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Dedication

To my mother
and to the memory of my father

“For even as He loves the arrow that flies, so He
loves also the bow that is stable.”



Preface to the Second Corrected Printing

The material in the first volume of this book is standard and I have changed
little in revising it for the second edition. My main task has been to correct the
numerous errors that, having escaped detection in the original manuscript,
were brought to my attention after the book came to print. My thanks to
all those who have helped in this enterprise by informing me of an insidious
misspelling, a mistake in an equation, or a mislabeled figure. A few other
superficial changes have been made; I have reworked many of the figures and
“prettied up” the typesetting in one or two spots.

There is just one change of real substance. I have chosen to replace the
designation “quantum regression theorem,” which has been standard in quan-
tum optics circles for some three decades, with the more accurate “quantum
regression formula.” The replacement is perhaps not perfect, since the re-
gression procedure introduced by Lax is expressed by different formulas on
different occasions. In some cases the procedure runs very much parallel to
Onsager’s classical regression hypothesis — i.e., when a linearized treatment
of fluctuations is carried out. In others it does not. The point to be made,
however, is that the formula used, whatever its specific form, is never the
expression of a “theorem”; it is the expression of a Markovian open system
dynamics, reached from a microscopic model in quantum optics by way of
an approximation, the same Markov dynamics that one finds defined, more
formally, in the semigroup approach to open quantum systems. Physicists,
all too often, remain unworried about semantic accuracy in a matter like
this; the common designation is historical and no doubt harmless enough.
On the other hand, for some reason, which was always difficult for me to un-
derstand, the quantum regression formula has attracted an undeserved level
of suspicion throughout its 30 years of use; it seems not to be appreciated
that the formula for multi time averages enjoys precisely the same ground-
ing, Markov approximation and all, as the master equation itself — just as
the master equation emerges in the Schrodinger picture, so, in the Heisenberg
picture, emerges Lax’s quantum regression. Given, then, what I perceive to
be a background of misunderstanding, I think it wise to be as accurate and
clear as possible. I have therefore avoided the word “theorem” in this second
edition of Vol. 1, and also in Vol. 2. T have also added some commentary re-
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lating to this point in the section of Vol. 1 devoted to the quantum regression
formula.

Auckland Howard Carmichael
May 2002



Preface to the First Edition

As a graduate student working in quantum optics I encountered the question
that might be taken as the theme of this book. The question definitely arose
at that time though it was not yet very clearly defined; there was simply some
deep irritation caused by the work I was doing, something quite fundamental I
did not understand. Of course, so many things are not understood when one is
a graduate student. However, my nagging question was not a technical issue,
not merely a mathematical concept that was difficult to grasp. It was a sense
that certain elementary notions that are accepted as starting points for work
in quantum optics somehow had no fundamental foundation, no identifiable
root. My inclination was to mine physics vertically, and here was a subject
whose tunnels were dug horizontally. There were branches, certainly, going up
and going down. Nonetheless, something major in the downwards direction
was missing—at least in my understanding; no doubt others understood the
connections downwards very well.

In retrospect I can identify the irritation. Quantum optics deals primarily
with dynamics, quantum dynamics, and in doing so makes extensive use of
words like “quantum fluctuations” and “quantum noise.” The words seem
harmless enough. Surely the ideas behind them are quite clear; after all,
quantum mechanics is a statistical theory, and in its dynamical aspects it
is therefore a theory of fluctuations. But there was my problem. Nothing in
Schrodinger’s equation fluctuates. What, then, is a quantum fluctuation?

In reply one might explore one of the horizontal tunnels. Statistical ideas
became established in thermal physics during the early period of the quantum
revolution. Although the central notions in this context are things like equi-
librium ensembles, partition functions and the like, every graduate student
is aware of the fluctuation aspect through the example of Brownian motion.
Fluctuations are described using probability distributions, correlation func-
tions, Fokker—Planck and Langevin equations, and mathematical devices such
as these. In many instances the quantum analogs of these things are obvious.
So, are quantum fluctuations simply thermal fluctuations that occur in the
quantum realm? Well, once again, nothing fluctuates in Schrodinger’s equa-
tion; yet the standard interpretation for the state solving this equation is sta-
tistical, and speaks of fluctuations, even when the most elementary system is
described. Quantum fluctuations are therefore more fundamental than ther-
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mal fluctuations. They are a fundamental part of quantum theory—though
apparently absent from its fundamental equation—and unlike thermal fluctu-
ations, not comfortably accounted for by simply reflecting on the disorganized
dynamics of a complex system.

