variables are the real and imaginary 
parts of the laser field; all of the ''fast" variables have already been removed. 
There is still a small catch. We need to be aware that by taking this approach 
the system size expansion and adiabatic elimination of atomic variables will 
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not separate as independent calculations. We will have to wait until after 
the adiabatic elimination of atomic variables has been performed to fix the 
scaling in the system size expansion. 

8.2.1 System Size Expansion and Adiabatic Elimination 
of Atomic Variables 

We refer back to the expansion in Sect. 8.1.1. Two observations allow us to 
simplify the exact phase-space equation of motion [Eq. (8.12)] and obtain a 
Fokker-Planck equation with just one undetermined scaling parameter. First, 
the linear drift terms should keep the form they have in the linearized theory. 
This requires us to take 

We define a single scaling parameter 

(8.74) 

We also know that the threshold fluctuations are larger, not smaller than 
the fluctuations below threshold. Indeed, the linear theory says they become 
infinite. This cannot be correct, but certainly the exponent q must satisfy 
the constraint 0 < q < ~, since the linearization gave q = ~. This second 
observation ensures that the "second-order derivatives with nonlinear coeffi­
cients" given in (8.13b), and "higher-order derivatives" given in (8.13c), are 
negligible for large N compared with the second-order derivatives that appear 
explicitly in (8.12). 

We can now write down a Fokker-Planck equation that includes the first­
order and second-order derivatives which appear explicitly in (8.12), and the 
"second-order derivatives with nonlinear coefficients" given in (8.13a). If we 
scale in powers of nsat, the scaled variables are defined by 

and 

"' e-iwct (a"') + n-q z '-' = thr sat ' 

a* = eiwct (at)thr + n;,.':, z*, 

- -iwct (J"' ) -q v = e - thr + nsat v, 

-* iwct(J= ) + -q * 
V = e + thr nsat l/ ' 

m = ( Jz )thr + n;,.':, 1-l· 

(8.75a) 

(8.75b) 

(8.76a) 

(8.76b) 

(8.76c) 

The parameter q remains to be determined. The scaling equations (8.17), 
(8.19), (8.20), and (8.22) are unchanged. The distribution in scaled variables 
is defined by 
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P(z, z*,v, v*, J.l, t) 

= N3n!~5q 16~3 P(a(z), a* (z*), v(v), v*(v*), m(J.L), t), (8.77) 

and (8.12) and (8.13a) are now to be read with 

( 
N )q-1/2 

Z----t- z, 
nsat 

( 
N )q-1/2 

z*----> - z*, 
nsat 

(8.78a) 

and 

v----> ( N )q v /2V'2C, 
nsat 

v* ----> ( N )q v* /2V'2C, 
nsat 

J.L----> ( N )qJ.L/2C. 
nsat 

(8.78b) 

Substituting the steady-state solution (8.32), and transforming to a frame 
rotating at the frequency we, we find 

aP { a c- _) a (-* _*) - = K,- z - ll + K,- z - ll 
at az az* 

'Yr +'Yl a(- - -q -) + 2 av ll - z - nsat J.lZ 

+ 'Yr + 'Yl a (-* -* -q -*) 
2 av* ll - Z - nsatJ.lZ 

+ br + 'Yl) :J.l [J.l + n~i Hv*z + vz*) J 

2q-1 [ - a2 -1 a2 
+ nsat 2"'n ozaz* + ~ 2C'Yr avav* 

+C1Cbr + 'Yl) (1- 4~2) ::2 ]}?, (8. 79) 

where Pis defined by (8.42). We have used (8.1) and (7.72), and (8.9) with 

'Yh = 'YT + 'Yl· 
Before we can determine the value of q we must perform the adiabatic 

elimination of atomic variables. In complex notation the Ito stochastic dif­
ferential equations equivalent to ( 8. 79) are 

and 

(8.80a) 

d-- 'YT +'Yl (- - -q -)dt q- 1!2 Jc- 1C (dW 1 "dW2 ) ll - - 2 ll - z - nsat J.lZ + nsat c, 'YT " + z " ' 

(8.80b) 



328 8. The Single-Mode Laser II: Phase-Space Analysis 

df.l = -br + 'Yl) [f.l + n~H(v*z +vi*)] dt 

+n~~1 /2 J~-12C(!'1 +'n)(1-1/4C2)dWw (8.80c) 

To eliminate the atomic variables, we set dv = 0 and df.l = 0, and write 

f.ldt = -n~i Hv*z + vz*)dt 

+ (1'1 +'Y1 )- 1 n~~112 J~- 1 2C(!'1 +"!1 )(1-1/4C2)dW~". (8.81b) 

Our objective is to find a solution for vdt in terms of the field variables 

and the Wiener increments dW!, dW;, and dWfL alone. We must therefore 

eliminate f.ldt from (8.81a). We follow an approximate procedure that includes 

the fluctuations to dominant order: Since f.ldt appears in (8.81a) multiplied 

by n~i, and each of the Wiener increments is multiplied by n~~1 /2 , we may 

write 
-ql-1 2 

d nsat Z d 
II. t =- t 
f'" 1 + -2ql-12 . nsat Z 

(8.82) 

This is the solution obtained by setting dW! = dW; = dWfL = 0 in (8.81a) 

and (8.81b). When we substitute this solution into (8.81a) we are only ne-

l . fl . f d -1/2 q-1/2 b . 
g ectmg uctuatwn terms o or er nsat << nsat ; we o tam 

vdt = z dt + ( 11 + 11)-
1 
nq-112 J c-1C"' (dW 1 + idW2). 

1 + n-2qlzl2 2 sat <, d l/ l/ 

sat (8.83) 

The stochastic differential equation (8.80a) for the laser field becomes 

dz = -K:n~~qlzl 2 zdt + n~~112 V K:(n + nspon) (dW1 + idW2), (8.84a) 

where the nonlinearity is kept to lowest order in n~~q. The corresponding 

Fokker-Planck equation is 

-1 8P -2q 8 - 8 -* - 2 2q-1 - 8 -- [ ( ) 2]_ 
K: at = nsat oz z + oz* z izl + nsat 2( n + nspon) ozoz* P. 

(8.84b) 

We can now determine q. For a self-consistent treatment of the fluctua­

tions the drift and diffusion terms in (8.84b) must be of the same order in 

nsat· Thus, 
(8.85) 
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and the laser Fokker-Planck equation at threshold is 

(8.86a) 

with corresponding stochastic differential equation 

(8.86b) 

where time has the nontrivial scaling 

-- -1/2 
t = nsat Kt. (8.87) 

The fluctuations at threshold scale as n,:_~/4 , rather than n,:_~/ 2 , and are there­
fore much larger than the fluctuations below threshold. Equations (8.86a) and 
(8.86b) are the same as the equations derived from the stochastic model (7.71) 
by setting p = 1 (taking into account the change of scaling). 

Note 8.4 When nonradiative dephasing processes are included, the changes 
(8.65) and (8.66) are made in the Fokker Planck equation (8.79). After adi­
abatic elimination of the atomic variables the laser Fokker-Planck equation 
at threshold is obtained in the same form [Eq. (8.86a)]. 

8.2.2 Steady-State Solution and Threshold Photon Number 

Because of the nonlinearity, it is quite difficult to find time-dependent so­
lutions to the Fokker-Planck equation (8.86a). The methods used to obtain 

such quantities as g;~~ ( 7) and g;~~ ( 7) are reviewed by Haken [8. 7]. The book 
on Fokker-Planck equations by Risken [8.8] is also a good source of infor­
mation on this subject. The steady-state solution to (8.86a) is, on the other 
hand, easily obtained. From this we can calculate the average photon number 
at threshold, 

( t ) - ( t )thr _ 1/2 ( -* -) _ a a thr = a a ss - nsat z z P- , 
ss 

(8.88) 

for comparison with the result (7.42) given by rate equations. 
The F~kker-Planck equation (8.86a) is phase independent. Therefore, to 

solve for F66 , we first transform to amplitude and phase variables, writing 

We define 
:: - :: i'I/J -i'l/1 P(r,'ljJ,t)=rP(re ,re ,t), 

and after some algebra (8.86a) gives 

(8.89a) 

(8.89b) 

(8.90) 
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The steady-state solution has the form 

-= 1 -
Pss(r,'l/J) = 27rRss(r), (8.92) 

where 
d[3 - 1 1_ d]-dr r - (n + nspon) 2r + 2(n + nspon) dr Rss = 0. (8.93) 

The solution to (8.93) can now be constructed from the general steady-state 
solution (5.30) for a one-dimensional Fokker-Planck equation: 

Rss(r) = ~ 1 exp[fdr(~- - 2r-
3 

)] 
N n + nspon r n + nspon 

1 ( 1 r 4 
) = N,rexp -2n+nspon ; (8.94a) 

the normalization constant is 

N' = (XJ dr r exp (- ~ __ r-4--) Jo 2 n + nspon 

1100 
( 1 y2 ) =- dyexp ------

2 0 2 n + nspon 

1fi 
= 2V 2Jn + nspon· (8.94b) 

For the average photon number in the laser mode at threshold we find 

( t ) 1/2(2) a a thr = nsat r R •• 

= n;{; fi 2 r= drr3 exp (-~ r 4 
) v ; ..jn + nsat lo 2 n + nspon 

= /!Jnsat(ii + nspon)· (8.95) 

This result differs from that given by the rate equation theory [Eq.(7.42)] 
by the factor J2{ir. It agrees with the expression (7.61b) obtained from the 
birth-death equation constructed in Sect. 7.1.3. In Sect. 7.1.3 we saw that 
the connection between the photon number rate equation and the probabilis­
tic birth-death, or stochastic models, was the factorization (n2 ) ---.. (n) 2 , or 
(lal 4 ) ---.. ( (lal 2 ) ) 2 • This factorization is unimportant below threshold where 
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the nonlinearity is negligible; we therefore obtain the average photon num­
ber below threshold exactly using rate equations. At threshold, however, the 
linear term in the photon number rate equation vanishes, and the nonlin­
ear term is then dominant. The disagreement between (8.95) and (7.42) is a 
result of the factorization assumed by the photon number rate equation. 

Note 8.5 We can now assess the range of validity of the linearized treatment 
of fluctuations. Linearization is valid below threshold so long as the linear 
drift term in the Fokker-Planck equation (8.61a) is much larger than the non­
linear drift term in the Fokker-Planck equation (8.86a). Taking the different 
scaling of the two Fokker-Planck equations into account, this requires 

1 - -1/21-12 = -1/2(:=;,;-:.)- - -1/2( t ) 
SJ >> nsat Z thr - nsat Z Z P •• - nsat a a thr 

=I€ n + nspon 

nsat 
(8.96) 

This condition is consistent with our definition of the laser threshold region in 
(7.38). For the range of SJ that matches the linearized theory below threshold 
to the nonlinear theory at threshold, both linear and nonlinear drift terms 
can be included, as in (7. 71). (Of course, this Fokker-Planck equation is not 
systematic to the order of the smaller of the two drift terms at either end of 
the matching range.) 