I now appreciate more clearly where my question was headed: Yes it does
head downwards, and it goes very deep. What is less clear is that there
is a path in that direction understood by anyone very well. The direction
is towards the foundations of quantum mechanics, and here one must face
those notorious issues of interpretation that stimulate much confusion and
contention but few definitive answers.

I must hasten to add that this book is not about the foundations of quan-
tum mechanics—at least not in the formal sense; the subject is mentioned
directly in only one chapter, near the end of Volume II. It is helpful to know,
though, that this subject is the inevitable attractor to which four decades
of development in quantum optics have been drawn. The book’s real theme
is quantum fluctuations, tackled for the most part at a pragmatic level. It
is about the methods developed in quantum optics for analyzing quantum
fluctuations in terms of a visualizable evolution over time. The qualifier “vi-
sualizable” is carried through as an informal connection to foundations. In
view of it, I emphasize the Schrodinger and interaction pictures over the
Heisenberg picture since in these pictures appropriate representations of the
time-varying states (Glauber—Sudarshan or Wigner representations for exam-
ple) can provide tangible access to something that fluctuates. Such mental
props cannot be taken too literally, however, and the book is as much about
their limitations as about their successes. I have written the book in a period
when the demands for theoretical analyses of new experiments have required
that the limitations be acknowledged and paid serious attention. The book
meanders a bit in response to the proddings. Hopefully, though, there is
always forwards momentum, towards methods of wider applicability and a
more satisfying understanding of the foundations.

Quantum optics has a unique slant on quantum fluctuations, different
from that of statistical physics with its emphasis on thermal equilibrium,
and also differing from relativistic field theory where fluctuations refer ei-
ther to virtual transitions—dressing stable objects—or little particle “explo-
sions” (collisions) with a well-defined beginning and end. Quantum optics
is concerned with matter interacting with electromagnetic waves at optical
frequencies. At such frequencies, in terrestrial laboratories, it meets with
quantum fluctuations that are real, and ongoing, and not inevitably buried
in thermal noise; at least the latter has been the case since the invention of
the laser; and it is the laser, overwhelmingly, that gives quantum optics its
special perspective. The laser is basically a convenient source of coherence.
Thought of simply, this is the coherence of a classical wave, but it is readily
written into material systems where it must ultimately be seen as quantum
coherence. The mix of coherence (waves) with the particle counting used to
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detect optical fields marks quantum optics for encounters with the difficult
issues that arose around the ideas of Einstein and Bohr at the beginning of
the century. Old issues are met with new clarity, but even more interesting
are the entirely new dimensions. Seen as a quantum field, laser light is in a
degenerate state, having a very large photon occupation number per mode.
This property makes it easy to excite material systems far from thermal
equilibrium, where simple perturbation theory is unable to account for the
dynamics. In the classical limit one expects to encounter the gamut of non-
linear phenomena: instability, bifurcation, multistability, chaos. One might
ask where quantum fluctuations fit in the scheme of such things; no doubt
as a minor perturbation in the approach to the classical limit. But in recent
years the drive in optics towards precision and application has opened up the
area of cavity QED. Here the electromagnetic field is confined within such
a small volume that just one photon can supply the energy density needed
to excite a system far from equilibrium. Under conditions like this, quantum
fluctuations overwhelm the classical nonlinear dynamics. How, then, does the
latter emerge from the fluctuations as the cavity QED limit is relaxed?

The book is divided into two volumes. This first volume deals with the
statistical methods used in quantum optics up to the late 1970s. The ma-
terial included here is based on a series of lectures I gave at the University
of Texas at Austin during the fall semester of 1984. In this early period,
methods for treating open systems in quantum optics were developed around
two principal examples: the laser and resonance fluorescence. The two ex-
amples represent two defining themes for the subject, each identified with
an innovation that extended the ways of thinking in some more established
field. The laser required thinking in QED to be extended, beyond its focus on
few-particle scattering to the treatment of many particle fields approaching
the classical limit. The innovation was Glauber’s coherence theory and the
phase-space methods based on coherent states. The revival of the old topic of
resonance fluorescence moved in the opposite direction. At first its concern
was strong excitation—the nonperturbative limit which had been inaccessible
to experiments before the laser was invented. Soon, however, a second theme
developed. Contrasting with laser light and its approximation to a classical
field, resonance fluorescence is manifestly a quantum field; its intensity fluc-
tuations display features betraying their origin in particle scattering. The
innovation here was in the theory of photoelectron counting—in the need to
go beyond the semiclassical Mandel formula which holds only for statistical
mixtures of coherent states. Thus, the study of resonance fluorescence began
the preoccupation in quantum optics with the so-called nonclassical states of
light.

Resonance fluorescence is treated in Chap. 2 and there are two chapters
in this volume, Chaps. 7 and 8, on the theory of the laser. My aim with the
example of resonance fluorescence is to illustrate the utility of the master
equation and the quantum regression theorem for solving a significant prob-



XI1 Preface to the First Edition

lem, essentially exactly, with little more than some matrix algebra. Chapter
1 and the beginning of Chap. 2 fill in the background to the calculations.
Here I provide derivations of the master equation and the quantum regres-
sion theorem. I think it important to emphasize that the quantum regression
theorem is a derived result, equal in the firmness of its foundations to the
master equation itself, and indeed a necessary adjunct to that equation if it
is to be used to calculate anything other than the most trivial things (i.e.
one-time operator averages).

Chapters 3-7 all lead up to a treatment of laser theory by the phase-
space methods in Chap. 8. My purpose in Chap. 8 has been to carry through
a systematic application of the phase-space methods to a nonequilibrium
system of historical importance. Some readers will find the treatment overly
detailed and be satisfied to simply skim the calculations. I would recommend
the option, in fact, when the book is used as the basis for a course. In taking
it, nothing need be lost with regard to the physics since the more useful
results in laser theory are presented in Chap. 7 in a more accessible way. The
earlier chapters have wide relevance in quantum optics. They deal with the
properties of coherent states and the Glauber—Sudarshan P representation
(Chap. 3), the @ and Wigner representations (Chap. 4), and the extension of
these phase-space representations to two-state atoms (Chap. 6). Chapter 5
makes a short excursion to review those results from classical nonequilibrium
statistical physics that are imported into quantum optics on the basis of the
phase-space methods.

Volume I ends with Chap. 8 and the phase-space treatment of the laser.
The treatment provides a rigorous basis for the standard visualization of am-
plitude and phase fluctuations in laser light. The visualization, however, is
essentially classical, and the story of quantum fluctuations cannot be ended
here. Being aware of the approximations used to derive the laser Fokker—
Planck equation and having seen the example of resonance fluorescence, for
which a similar simplification does not hold, it is clear that such classical
visualizations cannot generally be sustained. Volume II will deal with the
extension of the basic master equation approach to situations in which the
naive phase-space visualization fails, where the quantum nature of the fluc-
tuations has manifestations in the actual form of the evolution over time.
Modern topics such as squeezing, the positive P representation, cavity QED,
and quantum trajectory theory will be covered there.

I have sprinkled exercises throughout the book. In some cases they are
included to excuse me from carrying through a calculation explicitly, or to
repeat and generalize a calculation that has just been done. The exercises are
integrated with the development of the subject matter and are intended, lit-
erally, as exercises, exercises for the practitioner, rather than an introduction
to problems of topical interest. Their level varies. Some are quite difficult. The
successful completion of the exercises will generally be aided by a detailed
understanding of the calculations worked through in the book.
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Numerous students and colleagues have read parts of this book as a
manuscript and helped purge it of typographical errors or made other useful
suggestions. I know I will not recall everyone, but I cannot overlook those
whom I do remember. I am grateful for the interest and comments of Paul Als-
ing, Robert Ballagh, Young-Tak Chough, John Cooper, Rashed Haq, Wayne
Itano, Jeff Kimble, Perry Rice, and Murray Wolinsky.