Exercise 8.5 Show that, for 11- SJI « 1, the Fokker-Planck equation (7. 71) 
has the steady-state solution 

P88 (a)=2_ {i nsat 2[1+P(J2 gJ- 1 )]-1 

21!" v ; n + nspon 11 - SJithr 

[ 
1 (lal 2 - (SJ- 1)) 2 ] x exp -- -':----...,.....,---'-
2 (n + nspon)/nsat 0 

(8.97) 

8.3 Quasi-Linearization: Laser Fokker-Planck Equation 
Above Threshold 

Sufficiently far above threshold the nonlinear drift will again be negligi­
ble with respect to the linear drift, as it was below threshold. We might 
then expect to return to the linearized treatment of fluctuations described 
in Sects. 8.1.2 and 8.1.3. Unfortunately, things are not this simple. Equa­
tions (8.18) and (8.21) expand the fluctuations about macroscopic field and 
polarization states with defined amplitude and phase. Above threshold the 
macroscopic equations (8.25) fix the amplitudes of the laser field and medium 
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polarization in the steady state. They also require the phases of the field and 
polarization to be locked. But the common phase cjJ for the field and po­
larization is left undetermined. This means that fluctuations in cjJ are free 
to grow without bound to produce a phase-symmetric steady-state distribu­
tion. Figure 8.1 illustrates the distribution Fss(a), plotted from (8.97) , close 
to threshold. Above threshold a phase-symmetric state with nonzero ampli­
tude develops [Fig. 8.1(c)]. Clearly the scaling defined by (8.18) and (8.21) 
is inadequate to treat such phase-symmetric fluctuations. The steady-state 

(8.34) gives l(a)l> = I(L)I> = ~'and fluctuations z rv n;~;~ 
and v rv n;~; ~ are needed to distribute the phases of the field and po­

larization over the range -1r < cjJ :S 1r. If n;~; ~ » 1, this requires z and 
v to be large, contrary to the assumption that the scaled fluctuations are of 
order unity. To deal with this difficulty we must base our treatment of quan­
tum fluctuations above threshold on a system size expansion in amplitude 
and phase variables. 

Fig. 8.1 Laser phase-space distribution for n + nspon = 1, nsat = 108 : (a) below 
threshold, 1 - p = 10- 2 ; (b) at threshold, p = 1; (c) above threshold, p- 1 = 10-3 . 

(The parameter values are the same as those in Fig. 7.5.) 
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8.3.1 System Size Expansion Above Threshold 

The system size expansion in amplitude and phase variables is, in principle, 
no more complicated than the expansion made in Sect. 8.1.1. The algebra 
can get a little confusing, however, because the change of variables involves a 
nonlinear transformation; we must systematically expand the nonlinearities 
arising from the change of variables along with the nonlinearities and higher­
order derivatives we have already met in the phase-space equation of motion. 
Also, we must be particularly careful in our treatment of the phases. Without 
fluctuations, the phases of the laser field and the medium polarization are 
locked. In the presence of fluctuations, small differences between the phases 
of the field and polarization can arise. These small fluctuations in the phase 
difference must be retained to give a correct treatment of the much larger 
fluctuations that develop in the phase sum. Fluctuations in the phase sum 
are responsible for the laser linewidth above threshold. To try and separate 
the different aspects of the problem let us first make an expansion of the 
field and polarization amplitudes alone. Then we will address the question of 
phase fluctuations separately. 

It is a laborious task to begin again from scratch, with arbitrary scal­
ing parameters P1, P2, p3, q1, Q2, and q3, as in (8.2)-(8.4). In fact, this is 
not necessary. It is reasonable to assume that the fluctuations in field and 
polarization amplitudes scale as they did below threshold, as n~~/2 . If this 
choice is incorrect, we will certainly discover our mistake in the course of the 
calculations, since the expansion will not be self-consistent. Thus, in place of 
(8.18) and (8.21) we write 

- i¢1- -1/2) a = e \A( t) + nsat z , 

-* = -i<f>IA-(t) + -1/2 ) a e ~ nsat z , 

and 

- iO(- -1/2 v=e. \:J(t)+nsat 11), 

v* = e-i0(J(t) +n~~/2 11), 
- - -1/2 
m = (Jz(t)) + nsat IL· 

(8.98a) 

(8.98b) 

(8.99a) 

(8.99b) 

(8.99c) 

In these expressions z and 11 have a new meaning; they now represent real 
amplitude fluctuations rather than complex amplitude fluctuations. These 
fluctuations can be both positive and negative, but must fall within the 

1/2 - 1/2 -ranges -nsat A(t) ~ z < oo and -nsat :T(t) ~ 11 < oo, bounded below, 
since (.A(t) +n~!/2 ) and (J(t) +n~!12 11) must be positive. The phase-space 
distribution in scaled variables, normalized with respect to the integration 
measure dzd</JdlldBdf..l, is defined by 
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P'(z,¢, v, (), J.L, t) 

_ N3 -3/2 1 (A( ) -112 )('7( ) -1/2 ) = nsat 16C3 t + nsat z '-' t + nsat v 

x P( a(z, ¢, t), a* (z, ¢, t), v(v, (), t), v* (v, (), t), m(J.L, t), t). (8.100) 

Note 8.6 In (8.18) and (8.21), the field and polarization fluctuations are 
expanded about operator averages (a(t)), (at(t)), (L(t)), and (J+(t)) (by 
definition the fluctuations z and v have zero mean). A little thought shows 
that it is not generally possible to give simple expressions for A(t) and .J(t) 
in terms of operator averages. We can certainly relate these quantities to 
averages of the stochastic variables a and v. Taking the mean of z and v to 
be zero, we have A(t) = (Jaj(t))p, and .J(t) = (Jvj(t))p,· The difficulty arises 
when we try to relate these stochastic averages to operator averages. The 
relationship (7.99) only applies for operators that can be written as normal­
ordered power series. Amplitude and phase operators are not of this type. 
Consider the field amplitude. The definition of amplitude and phase operators 
for the field is not unique, but a self-consistent definition is possible [8.9]; for 
the sake of argument let us say that the scaled amplitude operator is v'afii, 
whose action on the Fock state basis is given by v'atiijn) = n~~/\lnjn). 
It is easy to see that ( v'afii) is not given by (Jaj)_p [we write P(a, a*) = 

nsatP(n!{;a,n!{;a*).] To illustrate this point we take the field to be in the 

coherent state Je-iwctn!{;a0 ). Then P(a, a*)= 8(a- a 0 ) and (Jaj)_p = Ja0 J. 
However, 

< 1-f=) _ ( -iwct 1/2- j 1-f= j -iwct 1/2- ) v a 1 a - e nsat ao V a 1 a e nsat ao 

_ -112~ ;::-(nsatlaol2t ( 1_ !2 ) - nsat ~ v n 1 exp - nsat ao . 
n=O n. 

This is a Poisson average of ...fii which is not generally equal to Ja0 j. For 
arbitrary field states we can use (3.15) to write 

(v'afii) = n~~l2j d2a (~ y'n (nsat~~J 2r exp(- nsatlaJ2)) P(a, a*); 

(8.101) 

this is not generally equal to (Jaj)_p· Nevertheless, having said all this, from 
(8.201) we see that in the limit of large nsat these subtleties are rather unim­
portant. When P(a, a*) is peaked about some Jaj ~A, and n8atA2 » 1, the 
Poisson average in the integrand of (8.201) is approximately equal to n!{; A 
over the dominant range of the integral, and to dominant order we can write 
.A= ( v'atii). 
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To expand the phase-space equation of motion we must transform the 
derivatives with respect to a, a*, v, and v* into derivatives with respect to 
z, ¢, v, and 0. The proof of the basic transformation formulas is left as an 
exercise: 

Exercise 8.6 Show that 

and 

( - -1;2 ) a 
A(t) + nsat z oa 

_ 1 ( 1;2 a . 1 a) -i<P(- ) -1;2 ) - 2 nsat f)z - z -1/2 8"' e A(t + nsat z ' 
A(t) + nsat Z '+' 

( - -1;2 ) a 
A(t) + nsat z oa* 

_ 1 ( 1;2 a . 1 a) i<P(- -1/2 ) -2 nsat f)z +z- -1/2 f}A. e A(t) +nsat z' 
A(t) + nsat Z '+' 

( - -1;2 ) a 
.:J(t) + nsat lJ OV 

(8.102a) 

(8.102b) 

_ 1 ( 112 a . 1 a) -ie ( -( ) -1;2 ) - 2 nsat ov - z -1/2 f)() e .:J t + nsat lJ ' 
.:J(t) + nsat lJ 

(8.103a) 

( - -1;2 ) a 
.:J(t) + nsat lJ ov* 

- 1 ( 1/2 8 . 1 8) i8 ( - -1/2 ) - 2 nsat ov + z -1/2 f)() e .:J(t) + nsat lJ • 
.:J(t) + nsat lJ 

(8.103b) 

Now, from the scaling transformation (8.98)-(8.100), and (8.102) and 
(8.103), we find 

fJP' _ 3 -3/2 1 (- -1/2 )(- -112 ) 
ot - N nsat 16C3 A(t) + nsat z .:J(t) + nsat v 

X (f)P 00! + fJP fJa* + fJP OV + fJP ov* + fJP om + fJP) 
00! ot oa* ot ov ot ov* ot om ot ot 

dA(t) 1 P' dJ(t) 1 I +-- +-- p 
dt A(t) + n;,.!12z dt J(t) + n;,.!12v 
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_ n112 (8P' dA(t) 8P' dJ(t) 8P' d(Jz(t))) 
- sat f)z dt + 01/ dt + OJ-L dt 

( -( -1/2 )(- -1/2 ) f) ( 3 -3/2 1 ) 
+ A t) + nsat z J(t) + nsat v at N nsat 16c3 P · 

(8.104) 

The explicit form of the last term on the right-hand side is given by (7.100). 

There is rather a lot of algebra involved in writing this out in terms of am­

plitude and phase variables. However, we only need to find the explicit form 

for terms involving derivatives up to second-order. We can convince ourselves 

that all higher-order derivatives vanish as some power of n~~/2 , just as the 

terms (8.13b) and (8.13c) vanished in the expansion in Sect. 8.1.1. Nonlinear 

terms corresponding to those given in (8.13a) vanish in the same way. After 

completing the algebra we can write 

oP' _ 1;2 { oP' [dA(t) ( - - )] 
at - nsat oz "&"" +"' A(t)- J(t) cos(¢- B) 

+ 0::' [ d~~t) + 'Yi; 'YL (J(t)- (Jz(t))A(t) cos(¢- B))] 

+ 0::' [ d(~?)) + br + 'Yt) ( (Jz(t)) - p + J(t)A(t) cos(¢- B))]} 

{ f) [ -1/21_ 1 l + K oz z - v cos(</> -B) - nsat 2n _112 
A(t) + nsat Z 

8[ - 1 l +a" we+ KJ(t) _112 sin(¢- B) 
'+' A(t) + nsat Z 

+ 'Yi; 'YL :v [v- ( (Jz(t))z + A(t)J-L) cos(¢- B) 

-1/2 -11 ( 1 - - ) 1 l 
-nsat ~ 2 nspon + 2J(t)A(t) cos(¢- B) _112 

J(t) + nsat 1/ 

f) [ 'YT + 'YL - - 1 . l + oB we- 2 (Jz(t))A(t) _112 sm(¢- B) 
J(t) + nsat 1/ 

+ br + 'Yt) :J-L [J-L + (J(t)z + A(t)v) cos(¢- B)] 

1 - [ [)2 -1 1 [)2] 
+-Kn -+n -

2 [)z2 sat (A(t) + n~~/2z)2 8¢2 

+ ~C1 [c'YT + 'YT: 'YL J(t)A(t) cos(¢- B)] 
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[
82 1 82] - 82 

X 8v2 + n~~ (J(t) + n;,_~/2v)2 802 - C1'YiJ(t) 8v8,_, 

1 [ p - 1 - - ] 82 + C C(-rr + 'Y!) 1- 402 (Jz(t))- 20 J(t)A(t) cos(¢- 0) 8,_,2 

(
first-order and higher- ) } 1 + . -1/2 p. 

order terms 1n nsat 
(8.105) 

Equation (8.105) displays the terms of order n;,_~/2 that result from the 
change of variables explicitly. These terms enter in two places: in the factors 
(.A(t) +n;..~/2 z) - 1 and (J(t) +n;..~12 v) -\ and in contributions to the drift in 
field and polarization amplitudes (appearing on the fourth and seventh lines). 
The contributions of order n;,_~/2 in the field and polarization amplitude 
drift, arise, mathematically, from passing the factor (.A(t) + n;,_~12z) (J(t) + 
n;,_~l2 v) multiplying the last term in (8.103) through the second derivatives 
with respect to z and v. Such terms are sometimes retained as corrections 
to the drift. They should not be, however. For a self-consistent expansion 
these terms must be dropped along with the nonlinear terms and higher­
order derivatives collected together in the last term on the right-hand side of 
(8.105). Thus, we will drop all terms of order n;,.~12 arising from the change 
of variables. We can then quickly complete the system size expansion once 
we decide what to do with the phase fluctuations. 