Eugene, Oregon Howard Carmichael
August 1998
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1. Dissipation in Quantum Mechanics:
The Master Equation Approach

1.1 Introduction

This book deals with various quantum-statistical methods and their appli-
cation to problems in quantum optics. The development of these methods
arose out of the need to deal with dissipation in quantum optical systems.
Thus, dissipation in quantized systems is a theme unifying the topics covered
in the book. Two elementary systems provide the basic building blocks for
a number of applications: the damped harmonic oscillator, which describes
a single mode of the electromagnetic field in a lossy cavity (a cavity with
imperfect mirrors), and the damped two-level atom. The need for a quan-
tized treatment for the damped field mode arose originally in the context
of the quantum theory of the maser and the laser. The damped two-level
atom is, of course, of very general and fundamental interest, since it is just
the problem of spontaneous emission. The book is structured around these
two illustrative examples and their use in building quantum-theoretic treat-
ments of resonance fluorescence and the single-mode laser. A second volume
will extend the applications to the degenerate parametric oscillator and cav-
ity quantum electrodynamics (cavity QED.). Discussion of the examples will
guide the development of fundamental formalism. When we meet such things
as master equations, phase-space representations, Fokker—Planck equations
and stochastic differential equations, and the related methods of analysis, we
will always have a specific application at hand with which to illustrate the
formalism. Although formal methods will be introduced essentially from first
principles, in places the treatment will necessarily be rather cursory. Ample
references to the literature will hopefully offset any deficiencies.

Our objective in this book is to develop the background needed to gain ac-
cess to issues of current research. The statistical methods we will cover were
introduced over approximately two decades beginning in the early 1960’s,
stimulated by the invention of the laser. They are characterized by an empha-
sis on the two extremes of statistical physics — the single particle (resonance
fluorescence) and very many particles (the single-mode laser). Where possi-
ble, they exploit analogies with the methods of classical statistical physics,
though the incompatibility of a classical description with quantum mechanics
is, in principle, always present. In the second volume we will enter into some
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2 1. Dissipation in Quantum Mechanics: The Master Equation Approach

of the modern research topics. The objective there will be to extend the meth-
ods discussed in this book, to move away from the one- and many-particle
extremes and to face the quantum-—classical incompatibility head on.

1.2 Inadequacy of an Ad Hoc Approach

In classical mechanics the essential features of dissipation, namely, the decay
of oscillator amplitudes, particle velocities and energies, can be built into the
theory by the simple addition of a velocity dependent force. For example, the
harmonic oscillator, with Hamiltonian

p?
H= om + Imw?q? (1.1)

and equations of motion
g=p/m, p=-mwq (1.2)

becomes a damped harmonic oscillator with the addition of the force —yp to
give
g=p/m, p=—yp—muiq (1.3)
or the familiar equation
G474 +w?q=0. (1.4)

Can we simply transfer this approach to the quantized harmonic oscillator?
For the quantized oscillator ¢ and p become operators, § and p, and (1.2)
gives the Heisenberg equations of motion obtained from Hamiltonian (1.1)
via the commutation relation

(¢,p] = ih. (1.5)

After adding —+p to (1.3), the equations of motion remain linear; thus, the
classical solution still holds when ¢ and p become operators, and the expec-
tation values of ¢ and p will be damped in the same way as the classical
variables. We seem to be in good shape. Consider, however, the evolution of
the commutator [¢, p]. From (1.3)

E[q,p] =qp+4p —pd—pq
= —14, 9],
and
[G(t), p(t)] = e~ 7"[4(0),(0)] = e " ih. (1.6)

As a consequence of this decay of the commutator the Heisenberg uncertainty
also decays; the Heisenberg uncertainty relation becomes
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AqAp > The . (1.7)

In the face of this difficulty there have been various attempts to con-
sistently incorporate dissipation into quantum mechanics. Some approaches
based on novel quantization procedures remain controversial. We will not
review these issues here. Of course, in many of the traditional domains of
quantum mechanics dissipation plays no role: in the analysis of atomic struc-
ture, or the calculation of harmonic oscillator eigenstates and the like. The
situation is quite different, though, in quantum optics. For example, the phe-
nomenon of laser action, which gave birth to this field, takes place in a lossy
cavity. In fact, applications in quantum optics have played a central role in
developing methods to treat quantum-mechanical dissipation. We follow the
widely accepted approach pioneered by Senitzky [1.1] for describing lossy
maser cavities. Some discussion of alternative points of view can be found in
papers by Ray [1.2] and Caldeira and Leggett [1.3], and references therein.

1.3 System Plus Reservoir Approach

The system plus reservoir approach begins from a microscopic view of the
mechanism underlying dissipation. Although the procedure leading to (1.3)
and (1.4) is often adequate in classical mechanics, even there it provides an
incomplete description. In particular, equations (1.2) are time-reversal invari-
ant, while in (1.3) this symmetry has been broken. If we want to understand
the origin of this irreversibility we must begin by recognizing that the oscil-
lator is damped through interactions with a large and complex system — its
environment. This recognition also leads us to the fundamental relationship
between dissipation and fluctuations. If the environment is some large system
in thermal equilibrium, it will exert a fluctuating force F(¢) on an oscillator
coupled to it, in addition to soaking up the oscillator’s energy. Equation (1.4)
must generally be replaced by a stochastic equation

G+ +w?q= F(t)/m. (1.8)

In many situations the added noise source cannot be overlooked — in electrical
circuits, for example.

We observe that damping takes place through the coupling of the damped
system to its environment. Is there anything in this observation to suggest a
resolution of our problem with commutators? Well, the interaction between
systems mixes their operators in a way which certainly does play a role in pre-
serving commutators in time. Consider resonant harmonic oscillators coupled
in the rotating-wave approximation. The Hamiltonian is

H = hwa'a + hwb'b + hs(ald + ab?), (1.9)
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where w is the frequency of the oscillators, k is a coupling constant, a and
bl are creation operators, and a and b are the corresponding annihilation
operators, satisfying commutation relations

[a,al] =1, [b,b] = 1. (1.10)

Note 1.1 To understand the origin of the Hamiltonian (1.9) first note that
the free oscillator Hamiltonian (1.1) becomes

H =hw(a’a+3) (1.11)

where %hw is the zero-point energy, under the transformation

1
1
Then (1.6) becomes
[a,al] = e, (1.13)

In the rotating-wave approzimation an interaction energy proportional to §qds
gives the interaction Hamiltonian hx(a' + ab') after the highly oscillatory
terms (energy nonconserving terms) ab and a'b are neglected.

The solutions to the Heisenberg equations of motion following from (1.9)
are

a(t) = e~ ™**a(0) cos xt — ib(0) sin xt], (1.14a)
b(t) = e~“*[b(0) cos kt — ia(0) sin xt]. (1.14Db)

Then
[a(t), a’ (t)] = [a(0), at(0)] cos? Kt + [b(0), bT (0)] sin? xt = 1. (1.15)

We see that the commutator for a(t) and af(t) is preserved in time only by
the presence of the operator b(0) mixed into the solution for a(t). Taking
the environmental interaction into account in the treatment of dissipation,
we might anticipate a similar mixing of environmental operators into the
operators of the damped system in such a way as to preserve commutation
relations. This is precisely what Senitzky found [1.1]. The fluctuating force
in (1.8) becomes an operator in Senitzky’s theory. Contributions from this
environmental operator in the solutions for §(¢) and p(¢) introduce thermal
fluctuations, and also preserve the commutation relations.

The master equation method we now discuss is essentially a Schrodinger
picture version of Senitzky’s theory. It is somewhat less transparent on this
point about preserving commutation relations, so it is valuable to study Sen-
itzky’s calculation in the Heisenberg picture as well as the following. In both
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the philosophy is to model environmental interactions by coupling the un-
damped system S to a reservoir R, beginning with a Hamiltonian in the

general form
H=Hg+ Hr + Hgg, (116)

where Hg and Hg are Hamiltonians for S and R, respectively, and Hgpg is
an interaction Hamiltonian. The reservoir is only of indirect interest, and
its properties need only be specified in very general terms; for example, by
a temperature and an energy density of states. For illustrative purposes we
will give Hg and Hgg an explicit form once we get a little further into the
calculation.