There are two points to notice about how the phases enter (8.105). The 
first is that phase variables only appear (aside from the derivatives) in the 
combination ¢-0. The natural variables to use for treating phase fluctuations 
are therefore the phase difference ¢ - 0 and the phase sum ¢ + 0. Secondly, 
fluctuations in the phase difference are driven by the diffusion terms in ¢ and 
0, which are of order n~~; these fluctuations should therefore scale as n;,_~/2 • 
It is convenient to scale the phase sum in the same manner; although, we 
will find that the fluctuations in ¢ + 0 are undamped, and over sufficiently 
long times can grow arbitrarily large; scaling the fluctuations in ¢ + 0 simply 
keeps the notation symmetric. On the basis of these observations, we write 

¢ + 0 = tJt(t) + n;,.~12~, 
¢-0 = Ll(t) + n;,_!128. 

(8.106a) 

(8.106b) 

Note 8. 7 The comment below (8.100) also applies here. There is generally no 
simple relationship between tJt(t) and .d(t) and operator averages. However, 

to dominant order in n;,.!12 , we have tJt(t) = arg((a(t))) + arg((L(t))) and 
Ll(t) = arg((a(t)))- arg((L(t))). 

We now expand the phase-dependent terms in (8.105) using 
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and 

cos(¢-(})= cos(L1(t)) + O(n;;,_~/2 ), 

!._sin(¢- (}) 
a¢ 

_ ( a a) [ 1;2 . ( ) ( ) ( -1;2)] - a'ljJ + a8 nsat sm .1(t) + 8 cos .1(t) + 0 nsat , 

~sin(¢-(}) 
ae 

_ ( a a) [ 1;2 . ( ) ( ) ( -1;2)] - a'ljJ - a8 nsat sm .1(t) + 8 cos .1(t) + 0 nsat . 

(8.107a) 

(8.107b) 

(8.107c) 

It is important to note that these expansions only require fluctuations in the 

phase difference to be small; the phase sum can be arbitrarily large. The 

distribution in scaled amplitude and phase variables is now defined by 

P(z, v, '1/J, 8, t) = n~gp' (z, ¢( '1/J, 8, t), v, (}('ljJ, 8, t), /-L, t), (8.108) 

and obeys the phase-space equation of motion 

aP _11 (aP' a¢ aP' ae aP') 
at= (nsat"2) a¢ at + ae at + at 

_ 112(aPdtJi(t) aPdL1(t)) ~( _1 ! ') 
- nsat a'ljJ dt + a8 dt + at nsat 2 p . (8.109) 

After substituting from (8.105) and dropping terms of order n;;,_~/2 , the re­

maining terms of order n!{? and n~at determine the macroscopic equations 

and the Fokker-Planck equation describing the fluctuations about the macro­

scopic state. The requirement that terms of order n!{t2 vanish identically gives 

the macroscopic equations, the laser equations without fluctuations in ampli­
tude and phase variables: 

1 dA - -
,- dt =-A+ .:J cos-1, (8.110a) 

('Yi ;'Yl)-1 d!t = -3 + (Jz)Acos-1, (8.110b) 

1d(Jz) - --
{'Yj + 'Yl)-~ = -(Jz) + p- .:J A cos Ll, (8.110c) 

dtJi ( 3 'Yr + 'Yl - A) . dt = -2wc- "'A- 2 (Jz) 3 sm-1, (8.110d) 

d.1 = - ("' :J_ + 'Yi + 'Yl (J ) ~)sin .1. 
dt A 2 z.:J 

(8.110e) 
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Fluctuations about the macroscopic state obey the Fokker-Planck equation 

8P { 8 7ft= K: 8z [z- vcos(Ll(t))] 

+ 'Yi ;'Yl :v[v- ((Jz(t))z+A(t)J-L)cos(L1(t))] 

+ hr +I'd :J-l [J-l + (:l(t)z + A(t)v) cos(L1(t)) J 

+ (1\: .J_(t) - 'Yi + 'Yl (J (t)) ~(t)) cos (L1(t)) .!!_8 
A(t) 2 z ..J(t) 87/; 

( :l(t) 'Yr + 11 - A(t)) 8 
+ K: A(t) + 2 (Jz(t)) .J(t) cos(Ll(t)) 88 8 

1 82 1 [ 'Yi + 'Yl - - ] 82 + 2 K:n 8z2 + 2c 1 C'Yr + 4 ..J(t)A(t) cos(L1(t)) 8v2 

1 - 82 
- C !'r..J(t) 8v8J-t 

1 [ g:J - 1 - - ( )] 82 
+ C C('Yr +I'd 1- 402 (Jz(t))- 20 ..J(t)A(t) cos Ll(t) 8M2 

1 1 ( 8 8)2 

+ 21\:n A(t)2 87/J + 88 

1 -1[ 1 'Yr+'Y1 A(t) ](8 8)2}-+2~ C'Yr :l(t)2 + 4 ..J(t) cos(Ll(t)) 87/J- 88 P. 

(8.111) 

Note 8.8 Equations (8.110) are obtained from our earlier version of the 
laser equations [Eqs. (8.25a)-(8.25e)] by writing 

(a)= Aexp [i~(P + L1)], 

( ]_) = .J exp [ i ~ ( l]f - L1)] , 

(at)= Aexp [- i~(P + L1)], 

(J+) = .J exp [- i~(l]f- L1)]. 

In general, however, we should not identify A and .J with l(a)l and i(L)i. 
This identification is possible while the fluctuations, 7/;, in the phase sum 
remain small. But a phase-symmetric state like that illustrated in Fig. 8.1(c) 
has i(a)i = i(L)i = 0, while A and .J are certainly not zero. 

Note 8.9 When nonradiative dephasing processes are included, (8.110a)­
(8.110e) and (8.111) hold with the minor modifications resulting from (8.16) 
described previously: now v and v* (and hence .J and v) are defined by (8.65); 
we make the replacement hr + 'Yl)/2 ---+ hr + f'l + 2/'p)/2 = /'h/2; and on 
the sixth and tenth lines of (8.111), 
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'Yh [ ( (Jz(t)))] 
C'Yr -+ c 'Yr + 'Yt 'Yr + "fp 1 + ~ . 

8.3.2 Adiabatic Elimination 

Above threshold the steady-state solutions to (8.110a)-(8.110e) are 

A>=A?s=~, 

.J> = .J?s = ~' 
(Jz)> = (Jz)?, = 1, 

tJt> = tJt?s = 2wct + ~, 
L1> = L1?, = 0; 

(8.112a) 

(8.112b) 

(8.112c) 

(8.112d) 

(8.112e) 

the phase ~ is arbitrary. We will restrict our treatment of the fluctuations 
about this steady state to the region not too far above threshold, where 
~ « 1. With this restriction we are able to neglect diffusion terms 
proportional to .J> =~and .J>A> = p- 1. Then, from (8.111), the 
laser Fokker-Planck equation above threshold without adiabatic elimination 
is 

Equation (8.113) is separable. It may be separated into an equation de­
scribing fluctuations in the field amplitude, the polarization amplitude, and 
the inversion, and an equation describing phase fluctuations. Our task is to 
adiabatically eliminate the polarization amplitude and inversion from the for­
mer to obtain a stochastic description of amplitude fluctuations in the laser 
field, and to adiabatically eliminate the phase difference from the latter to 
obtain a description of the fluctuations in the phase sum, or equivalently, the 



8.3 Quasi-Linearization: Laser Fokker-Planck Equation Above Threshold 341 

common phase of the field and polarization. We write the distribution P as 
the product 

P(z, v, 'lj;, 8, J.l, t) = A(z, v, J.l, t)~('lj;, 8, t); 

the distribution A satisfies the Fokker-Planck equation 

(8.114) 

and ~ satisfies the Fokker-Planck equation 

a~ = [( _ 'Yr + 'Yl) !__ 8 + ( + 'Yr + 'Yl) ~8 
at r;, 2 a¢ r;, 2 a8 

1 _ 1 ( a a ) 2 1 _1 1 ( a a ) 2
]-

+ 2r;,n p- 1 a'lj; + a8 + 2~ C'Yr p- 1 a¢ - a8 P. 

(8.115b) 

Let us first consider the adiabatic elimination of the polarization am­
plitude and inversion from (8.115a). We wish to adiabatically eliminate the 
variables v and J.l· The Ito stochastic differential equations equivalent to this 
Fokker-Planck equation are 

and 

dz = -r;,(z- v)dt + ~dWz, (8.116a) 

dv =- 'Yi; 'Y! (v- z- ~J.L)dt + Jt;.- 1C'YrdWv, (8.116b) 

df.l = -br +'Y!)(J.L+ ~z+ ~v)dt 

+ v~~- 1 2C('Yr +'Y1)(1-1/4C2 )dW"', (8.116c) 

where dWz, dWv, and dWJL are independent Wiener processes. Equations 
(8.116a) and (8.116b) are similar to the equations that describe fluctuations 
in the coupled field and polarization amplitudes below threshold [Eqs. (8.55a) 
and (8.55b)J. The main difference is that above threshold fluctuations in the 
polarization couple to fluctuations in the inversion; below threshold these 
fluctuations are separable. This difference arises because the laser field and 
medium polarization both acquire a nonzero mean amplitude above thresh­
old. But this feature brings little change to the calculations, or to the re­
sults, when the laser is not too far above threshold ( ~ « 1). We set 
dv = df.l = 0 on the left-hand sides of (8.116b) and (8.116c), and write 
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vdt = (z + ~M)dt + ('Yi; 'Y!) - 1J~- 1 C'YT dWv, (8.117a) 

Mdt = -~ (z + v)dt 

+ br + 'Y!) - 1 J,--~--1-2C_(_'Y_i _+_'Y_! )-( 1---1 /_4_0_2 ) dW w ( 8.117b) 

Substituting (8.117a) into (8.117b), we find 

f?Mdt = -2~zdt- ~('YT ;'Y!)- 1J~- 1 C'YrdWv 

+ br + 'Y!)- 1 J ~- 1 2C('Yr + 'Y!)(1- 1/402 ) dWw (8.118) 

Then substituting the result back into (8.117a), we have 

vdt = [1- 2(p -1)/p]zdt + [1- (p -1)/p] ci; 'Y!) - 1J~- 1 C'YrdWv 

+ (~/p)('Yr +'Y!)- 1 J~-1 2C('Yr +'Y!)(1-1/4C2 )dWw 

(8.119) 

We have already neglected diffusion terms of order ~and p-1 in passing 
from (8.111) to (8.113). To be consistent we should therefore drop these terms 
in the coefficients of the Wiener processes appearing in (8.119). As a result, 
the surviving fluctuations from the laser medium are just the polarization 
fluctuations we met below threshold [Eq. (8.56)]. After substituting for vdt 
in (8.116a), we find 

(8.120) 

Thus, the laser Fokker-Planck equation for field amplitude fluctuations above 
threshold is given by 

with corresponding stochastic differential equation 

dz = -2(p -1)zdt + J(n + nspon)dW, 

where f is given by (8.62). 

(8.121a) 

(8.121b) 

Note 8.10 Close to threshold the adiabatic elimination of atomic variables 
can be justified even when the condition~ «: 1 is not satisfied. This is because 
the fluctuations in the laser field "slow down" near threshold. In (8.121), and 
also in (8.61), the decay rate for the field is determined by ,..If?- 11 rather 
than by the empty cavity rate K;. 
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We now return to (8.115b). We wish to adiabatically eliminate the phase 
difference 8 from this equation. The diffusion matrix in (8.115b) is not diago­
nal, and therefore to write the equivalent Ito stochastic differential equations 
we must first factorize the diffusion matrix in the form BBT. We may write 

1 - 1 ( 8 8 ) 2 1 -1 1 ( 8 8 ) 2 
2,.,;n g:J- 1 8'1/J + 88 + 2~ 0 'Yi g:J- 1 8'1/J - 88 

1 ( 8 8 ) T ( 8 8 )T 
= 2 8'1/J 88 BB 8'1/J 88 ' (8.122) 

with 

(8.123) 

Then, using (5.149), the Fokker-Planck equation (8.115b) is equivalent to the 
Ito stochastic differential equations 

d'I/J=-(,.,;- 'Yr;'~'1 )8dt+ ~(~dW1+J~-1C'YrdW2), 
(8.124a) 

d8 =- (,.,; + 'Yr; '~'1 )8dt + ~ ( ~dW1- J~- 1C"frdw2); 
(8.124b) 

dW1 and dW2 are independent Wiener processes. The phase difference 8 is 
damped at the rate ,.,; + br + 'Yl)/2. The phase sum 'ljJ is not damped, and 
it is driven by the Wiener processes dW1 and dW2, both directly, and also 
indirectly by its coupling to the damped fluctuations in the phase difference. 
We may adiabatically eliminate the phase difference under the assumption 
that the relaxation rate,.,;+ br + 'Yl)/2 is much faster than the rate at which 
fluctuations in 'ljJ grow. To accomplish the adiabatic elimination we set d8 ~ 0 
on the left-hand side of (8.124b), and write 

8dt = G+ 'Yr ;'~'1)- 1~ (~dW1- J~- 1C"frdw2)· (8.125) 

Substituting this result into (8.124a), we have 

d'I/J = 2 ( 'Yr +'Yl ~dW1 + 2,.,; · 1~- 1 C"frdw2)· 
~ 2,.,;+'Yr +'Y1 2,.,;+'Yr +'Y1 Y 

(8.126) 

Equation (8.126) is equivalent to the Brownian motion equation 

d'ljJ = BdW, (8.127a) 

where 
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(8.127b) 

The corresponding Fokker-Planck equation reads 

/'i,-1 aif? = ! (1 + 2K. )-2 4 (n + nspon) 82 if?. 
at 2 'Yi + 'Y! p- 1 8'1jJ2 

(8.128) 

Now that we have eliminated the phase sum it is convenient to write 
(8.128) directly in terms of the phase¢ of the laser field. In the steady-state, 
from (8.106a) and (8.106b), we may write 

¢ = ~(llf> + ~>) + n~!/2 ~('1/J + 8) 
-1/21.,, =wet+ nsat 2'1"· (8.129) 

We have neglected 8 compared to '1/J because the damped fluctuations in 8 
remain finite, while the fluctuations in '1/J grow as -./i. We define 

- - - - -1/21-iP( ¢, t) = iP( ¢, t) = nsat 2iP( '1/J, t), (8.130a) 

with 
-- - -1/21 ¢ = ¢-wet - nsat 2'1/J· (8.130b) 

Then the laser Fokker-Planck equation for phase fluctuations above threshold 
is given by 

a~ = ! (1 + 2K. )-2 n + nspon 82 ~ 
at 2 'Yi + 'Y! nsat(P- 1) a¢2 ' 

with corresponding stochastic differential equation 

( 2 )-1 d¢= 1+ K, 

'Yi +'Y! 

n+nspon dW 
nsat(P- 1) ' 

where f is given by (8.62). 

(8.131a) 

(8.131b) 

Note 8.11 When nonradiative dephasing processes are included and the 
changes described in the note below (8.111) are carried over into (8.115a) 
and (8.115b), the results of the adiabatic elimination are the same, apart 
from the replacement of 'Yi + 'Y! by 'Yh in (8.131a) and (8.131b). 
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8.3.3 Quantum Fluctuations Above Threshold 

Equations (8.121a) and (8.131a) are linear Fokker-Planck equations in one 
dimension. The Green function solution to (8.121a) can be written down from 
(5.18): 

- 1 1 
A(z, tizo, 0) = --,============ 

...j2if V[(n + nspon)/4(g:J- 1)] [1- e-4~<(p-l)t] 

{ 
1 [z - zoe-2~<(p-l)t] 2 } 

x exp -- . 
2 [(n + nspon)/4(g:J- 1)] [1- e-4~<(p-l)t] 

(8.132) 

The solution for ~(¢,tl¢0,0) is slightly different from that given by (5.18) 
since we must account for the different boundary condition that applies to 
the phase variable. We wish to solve (8.131a) with¢ distributed in the range 
0:::; ¢ < 21r. We write 

00 

~(¢,tl¢o,O) = L Cm(t)eim¢, (8.133a) 
m=-oo 

and to find the Green function solution take 

C (0) = _!_e-im¢o. 
m 21f ' (8.133b) 

this initial condition gives a periodic 8-function at ¢ = ¢o + k21f, where k 
is an integer. For simplicity let us assume 2~ « 'Yi + 'YL. Then, substituting 
(8.133a) into (8.131a), the Cm obey the equations 

Co - -~ n+nspon 2c 
m- ( )m m, 2nsat g:J-1 

(8.134) 

and hence 

- - - 1 ~ [ - - 1 n + nspon 2 ] 
P(¢,ti¢0 ,0)= 21f ~ exp im(¢-¢o)-2nsat(g:J- 1)m t. 

m=-oo 

(8.135) 

The Green function (8.132) gives us the variance of the steady-state am­
plitude fluctuations, and hence the correction to the average photon number 
in the laser mode due to spontaneous emission and thermal photon fluctua­
tions: 

(at a)>- nsat(g:J -1) = (Z2h 
- n+nspon 

4(g:J-1)" 
(8.136) 
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This result is different from that obtained using the rate equation theory 
[Eq. (7.43)] by the factor of four in the denominator on the right-hand side. 
The difference arises from the factorization used to pass from the exact mean 
energy equation (7.65) to a rate equation description. From the Green func­
tion solution (8.135) for phase fluctuations we calculate the laser linewidth 
above threshold. The normalized first-order correlation function for the laser 
output is 

(8.137) 

The Fourier transform gives a Lorentzian line, with the laser linewidth above 
threshold (half-width at half-maximum) given by 

( 
A ) _ 1 j'j, + nspon _ 1 j'j, + nspon _ 2 ~- . j'j, + nspon 

LlW > - K,- - K,- - /'i, IIWC 
2nsat(g:J-1) 2 (ata)> P> 

(8.138) 

It is interesting to note, that when written in terms of the output power 
P>, this expression only differs from the expression (8.70), which holds be­
low threshold, by a factor of two. Of course, the actual linewidth varies a 
great deal. The output power, or, alternatively, the mean intracavity pho­
ton number, increases by many orders of magnitude from below threshold to 
above threshold. Thus, a linewidth of the order of the cavity width "' below 
threshold is replaced by a very much narrower line above threshold. Using 
n + nspon = 1 and nsat = 108 , we find (Llwh//'i, rv 10-6 when g:J- 1 = 10-2 

(one percent above threshold). 

Exercise 8. 7 Show that above threshold 

(2)( ) - 1 + n + nspon -21<(p-l)lrl 
g> r - ( 1)2 e nsat g:J-

= 1 + ~ ((ata)thr)2 e-2~<(p-l)lrl. 
2 (ata)> 

(8.139) 

Compare this with the "thermal" result (8.71) obtained below threshold. For 
n + nspon = 1, nsat = 108 , and g:J- 1 = 10-2 (one percent above threshold), 
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the difference between (8.139) and the correlation function gC2l(r) 1 for 
coherent light is rv w-4 . 

Note 8.12 The quasi-linearization used to arrive at the Fokker-Planck equa­
tion (8.113) is not valid too close to threshold. When threshold is approached 
from above, in place of the deterministic equations (8.72) we have 

i = -f'i,(z- v), 

1'i +1'! ( r::-1 ) i; = 2 v - z - v p - 1j.L ' 

fi, = -br + 1'!)[J.L- J;=lz- v;=lv). 
The characteristic equation determining the eigenvalues is 

(8.140a) 

(8.140b) 

(8.140c) 

>.(>. + 1'T + 1'!) (.x +"' + 1'T; 1'!) (p- 1)(1'r + 1'!) 1'T; 1'! (>. + 2"') = 0. 

(8.141) 

One of the eigenvalues vanishes for p = 1; as described below (8.73), this 
means that nonlinear terms must be retained in the system size expansion 
close to threshold. In addition to the neglect of these nonlinearities, the 
quasilinearization in amplitude and phase variables assumes z « n!{; A> = 

n!{; ~' in order to remove the nonlinearity arising from the change of 
variables. Using (8.136) to estimate the magnitude of z, we see now, that this 
requires 

1 fi + nspon 
p-1»-2 

nsat 
(8.142) 

a condition that is consistent with our definition of the threshold region in 
(7.38). [The factor of four- relating (8.136) and (7.43) - shows up again in 
the comparison between (8.142) and (7.38).] 

Exercise 8.8 The Fokker Planck equations (8.121a) and (8.131a) are valid 
when the laser is operated not too far above threshold, with p - 1 « 1. We 
may lift this restriction without adding too much complication if we con­
sider the four-level model for the laser gain medium mentioned in the second 
paragraph below (7.75) br » 1'!, 2C = p) and add a strong polarization 
dephasing process (1'p » 1'i » 1'!) in the manner described in Note 8.9. 
Introduce these changes and repeat the adiabatic elimination, starting from 
(8.111), without assuming p- 1 « 1. Show that (8.121a) is replaced by the 
Fokker-Planck equation 

a A [ P - 1 a 1 (- P + 1) a2 J _ 
of= 2-p-8zz+2 n+ 2p2 az2 A, 

and (8.131a) is replaced by the Fokker-Planck equation 

(8.143) 
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a!=! (1 + 211:)-2 n + (p + 1)/2 a~ JJ; 
at 2 rh nsat(P- 1) a¢2 

(8.144) 

f is given by (8.62). 