The derivation given here follows the treatments by Louisell [1.4] and
Haken [1.5] fairly closely. There are some minor differences in the way ap-
proximations are introduced, and no attempt is made to follow either author’s
notation. A rather different and more specialized approach is taken by Sar-
gent, Scully and Lamb [1.6]. These authors get away without having to deal
with the complicated frequency and time integrals we will meet in our cal-
culation. It is a useful exercise to study their calculation and try to find
where they introduce the physical assumptions we will use to deal with these
integrals. The physics must, of course, be the same.

We are seeking information about the system S without requiring detailed
information about the composite system S® R. We will let x(¢) be the density
operator for S ® R and define the reduced density operator p(t) by

p(t) = trr[x(8)], (1.17)

where the trace is taken over the reservoir states. Clearly, if O is an operator
in the Hilbert space of S we can calculate its average in the Schrodinger
picture if we have knowledge of p(t) alone, and not of the full x(t):

(0) = trser[Ox(1)] = trs{Otrr[x(1)]} = trs[Op(t)]. (1.18)

Our objective is to obtain an equation for p(t) with the properties of R
entering only as parameters.

1.3.1 The Schrédinger Equation in Integro-Differential Form

The Schrodinger equation for x reads
1 .
vy = —[H )
X m[ »XJ, (1.19)

where H is given by (1.16). We transform (1.19) into the interaction picture,
separating the rapid motion generated by Hgs + Hpg from the slow motion
generated by the interaction Hgg. Defining

x(t) = e(i/h)(Hs+Hn)tx(t)e—(i/h)(Hs+HR)t’ (1.20)
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from (1.16) and (1.19), we obtain

%= 1 (Hs + HR) — 1 X(Hs + Hp) + e/M (st Huty o= (/m(Hs Hot
1
ih

[E[SR(t)’)av (121)

where Hgg(t) is explicitly time-dependent:

I:ISR(t) = e(i/ﬁ)(Hs+HR)tHSRe—(i/h)(Hs+HR)t' (1.22)

We now integrate (1.21) formally to give

€0 = xO0)+ 5 [ o (Fsn(t) 70, (1.23)

and substitute for y(t) inside the commutator in (1.21):

t
¥ = %%[ﬁSR(t),X(O)] - % /0 dt' [Hsr(t), [Hsr(t), x(t)]]. (1.24)

This equation is exact. Equation (1.19) has simply been cast into a convenient
form which helps us identify reasonable approximations.

1.3.2 Born and Markov Approximations

We will assume that the interaction is turned on at £ = 0 and that no correla-
tions exist between S and R at this initial time. Then x(0) = %(0) factorizes
as

x(0) = p(0)Ro, (1.25)
where R is an initial reservoir density operator. Then, noting that
tre(X(t)] = /Mt p(t)e” MHst = 5(t), (1.26)

after tracing over the reservoir, (1.24) gives the master equation
. 1 [t _ .
p=—733 | ' wr{[Hsr(t), [Hsr(t), X(*)]]}, (1.27)
0

where, for simplicity, we have eliminated the term (1/ih)trg { [Hsr(t), x(0)]}
with the assumption :
tI‘R[HSR(t)Ro] =0. (1.28)

This is guaranteed if the reservoir operators coupling to S have zero mean in
the state Rg, a condition which can always be arranged by simply including
trr(HsgrRo) in the system Hamiltonian (see Sect. 2.2.4 and Note 8.8).

We have stated that ¥ factorizes at ¢ = 0. At later times correlations
between S and R will arise due to the coupling between the system and
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the reservoir. We have assumed, however, that this coupling is very weak,
and at all times x(t) should only show deviations of order Hggr from an
uncorrelated state. Furthermore, R is a large system whose state should be
virtually unaffected by its coupling to S (of course, we expect the state of S
to be significantly affected by R — we want it to be damped). We therefore
write

x(t) = p(t)Ro + O(Hsg). (1.29)

Now we can make our first major approximation, a Born approximation.
Neglecting terms higher than second order in Hgg, we write (1.27) as

t

p= =3 | @t we{(Hsnle). Fsn(t). 60 Roll}. (130
A detailed discussion of this approximation can be found in the work of Haake
(1.7, 1.8].