References 

Chapter 1 

1.1 I. R. Senitzky: Phys. Rev. 119, 670 (1960); 124, 642 (1961) 
1.2 J. R. Ray: Lett. Nuovo Cim. 25, 47 (1979) 
1.3 A. 0. Caldeira and A. J. Leggett: Ann. Phys. 149, 374 (1983) 
1.4 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 

1973) pp. 331-347 
1.5 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­

Verlag, Berlin, 1970) pp. 51-56 
1.6 M. Sargent III, M. 0. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison­

Wesley, Reading, Massachusetts, 1974) pp. 257-267 
1.7 F. Haake: Z. Phys. 223, 353 (1969); 223, 364 (1969) 
1.8 F. Haake: "Statistical Treatment of Open Systems by Generalized Master 

Equations", in Springer Tracts in Modern Physics, Vol. 66 (Springer-Verlag, 
Berlin, 1973) pp. 98-168 

1.9 W. C. Schieve and J. W. Middleton: International J. Quant. Chern., Quantum 
Chemistry Symposium 11, 625 (1977) 

1.10 M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions 
(Dover, New York, 1965) pp. 259-260 

1.11 E. T. Whittaker and G. N. Watson: A Course of Modem Analysis, 4th ed. 
(Cambridge University Press, London, 1935) p. 75 

1.12 G. Lindblad: Commun. Math. Phys. 48, 119 (1976) 
1.13 Reference [1.4] pp. 324, 336; Reference [1.5] pp. 29-30, and references therein 
1.14 E. B. Davies: Quantum Theory of Open Systems (Academic Press, New York, 

1976) 
1.15 M. D. Srinivas and E. B. Davies: Optica Acta 28, 981 (1981) 
1.16 G. S. Agarwal: Phys. Rev. A 4, 1778 (1971) 
1.17 G. S. Agarwal: Phys. Rev. A 7, 1195 (1973) 
1.18 K. Lindenberg and B. West: Phys. Rev. A 30, 568 (1984) 
1.19 H. Grabert, P. Schramm, and G.-L. Ingold: Physics Reports 168, 115 (1988) 
1.20 M. Lax: Phys. Rev. 129, 2342 (1963) 
1.21 M. Lax: Phys. Rev. 157, 213 (1967) 
1.22 B. R. Mallow: Phys. Rev. 188, 1969 (1969) Footnote 7 
1.23 L. Onsager: Phys. Rev. 37, 405 (1931); 38, 2265 (1931) 
1.24 G. W. Ford and R. F. O'Connell, Phys. Rev. Lett. 77, 798 (1996); Ann. Phys. 

276, 144 (1999); Optics Commun. 179, 451 (2000) 
1.25 A. Einstein: Ann. Phys. (Leipz.) 22, 180 (1907) 
1.26 G. W. Ford, J. T. Lewis, and R. F. O'Connell, Ann. Phys. 252, 362 (1996) 
1.27 G. W. Ford and R. F. O'Connell, Ann. Phys. 269, 51 (1998) 
1.28 M. Lax, Optics Commun. 179, 463 (2000) 
1.29 I. Prigogine, C. George, F. Herrin, and L. Rosenfeld: Chern. Scripta 4, 5 (1973) 



350 References 

1.30 R. Hanbury-Brown and R. Q. Twiss: Nature 177, 27 (1956); 178, 1046 (1956); 
Proc. R. Soc. Lond. A 242, 300 (1957); 243, 291 (1957) 

Chapter 2 

2.1 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 
1973) pp. 347-357 

2.2 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­
Verlag, Berlin, 1970) pp. 57-58 

2.3 M. Sargent III, M. 0. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison­
Wesley, Reading, Massachusetts, 1974) pp. 273-278 

2.4 L. Allen and J. H. Eberly: Optical Resonance and Two-Level Atoms (Wiley, 
New York, 1975) pp. 28-40 

2.5 Reference [2.1] pp. 122-127; Reference [2.3] pp. 9-12 
2.6 Reference [2.2] pp. 27-30; Reference [2.3] pp. 14-16, 23Q-233 
2. 7 There are subtleties in the derivation of the Hamiltonian for the atom-field 

interaction which have given rise to a long-standing debate. For a recent con­
tribution to the debate and a review of the literature, see E. A. Power and T. 
Thirunamachandran: J. Opt. Soc. Am. B 2, 1100 (1985) 

2.8 T. F. Gallagher and W. E. Cook: Phys. Rev. Lett. 42, 835 (1979) 
2.9 J. W. Farley and W. H. Wing: Phys. Rev. A 23, 5 (1981) 

2.10 L. Hollberg and J. L. Hall: Phys. Rev. Lett. 53, 230 (1984) 
2.11 G. S. Agarwal: Phys. Rev A 7, 1195 (1973) 
2.12 Reference [2.1] pp. 250-251 
2.13 V. G. Weisskopf and E. Wigner: Z. Phys. 63, 54 (1930) 
2.14 Reference [2.1] pp. 281-283; Reference [2.3] pp. 2Q-23 
2.15 R. J. Glauber: "Optical Coherence and Photon Statistics," in Quantum Optics 

and Electronics, ed. by C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gor­
don and Breach, London, 1965) pp. 78-84; in particular, consider Eq. (4.11) 
with a sharply peaked (6-function) sensitivity function s(w) 

2.16 J. Herschel: Phil. Trans. R. Soc. Lond., 143 (1845) 
2.17 D. Brewster: Trans. of Edin., part II, 3 (1846) 
2.18 H. A. Lorentz: The Theory of Electrons (Dover, New York, 1952) 
2.19 W. Heitler: The Quantum Theory of Radiation (Oxford, London, 1954) Chap-

ter 1 
2.20 Reference [2.3] Chapter III; Reference [2.4] Chapter 1 
2.21 Reference [2.19] pp. 196-204 
2.22 R. J. Ballagh: Ph. D. Thesis, University of Colorado, Boulder, U.S.A. (1978) 
2.23 B. R. Mollow: Phys. Rev. 188, 1969 (1969) 
2.24 F. Y. Schuda, C. R. Stroud, Jr., and M. Hercher: J. Phys. B 7, L198 (1974) 
2.25 F. Y. Wu, R. E. Grove, and S. Ezekiel: Phys. Rev. Lett. 35, 1426 (1975) 
2.26 W. Hartig, W. Rasmussen, R. Schieder, and H. Walther: Z. Phys. A278, 205 

(1976) 
2.27 R. Hanbury-Brown and R. Q. Twiss: Nature 177, 27 (1956); 178, 1046 (1956); 

Proc. Roy. Soc. Lond. A 242, 300 (1957); 243, 291 (1957) 
2.28 D. F. Walls: Nature 280, 451 (1979) 
2.29 R. Loudon: Rep. Prog. Phys. 43, 913 (1980) 
2.30 H. Paul: Rev. Mod. Phys. 54, 1061 (1982) 
2.31 B. R. Mollow: Phys. Rev. A 12, 1919 (1975); the relevant comments appear 

below equation (4.15) 
2.32 H. J. Carmichael and D. F. Walls: J. Phys. B 9, L43 (1976); 9, 1199 (1976) 
2.33 H. J. Kimble, M. Dagenais, and L. Mandel: Phys. Rev. Lett. 39, 691 (1977) 



References 351 

2.34 J. D. Cresser, J. Hager, G. Leuchs, M. Rateike, and H. Walther: "Resonance 
Fluorescence of Atoms in Strong Monochromatic Laser Fields," in Dissipative 
Systems in Quantum Optics, ed. by R. Bonifacio (Springer-Verlag, Berlin, 
1982) pp. 21-59 

2.35 I. I. Rabi: Phys. Rev. 51, 652 (1937) 
2.36 H. J. Carmichael and D. F. Walls: J. Phys. A 6, 1552 (1973) 
2.37 H. J. Carmichael and D. F. Walls: Phys. Rev. A 9, 2686 (1974) 
2.38 M. Lewenstein, T. W. Mossberg, and R. J. Glauber: Phys. Rev. Lett. 59, 775 

(1987) 
2.39 M. Lewenstein and T. W. Mossberg: Phys. Rev. A 37, 2048 (1988) 
2.40 F. Bloch: Phys. Rev. 70, 460 (1946) 
2.41 C. Cohen-Tannoudji and S. Reynaud: J. Phys. B 10, 345 (1977) 
2.42 H. Sambe: Phys. Rev. A 7, 2203 (1973) 
2.43 J. M. Okuniewicz: J. Math. Phys. 5, 1587 (1974) 
2.44 R. K. Eisenschitz: Matrix Algebra for Physicists (Plenum, New York, 1966) 

Chapter 7 
2.45 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963) 
2.46 R. J. Glauber: Phys. Rev. 130, 2529 (1963) 
2.47 H. J. Kimble and L. Mandel: Phys. Rev. A 13, 2123 (1976) 
2.48 M. Dagenais and L. Mandel: Phys. Rev. A 18, 2217 (1978) 
2.49 R. Short and L. Mandel: Phys. Rev. Lett. 51, 384 (1983) 
2.50 H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice: Phys. Rev. A 39, 1200 

(1989) 
2.51 P. Zoller, M. Marte, and D. F. Walls: Phys. Rev. A 35, 198 (1987) 
2.52 H. J. Carmichael, "Theory of Quantum Fluctuations in Optical Bistability," in 

Frontiers in Quantum Optics, ed. by E. R. Pike and S. Sarkar (Adam Hilger, 
Bristol, 1986) pp. 120-203 [see Fig. ll(c)J 

2.53 P. R. Rice and H. J. Carmichael: IEEE J. Quantum Electron. QE 24, 1351 
(1988) (see Fig. 3) 

2.54 A wide selection of early articles in this field can be found in the following 
volumes: Frontiers in Quantum Optics, ed. by E. R. Pike and S. Sarkar (Adam 
Hilger, Bristol, 1986); Quantum Optics IV, ed. by J.D. Harvey and D. F. Walls 
(Springer-Verlag, Berlin, 1986); J. Mod. Opt. 34, Special Issue on "Squeezed 
Light," June 1987; J. Opt. Soc. Am. B 4, Feature Issue on "Squeezed States 
of the Electromagnetic Field," October, 1987 

2.55 D. F. Walls and P. Zoller: Phys. Rev. Lett. 47, 709 (1981) 
2.56 D. F. Walls: Nature 306, 141 (1983) 
2.57 H. J. Carmichael: Phys. Rev. Lett. 55, 2790 (1985) 
2.58 L. Mandel: Phys. Rev. Lett. 49, 136 (1982) 

Chapter 3 

3.1 H. Risken: The Fokker Planck Equation (Springer-Verlag, Berlin, 1984) 
3.2 E. P. Wigner: Phys. Rev. 40, 749 (1932) 
3.3 R. J. Glauber: Phys. Rev. 131, 2766 (1963) 
3.4 E. C. G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963) 
3.5 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963) 
3.6 R. J. Glauber: Phys. Rev. 130, 2529 (1963) 
3.7 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 

1973) pp. 104-109 
3.8 M. Sargent III, M. 0. Scully, and W. E. Lamb Jr.: Laser Physics (Addison­

Wesley, Reading, Massachusetts, 1974) Chapter 15 
3.9 G. Temple: J. London Math. Soc. 28, 134 (1953) 



352 References 

3.10 G. Temple: Proc. Roy. Soc. A 228, 175 (1955) 
3.11 M. J. Lighthill: Fourier Analysis and Generalized Functions (Cambridge Uni­

versity Press, Cambridge, 1960) 
3.12 L. Schwartz: Theorie des Distributions, Vol. I/II (Hermann, Paris, 1950/51; 

2nd edition 1957 /1959) 
3.13 H. Bremermann: Distributions, Complex Variables, and Fourier Transforms 

(Addison-Wesley, Reading, Massachusetts, 1965) 
3.14 J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics 

(Benjamin, New York, 1968) pp. 178-201 
3.15 H. M. Nussenzveig: Introduction to Quantum Optics, (Gordon and Breach, 

London, 1973) pp. 54-68 
3.16 D. Zwillinger: Handbook of Differential Equations (Academic Press, Boston, 

1989) pp. 325-330 
3.17 W. Feller: An Introduction to Probability Theory and its Applications, Vol. II 

(Wiley, New York, 1966; 2nd edition 1971) Chapter XV 

Chapter 4 

4.1 K. E. Cahill and R. J. Glauber: Phys. Rev. 177, 1857 (1969); 177 1882 (1969) 
4.2 G. S. Agarwal and E. Wolf: Phys. Rev. D 2, 2161 (1970); 2, 2187 (1970); 2, 

2206 (1970) 
4.3 P. D. Drummond and C. W. Gardiner: J. Phys. A 13, 2353 (1980) 
4.4 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 

1973) pp. 138-150,168-176 
4.5 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­

Verlag, Berlin, 1970 pp. 61-64 
4.6 M. Hillery, R. F. O'Connell, M. 0. Scully, E. P. Wigner: Phys. Rep. 106, 121 

(1984) 
4.7 J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics 

(Benjamin, New York, 1968) pp. 128,129,178-195 
4.8 H. M. Nussenzveig: Introduction to Quantum Optics (Gordon and Breach, 

London, 1973) pp. 53-54 
4.9 J. M. Normand: A Lie Group: Rotations in Quantum Mechanics (North Hol­

land, Amsterdam, 1980) Appendix D, Sect. D.2.2 
4.10 H. Weyl: The Theory of Groups and Quantum Mechanics (Dover, New York, 

1950) pp. 272-276 
4.11 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 130, 2529 (1963); 

131, 2766 (1963) 
4.12 P. L. Kelly and W. H. Kleiner: Phys. Rev. 136, 316 (1964) 

Chapter 5 

5.1 A. D. Fokker: Ann. Phys. (Leipzig) 43, 310 (1915) 
5.2 M. Planck: Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 325 (1917) 
5.3 C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and 

the Natural Sciences (Springer-Verlag, Berlin, 1983) pp. 47-53 
5.4 N. G. van Kampen: Stochastic Processes in Physics and Chemistry (North-

Holland, Amsterdam, 1981) 
5.5 H. Risken: The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984) 
5.6 Reference [5.3] pp. 146-147; Reference [5.5] pp. 133-134 
5.7 W. Horsthemke and R. Lefever: Noise-Induced Transitions. Theory and Ap­

plications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984) 



References 353 

5.8 N. G. van Kampen: Can. J. Phys. 39, 551 (1961); for further tutorial discussion 
see Reference [5.3] pp. 250-257, and Reference [5.4], Chapter IX - Chapter XI 

5.9 H. A. Kramers: Physica 7, 284 (1940) 
5.10 J. E. Moyal: J. R. Stat. Soc. 11, 151 (1949) 
5.11 A. E. R. Woodcock and T. Poston: A Geometrical Study of the Elementary 

Catastrophes (Springer-Verlag, Berlin, 197 4) 
5.12 R. Gilmore: Catastrophe Theory for Scientists and Engineers (Wiley, New 

York, 1981) Chapter 6 
5.13 See, for example, Reference [5.3] Chapter 9; Reference [5.4] pp. 304-311 
5.14 R. K. Eisenschitz: Matrix Algebra for Physicists (Plenum, New York, 1966) 

Chapter 7 
5.15 M. M. Wang and G. E. Uhlenbeck: Rev. Mod. Phys. 17, 323 (1945) 
5.16 H. T. H. Piaggio: Differential Equations (Bell, London, 1965) Chapter XII 
5.17 Reference [5.3] pp. 36-37; Reference [5.5] pp. 23-24 
5.18 Z. Schuss: Theory and Applications of Stochastic Differential Equations (Wi­

ley, New York, 1980) 
5.19 T. T. Soong: Random Differential Equations in Science and Engineering (Aca-

demic Press, New York, 1973) 
5.20 See the discussions of Markoff processes in References [5.3-5.5, 5.18, 5.19] 
5.21 Reference [5.3] pp. 7Q-73; Reference [5.4] pp. 17-18 
5.22 K. Ito: Lectures on Stochastic Processes, Lecture Notes, Tata Inst. of Funda-

mental Res., Bombay, India, 1961 
5.23 R. L. Stratonovich: SIAM J. Control 4, 369 (1966) 
5.24 Reference [5.3] pp. 83-101 
5.25 R. E. Mortensen: J. Stat. Phys. 1, 271 (1969) 
5.26 N. G. van Kampen: J. Stat. Phys. 24, 175 (1981) 
5.27 Reference [5.3] pp. 96-97; Reference [5.18] Chapter 5; Reference [5.19] pp. 183-

190 

Chapter 6 

6.1 H. Haken, H. Risken, and W. Weidlich: Z. Physik 206, 355 (1967) 
6.2 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­

Verlag, Berlin, 1970) pp. 64-65 
6.3 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 

1973) pp. 375-390 
6.4 C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and 

the Natural Sciences (Springer-Verlag, Berlin, 1983) pp. 78,79,402 
6.5 A. Einstein: Phys. Z. 18, 121 (1917) 
6.6 M. Sargent III, M. 0. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison­

Wesley, Reading, Massachusetts, 1974) pp. 2Q-23 
6.7 Min Xiao, H. J. Kimble, and H. J. Carmichael: Phys. Rev. A 35, 3832 (1987) 
6.8 Min Xiao, H. J. Kimble, and H. J. Carmichael: J. Opt. Soc. Am. B 4, 1546 

(1987) 
6.9 R. R. Puri and S. V. Lawande: Phys. Lett. 72A, 200 (1979) 

6.10 G. S. Agarwal: "Quantum Statistical Theories of Spontaneous Emission and 
their Relation to Other Approaches," Springer Tracts in Modem Physics, Vol. 
70 (Springer-Verlag, Berlin, 1974) pp. 73-83 

6.11 H. J. Carmichael: J. Phys. B 13, 3551 (1980); Phys. Rev. Lett. 43, 1106 (1979) 
6.12 S. Sarkar and J. S. Satchell: Europhys. Lett. 3, 797 (1987) 
6.13 R. H. Dicke: Phys. Rev. 93, 99 (1954) 
6.14 J. M. Radcliffe: J. Phys. A 4, 313 (1971) 



354 References 

6.15 F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas: Phys. Rev. A 6, 2211 
(1972) 

6.16 R. Bonifacio, P. Schwendimann, and F. Haake: Phys. Rev. A 4, 854 (1971); 
R. Bonifacio and L. A. Lugiato: Phys. Rev. A 12, 587 (1975) 

6.17 F. Haake and R. J. Glauber: Phys. Rev. A 5, 1457 (1972); Phys. Rev. A 13, 
357 (1976) 

6.18 L. M. Narducci, C. A. Coulter, and C. M. Bowden: Phys. Rev. A 9, 829 (1974) 
6.19 J. P. Gordon: Phys. Rev. 161, 367 (1967) 
6.20 M. Gronchi and L. A. Lugiato: Lett. Nuovo Cimento 23, 593 (1978) 
6.21 R. H. Lehmberg: Phys. Rev. A 2, 883 (1970) 
6.22 Reference [6.10] pp. 25-38 
6.23 E. Merzbacher: Quantum Mechanics (Wiley, New York, 1961) pp. 421-426 

Chapter 7 

7.1 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­
Verlag, Berlin, 1970) 

7.2 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York, 
1973) Chapter 9 

7.3 M. 0. Scully and W. E. Lamb Jr.: Phys. Rev. Lett. 16, 853 (1966); Phys. Rev. 
159, 208 (1967); 166, 246 (1968) 

7.4 M. Sargent III, M. 0. Scully, and W. E. Lamb Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) Chapter XVII 

7.5 W. E. Lamb Jr.: Phys. Rev. 134, A1429 (1964) 
7.6 Reference [7.2] Chapter 8; Reference [7.4] Chapter VIII 
7.7 Reference [7.4] pp. 20-23 
7.8 Reference [7.4] pp. 104,203 
7.9 Reference [7.2] p. 288; Reference [7.4] p. 22 

7.10 M. R. Young and S. Singh: Phys. Rev. A 35, 1453 (1987) 
7.11 Reference [7.4] problems 17.13 and 17.14; P. Meystre and M. Sargent III: 

Elements of Quantum Optics (Springer-Verlag, Berlin, 1991) pp. 469-483 
7.12 I. S. Gradshteyn and I. M. Ryzhik: Tables of Integrals Series and Products 

(Academic Press, New York, 1965) p. 930 
7.13 A. Yariv: Introduction to Optical Electronics (Holt, Rinehart and Wilson, New 

York, 1976) pp. 118-121 
7.14 E. T. Jaynes and F. W. Cummings: Proc. IEEE 51, 89 (1963) 
7.15 M. Tavis and F. W. Cummings: Phys. Rev. 170, 379 (1968); 188, 692 (1969) 
7.16 H. J. Carmichael and D. F. Walls: Phys. Rev. A 9, 2686 (1974) 
7.17 H. J. Carmichael: J. Opt. Soc. Am. B 4, 1588 (1987) 
7.18 C. W. Gardiner and M. J. Collett: Phys. Rev. A 31, 3761 (1985) 

Chapter 8 

8.1 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer­
Verlag, Berlin, 1970) pp. 154-156 

8.2 E. N. Lorenz: J. Atmos. Sci. 20, 130 (1963) 
8.3 Sparrow: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors 

(Springer-Verlag, New York, 1982) 
8.4 H. Haken: Phys. Lett. 53A, 77 (1975) 
8.5 N. B. Abraham, P. Mandel, and L. M. Narducci: "Dynamical Instabilities 

and Pulsations in Lasers," in Progress in Optics, Vol. XXV, ed. by E. Wolf 
(North-Holland, Amsterdam, 1988) pp. 1-190 



References 355 

8.6 L. M. Narducci and N. B. Abraham: Laser Physics and Laser Instabilties 
(World Scientific, Singapore, 1988) 

8.7 Reference [8.1] pp. 159-168 
8.8 H. Risken: The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984) 
8.9 One possible definition for amplitude and phase operators is described by 

Loudon: The Quantum Theory of Light, second edition (Oxford University 
Press, Oxford, 1983) pp. 141-145. There has recently been much discussion 
of phase in quantum optics; some of the recent literature is reviewed by J. H. 
Shapiro and S. R. Shepard: Phys. Rev. A 43, 3795 (1991) 



Index 

Absorption cross-section, 279 
AC Stark effect 
- and temperature-dependent 

frequency shifts, 34, 35, 43 
Adiabatic elimination, in laser theory 
- of atomic populations, 261 
- of atomic variables, 306, 327-328 
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- with nonradiative dephasing, 323, 

344 
Amplitude and phase operators, 334 
Amplitude and phase variables, 329, 

333, 336 
Angular momentum, theory of, 218 
Antibunching of photopulses, 65 
Atomic coherent state, 221 
Atomic coherent state representation, 

233 
Autocorrelation matrix, 171 

Baker-Hausdorff theorem, 103 
- applied, 111, 112, 139 
Bistable system, 161-164 
Bloch sphere, 52 
Bloch state, see Atomic coherent state 
Born approximation, 7 
Brownian motion, 147, 151, 180 
- and laser phase fluctuations above 

threshold, 343 

Cauchy-Euler procedure, 188 
Cavity decay rate, 292 
Cavity output field, 293-295 

- first-order correlation function, 
295-296 

- Heisenberg operator, 289 
- spectrum, 27, 302-303 
Chaotic solutions, to laser equations, 

315 
Chapman-Kolmogorov equation, 147, 

155 
Characteristic function 
- equation of motion for, 96-98, 105, 

199-202, 245-246 
-- nonuniqueness of for a two-level 

atom, 200 
- for N two-level atoms, 222 
- for a two-level atom, 196, 205 
- for the electromagnetic field 
-- antinormal-ordered, XA, 102, 126 
-- normal-ordered, XN, 95, 124 
--relationship between XN, XA' and 
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-- square integrability of x8 , 116 
-- symmetric-ordered, Xs, 110, 127 
- for the single-mode homogeneously 

broadened laser, 286 
Characteristics, method of, 93, 167 
Coherence 
- first-order, 60 
- second-order, 62 
Coherent spin state, see Atomic 

coherent state 
Coherent state 
- defined, 77 
- properties of, 77-80 
Collective atomic operator, see 

Operator, collective 
Commutation relation 
- for annihilation and creation 

operators, 4 
- for collective atomic operators, 213 
- for position and momentum 

operators, 2 
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- for pseudo-spin operators, 31 
Commutator 
- decay of, 2, 4 
- preservation in time, 4, 19, 107, 289 
Conditional probability density, 147, 

179 
Correlation 

between free field and source field, 
296, 298-302 

- between system and reservoir, 6 
between the field and polarization, 
laser below threshold, 319 
like-atom, unlike-atom, 243, 244, 255 

Correlation function 
- electromagnetic field 

first- and second-order defined, 19, 
45, 48 
for a lossy cavity mode in thermal 
equilibrium, first-order, 27 
for a lossy cavity mode in thermal 
equilibrium, second-order, 28 
for laser output field, first-order, 
304, 323, 346 
for laser output field, second-order, 
324, 346 
for resonance fluorescence, first­
order, 60 
for resonance fluorescence, second­
order, 64 
free-field, source-field, 296 
second-order factorized as a product 
of photon detection probabilities, 
62-64 

for a radiatively damped two-level 
atom, 37 

Correlation time 
for filtered thermal light, 28 

- for reservoir in thermal equilibrium, 
12 

Covariance matrix, 170, 251, 319 
Critical point, 161 
Critical slowing down, 162 
Cross-section, absorption, see Absorp-

tion cross-section 
Cusp catastrophe, 163 

8-function 
- derivatives of, 87, 206 
-- Gaussian distribution expanded in 

terms of, 104, 225 
- periodic, 345 
Decay times, T1 and T2, 51 
Density of states, 11 

electromagnetic field, 35 
for traveling-wave modes in one 
dimension, 291 

Density operator 
for statistically independent 
reservoirs, 39 
reduced, 5 

-- in thermal equilibrium, 18 
- representation for, 81-83 
-- diagonal in coherent states, see P 

representation 
- reservoir, 6 
-- in thermal equilibrium, 9 
Detailed balance, 272 
Dicke state, see Eigenstate, of Jz and 

j2 
Diffusion matrix 
- factorization of, 191, 343 
Diffusion process, 148 
- nonlinear, 153, 154 
Dipole coupling constant, 32, 234 
Dipole matrix element, 30 
Dipole radiation 
- scattered field operator related to 

source operator, 45-48 
Distribution 
- binomial 
-- approximated by Gaussian 

distribution, 253 
conditional, see Conditional 
probability density 
Gaussian, 94, 155, 181 

-- in system size expansion, 160, 252 
Schwartz, tempered, see Generalized 
function 
two-time or joint, 132, 137 

Dressed energies, 55 
- relationship to quasienergies, 56 
Dressed states, 55 

Eigenstate 
-of Jz and J2, 218 

as superposition of direct product 
states, 219-221 
degenerac~ 218-219 

of the annihilation operator, see 
Coherent state 
of the inversion operator, 217 

Einstein A coefficient, 35 
Einstein B coefficient, 259-260 
Einstein equations, see Rate equations, 

Einstein 
Electromagnetic field, quantized 



- as a reservoir, 32 
- operator, 45 

free field, 46, 291 
source field, 46, 291-293 
source field does not commute with 
free field, 292 

Euler algorithm, see Cauchy-Euler 
procedure 

Fluctuations 
about steady state in resonance 
fluorescence, 57 
critical, 162 
in stochastic differential equations, 
178 
intrinsic, 156, 280 
laser above threshold 

in the field and polarization phase 
sum and difference, 343 
in the polarization and inversion, 
341 
phase, 331-333, 337-340 

- laser below threshold 
in the atomic inversion, 318 
in the laser field, 319 
in the medium polarization, 319, 
322-323 
pump, 323 

linearized treatment of, see System 
size expansion 
quantum 

and nonlinearity, 279-280 
and operator ordering, 107, 114 
of order N- 1 for N two-level atoms, 
243-244, 251 

source of in Fokker-Planck equation, 
150, 152 
spectrum of, see Fokker-Planck 
equation, linear, spectrum of 
fluctuations 
thermal, 18, 94, 107 

-- destroy singular character of an 
initial Fock state, 119 

Fokker-Planck equation, 147-149 
diffusion term, 150 
drift term, 150 
equivalent stochastic differential 
equation, 190-191 
for a radiatively damped two-level 
medium, 250 

in the asymptotic limit t -> oo, 252 
-- with nonradiative dephasing, 250 
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- for coupled, damped harmonic 
oscillators, 175 
for the damped harmonic oscillator 

in the P representation, 91, 99 
-- in the Q representation, 105 
-- in the Wigner representation, 113 
- for the single-mode homogeneously 

broadened laser, 275, 277 
above threshold, for fluctuations in 
the field amplitude, 342 
above threshold, for fluctuations in 
the field phase, 344 
above threshold, without adiabatic 
elimination, 340 
at threshold, 329 
below threshold, 321 
below threshold, without adiabatic 
elimination of the medium 
polarization, 318 
far above threshold, 34 7 
from self-consistent system size 
expansion, 311 
with nonradiative dephasing, 323, 
329, 339, 344 

- generalized, 155, 204 
-- truncated Kramers-Moyal 

expansion, 224 
- linear, 148 

autocorrelation matrix, 171-172, 
176 
autocorrelation matrix, equation of 
motion for, 173 
conditional distribution satisfying, 
150, 168 
covariance matrix, 170, 172-173 
covariance matrix, equation of 
motion for, 174 
covariance matrix, steady-state, 175 
in system size expansion, 159 
means, equation of motion for, 173 
means, time-dependent, 171 
spectrum of fluctuations, 176-177 
steady-state solution, 168 

- nonlinear 
drift and diffusion in, 152-154 
from system size expansion at a 
critical point, 162 
from truncated Kramers-Moyal 
expansion, 164 
steady-state solution, 153, 331 

- one-dimensional 
mean and variance, equations of 
motion for, 149-150 
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-- steady-state variance, 152 
- potential conditions, 153 
Frequency shift, see AC Stark effect 
Functional, 87 

Gaussian white noise, 185 
Generalized function, 86-87, 206 
Generating function, 253 
Glauber-Sudarshan P representation, 

see P representation 
Green function, 91, 105, 113, 117, 132, 

147, 166-168, 180, 228, 345 

Haken representation, for two-level 
atoms, see P representation 

Hamiltonian 
- harmonic oscillator, 2, 4 
- in system-plus-reservoir approach to 

dissipation, 5 
for N radiatively damped two-level 
atoms, 233 
for a radiatively damped two-level 
atom, 32 
for atomic dephasing, 39 
for the damped harmonic oscillator, 
9 
for the single-mode homogeneously 
broadened laser, 280-283 
with nonzero mean interaction in 
the reservoir state Ro, 40 

- resonance fluorescence, 45 
- two-level atom, 30 
- two-level atom coupled to an 

electromagnetic field mode, 54 
-- energy eigenvalues, 55 
Hanbury-Brown-Twiss effect, see 

Photon bunching 
Harmonic oscillator 
- coupled, 3, 175 
Heisenberg equation of motion 
- for a lossy cavity mode, 297 

for a two-level atom driven by a 
classical field, 49 

- for electromagnetic field modes, 46, 
290 

Heisenberg uncertainty relation 
- decay of, 2 
Homogeneous width, 261 

Identical atoms, 212, 239-241 
Interaction picture, 5, 15 
Interference, between free field and 

source field, 303 

Inversion clamping (pinning), 263 
Inversion states, 208, 214, 217, 247 
- distribution over, 223 

approximate and exact compared, 
252-255 

Jump process, 155, 158, 208-210, 
247-248 

- shift operator, 159, 208, 311 

Kramers-Moyal expansion, see 
Fokker-Planck equation, generalized 

Lamb shift, 34, 36 
- and the rotating-wave approximation, 

17, 34 
Laser 
- birth-death model for, 268-272 
- equations without fluctuations, 313 

and the Lorenz equations, see 
Lorenz equations 
in amplitude and phase variables, 
338 
steady-state solutions, 313, 340 
with nonradiative dephasing, 315, 
339 

- Fokker-Planck equation, 275 
above threshold, for fluctuations in 
the field amplitude, 342 
above threshold, for fluctuations in 
the field phase, 344 
at threshold, 329 
below threshold, 321 
far above threshold, 34 7 
steady-state solution, 331 

-- with nonradiative dephasing, 323, 
329, 339, 344 

- gain medium 
four-level model, 278, 347 

-- three-level model, 259, 265 
-- two-level model, 276 
- instabilities, 315 
- linewidth 
-- above threshold, 346 
-- below threshold, 324 
- microscopic model for, 280 
- phase-space equation of motion, 287 
- photon number rate equation, 265 
-- deficiencies of at and above 

threshold, 330, 346 
- pump parameter, 262, 266, 277 
-- control of, 278 
- rate equations, 259, 316 



- Scully-Lamb theory of, 269-270, 278 
- second threshold, 315 
- spontaneous emission photon 

number, 265, 278 
- steady-state inversion, 261-263 
- stochastic model for, 274-276 
- threshold behavior, 262-263, 

265-267, 314-315 
-- of photon number distribution, 

273-274 
- threshold region, defined, 266, 331, 

347 
Laser mode 
- energy density in, 259-261 
- photon number in, 262-263, 265-267 

above threshold, 345 
-- at threshold, 267, 274, 330 
-- below threshold, without adiabatic 

elimination of the medium 
polarization, 320 

-- birth-death equation for, 269 
-- distribution of, 273-274 
-- rate equation for, 265 
- spontaneous emission rate into, 264 
- stimulated emission rate into, 260 
Lorenz equations, 315 

Mandel Q parameter, 70 
Markov approximation, 7, 11-14 
Markov process, 181 
Master equation, 6 
- and the Rotating-wave approxima­

tion, 17 
for N independent radiatively 
damped two-level atoms, 235 
for a radiatively damped two-level 
atom, 34 

-- with nonradiative dephasing, 43 
- for resonance fluorescence, 50 

for the damped harmonic oscillator, 
16 

- for the single-mode homogeneously 
broadened laser, 285 

-- with nonradiative dephasing, 285 
in the Born approximation, 8, 234 

- in the Born-Markov approximation, 
7 

as a generalized Liouville equation, 
22 
associated partial differential 
equation, 129-130, 227 

-- with subsystem interaction in Hs, 
48-51, 285 

Index 361 

- Lindblad form, 16 
Metastable state, 165 
Minimum uncertainty state, 77 
Mixed state 
- and permutational symmetry for 

identical atoms, 240 
- due to dissipation, 53 
Mollow spectrum, see Resonance 

fluorescence, incoherent spectrum 

Noise, see Fluctuations 
additive, 186 

- multiplicative, 186 
- quantum, in the laser, 276 
- white, see Gaussian white noise 
Noise-induced phase transitions, 154 
Nonclassical state, 144 

Operator 
- annihilation, creation 
-- action on la)(al, 89 
-- defined in terms of position and 

momentum operators, 4 
-- in the interaction picture, 9 
- as a power series in antinormal order, 

125, 135 
- as a power series in normal order, 

127, 135 
as a power series in symmetric order, 
128 
atomic lowering, raising, 3Q-31 

-- in the interaction picture, 32, 234 
- collective, for N two-level atoms, 

212-216, 228-229, 237 
dipole moment, 30 

- electromagnetic field, see Electro­
magnetic field, operator 

- matrix representation for, 30 
- phase, see Amplitude and phase 

operators 
- pseudo-spin, 31, 197-199 
Operator average 
- antinormal-ordered, 102, 108 
- normal-ordered, 95, 108 
-- for collective atomic operators, 222, 

233 
-- for pseudo-spin operators, 196, 205 
- symmetric-ordered, 111 
- two-time, 22-24, 132, 135, 137, 141, 

231, 299 
-- and the Born-Markov approxima­

tion, 23 
Operator ordering 
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- normal order, 82 
-- for collective atomic operators, 214 
-- for pseudo-spin operators, 195 
- symmetric order, 110 
-- related to normal order, 111-112 
- time order, 131 
- Weyl order, 110 
Optical Bloch equations, 51, 211, 309 
- solutions to, 54 
-- in steady state, 57 
Ornstein-Uhlenbeck process, 192 

P distribution 
as antinormal-ordered associated 
function for the density operator, 126 
compared with classical probability 
distribution, 81-83 
defined, 95 

the single-mode homogeneously 
broadened laser, 286 
two-level atoms, 196 

for a coherent state, 83, 85 
for a damped coherent state, 93 
for a damped Fock state, 118, 119 
for a Fock state, 85, 87-88 
for a radiatively damped two-level 
medium, 252 
for a thermal state, 85 
for two-level atoms, 206-207, 223 

singular character in the inversion 
variable, 208, 224-225 
singular character in the polariza­
tion variable, 225-226 

non-positivity of, 119 
related to the Q and Wigner 
distributions, 103, 104, 112 

P representation, 76, 81, 88, 94, 101, 
103 
and photoelectric detection theory, 
144 
antinormal-ordered averages 
evaluated in, 108 
need for generalized functions, 83-85, 
207 
normal-ordered averages evaluated 
in, 82, 95, 128 

for the single-mode homogeneously 
broadened laser, 287 
for two-level atoms, 196, 222 

normal-ordered, time-ordered, 
two-time averages evaluated in, 132 
two-time averages for two--level atoms 
evaluated in, 230-232 

- two-time averages of ordered power 
series evaluated in, 135-137 

Pauli spin operators, 29-31 
Phase change, on transmission and 

reflection at a mirror, 294 
Phase-space equation of motion, see 

Quantum-classical correspondence, 
phase-space equation of motion 

Phase-space representation, see 
Quantum-classical correspondence, 
P, Q, and Wigner representations 

Photodetection, 61 
Photoelectron waiting-time distribution 
- defined, 66 
- for coherent scattering, 66-67 
Photon 
- antibunching, 19, 44, 65-74, 207 
-- definitions of, 65, 69 
- bunching, 19, 28, 324 
- counting statistics 
-- sub-Poissonian, 69, 74 

flux, 61 
- number, see Laser mode, photon 

number in 
-- mean, in thermal equilibrium, 11 
Polarization 
- damping, 39 
- of a two--level atom, defined, 31 
Population difference 
- for a two-level atom, defined, 31 
Population inversion, see Laser, 

steady-state inversion 
- impossibility of in driven two-level 

atom, 53 
Positive definite, semidefinite diffusion, 

169 

Q distribution 
as diagonal matrix element of the 
density operator, 103 
as normal-ordered associated function 
for the density operator, 126 
defined, 102 
for a coherent state, 106 
for a damped coherent state, 107 
for a damped Fock state, 121, 122 
for a Fock state, 103 
related to the P and Wigner 
distributions, 103, 104, 112 

Q parameter, see Mandel Q parameter 
Q representation, 101 

antinormal-ordered averages 
evaluated in, 102, 128 



- antinormal-ordered, reverse-time­
ordered, two-time averages evaluated 
in, 137 
normal-ordered averages evaluated 
in, 108 

- two-time averages of ordered power 
series evaluated in, 137-138 

Quantum regression formula, 19-26 
- and absence of correlation between 

system and reservoir, 299 
- applied, 27-28, 37-39, 59-60, 63-64, 

303 
familiar statement of, 26 
formal statement in terms of 
superoperators, 24 

Quantum regression theorem, see 
Quantum regression formula 

Quantum-classical correspondence, 76, 
111, 114, 123, 144, 211 

- associated function 
antinormal-ordered, 124-126 
for collective atomic operators, 226 
normal-ordered, 126 
related to operator power series, 
125-128 

-- symmetric ordered, 126 
- difficulties with, 155, 211 
- phase-space equation of motion, 129, 

227 
-- differs from Fokker-Planck 

equation, 204, 210 
-- for N radiatively damped two-level 

atoms, 246 
-- for a radiatively damped two-level 

atom, 202-204, 208-211 
-- for the single-mode homogeneously 

broadened laser, 287, 306 
-- with nonradiative dephasing, 204, 

247, 288, 311 
- relationship between associated 

functions, 127 
Quasidistribution function, 75, 83 
Quasimode, 19, 176 

R representation, 81 
Rabi frequency, 49 
- modulation at, 53 
Random telegraph process, 210 
Random variable, 179, 180, 182, 184 
Random walk, 183 
Rate equations 
- Einstein, 37, 210, 270 

Index 363 

- for populations in discrete inversion 
states, 248 

- laser, see Laser, rate equations 
Reservoir 
- correlation functions, 10-14, 41-42 
-- and the Markov approximation, 8 
-- at low temperatures, 17 
- having one mode in the coherent 

state I .B), 293 
- of two-level systems, 282 

operators, 7 
-- having nonzero mean in the state 

Ro, 40 
in the Heisenberg equation of 
motion for a lossy cavity mode, 
297-298 

-- in the interaction picture, 9, 32, 41, 
234 

- statistically independent, 235-236, 
284 

Resonance fluorescence 
- and the Lorentz oscillator model, 43 
- cooperative, 222 
- incoherent spectrum, 44, 60 
- photoelectron waiting-time distribu-

tion, 66, 68 
- photon anti bunching in, 44, 65-7 4 
- radiated power, 58, 61 
- squeezing in, 71-74 
Ring cavity 
- and collective atomic operators, 212 
Rotating-wave approximation, 4 

Saturation photon number, 262 
- as system size parameter, 277-280 
Scully-Lamb laser equation, see Laser, 

Scully-Lamb theory of 
Separation of variables, 92, 318, 340 
Shift operator, see Jump process 
Similarity transformation, 166 
Small-noise approximation, 155 
Spectrum 
- as Fourier transform of autocorrela­

tion function, 57 
- blackbody, 303 
- coherent and incoherent components, 

defined, 57 
- electromagnetic field, 19 
-- for a lossy cavity mode in thermal 

equilibrium, 27 
-- laser, see Laser, linewidth 
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- of fluctuations, see Fokker-Planck 
equation, linear, spectrum of 
fluctuations 

- of laser below threshold as modified 
blackbody spectrum, 303-304 

Spontaneous emission 
- atomic correlation functions for, 

38-39 
- in laser theory, 264-267, 323, 345 
- spectrum, 38 
Squeezed state, 144 
- related to photon antibunching, 

71-74 
Squeezing, detection of, 73 
Steady state 

as extremum of probability 
distribution, 165 

- stable, 161 
unstable, 161 

-- decay of, 163 
Stimulated emission, see Laser mode, 

stimulated emission rate into 
Stochastic differential equation, 185 

difference between Ito and 
Stratonovich, 188-190 
equivalence between Fokker-Planck 
equation and, 179-191 
for the single-mode homogeneously 
broadened laser, 275, 277 

-- above threshold, for fluctuations in 
the field amplitude, 342 
above threshold, for fluctuations in 
the field phase, 344 

-- at threshold, 329 
-- below threshold, 321 
Stochastic integral, Ito and 

Stratonovich defined, 187 
Superoperator, 22, 68, 75, 299 
- associated differential operator, 130 
Superradiance, superfluorescence, 222, 

236 
System size expansion, 155-160 

applied, 248-250, 305-312, 326-329, 
333-340 
at a critical point, 161-162 

-- laser threshold, 325-326 
- limitations of, 162-164 
- linearized treatment of fluctuations 
-- divergence of fluctuations in, 161, 

325 
-- range of validity of, 331 
- macroscopic law, 159, 250, 309 

- quasi-linearization, above laser 
threshold 

-- range of validity of, 34 7 
- role of energy (atom) density versus 

photon (atom) number, 156-157 
- scaling in 

assumed for fluctuations, 157 
assumed for macroscopic state, 156 
determination of in laser theory, 
306-312, 326, 328, 333-334, 337 
N two-level atoms, 241, 248 
of field amplitudes, 158-159 

-- of time at a critical point, 162, 329 
System size parameter, 156 
- in laser theory, 305 

Trace 
- cyclic property of, 8 
- of density operator, 19 
- over reservoir in the Born-Markov 

approximation, 23, 300, 301 

Uncertainty principle, see Heisenberg 
uncertainty relation 

Vacuum fluctuations, 14 

Wiener increment, 183 
Wiener process 
- as solution to differential equation, 

185 
- continuity of, 184 

defined, 180-181 
discrete-time moments of, 182 
in numerical simulations, 186 
nondifferentiability of, 183 
single, for statistically independent 
fluctuations, 321 

Wigner distribution 
- as symmetric-ordered associated 

function for the density operator, 127 
- defined, 110 
- for a coherent state, 113 
- for a damped coherent state, 113 
- for a damped Fock state, 123 
- for a Fock state, 115 
- non-positivity of, 115, 123 
- normalization, 111 
- related to the P and Q distributions, 

112 
Wigner representation, 101 
- for two-level atoms, 232 
- no need for generalized functions, 116 



symmetric-ordered averages 
evaluated in, 110-111, 116-117, 
128 

Index 365 

- two-time averages evaluated in, 
138-142 
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