Equation (1.30) is still a complicated equation. In particular, it is not
Markovian since the future evolution of p(¢) depends on its past history
through the integration over p(t') (the future behavior of a Markovian sys-
tem depends only on its present state). Our second major approximation, the
Markov approzimation, replaces p(t') by p(t) to obtain a master equation in
the Born—-Markov approximation:

= e {[Hon), Asn(®), pORY). (131

1.3.3 The Markov Approximation and Reservoir Correlations

Markovian behavior seems reasonable on physical grounds. Potentially, S
can depend on its past history because its earlier states become imprinted
as changes in the reservoir state through the interaction Hspg; earlier states
are then reflected back on the future evolution of S as it interacts with the
changed reservoir. If, however, the reservoir is a large system maintained
in thermal equilibrium, we do not expect it to preserve the minor changes
brought by its interaction with S for very long; not for long enough to sig-
nificantly affect the future evolution of S. It becomes a question of reservoir
correlation time versus the time scale for significant change in S. By studying
the integrand of (1.30) with this view in mind we can make the underlying
assumption of the Markov approximation more explicit.
Let us make our model a little more specific by writing

Hsp=h)_ s}, (1.32)

where the s; are operators in the Hilbert space of S and the I are reservoir
operators, operators in the Hilbert space of R. Then
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Hgg(t hz eli/M)(Hs+HRr)t o 1 o= (i/R)(Hs+Hr)t
= hz (e(z/h>Hstsi6—(z/n>Hst)(e(z/h)HRt pie—(i/n>HRt>
= hi 5:(0)Ty(¢). (1.33)
i
The master equation in the Born approximation [Eq. (1.30)] is now
b= Z / dt' tr{[5: () T3(2), [5;(¢) T (¥)), A(t) Roll}

=-Z/dt )p(t') traF3(t) T (') Ro]

— 5(0)p(t)3; () trr[T () Ro Ty ()] — 5;(8)5()5:(2)

+[p< 55(#)5:(8) = 5:(DAW 3N (O O)x}, (1.34)

where we have used the cyclic property of the trace — tr(ABC) = tr(CAB) =
tr(BCA) - and write

(Di(OT5(t)r = tra[RoLi() (1), (1.35a)
(I () T5(t))r = trr[Ro (¢ Ti(1)]. (1.35b)

The properties of the reservoir enter (1.34) through the two correlation func-
tions (1.35a) and (1.35b). We can justify the replacement of 5(t’) by p(t) if
these correlation functions decay very rapidly on the timescale on which p(¢)
varies. Ideally, we might take

(L) (t'))g o 8(t —t'). (1.36)

The Markov approximation then relies, as suggested, on the existence of two
widely separated time scales: a slow time scale for the dynamics of the system
S, and a fast time scale characterizing the decay of reservoir correlation func-
tions. Further discussion of this point is given by Schieve and Middleton [1.9].
We will look explicitly at reservoir correlation functions and the separation
of time scales in our first example.
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1.4 The Damped Harmonic Oscillator

1.4.1 Master Equation for the Damped Harmonic Oscillator

‘We now adopt an explicit model. For the Hamiltonian of the composite system
S ® R we write

Hg = hwoa'a, (1.37a)

Hp =) hwr;'rj, (1.37b)
J

Hgg = Zh(m;arﬂ + kjalr;) = Bal't +a'l). (1.37¢)

J

The system S is a harmonic oscillator with frequency wg and creation and
annihilation operators a' and a, respectively; the reservoir R is modeled as
a collection of harmonic oscillators with frequencies w;, and corresponding
creation and annihilation operators TjT and r;, respectively; the oscillator
a couples to the jth reservoir oscillator via a coupling constant x; in the
rotating-wave approximation. We take the reservoir to be in thermal equilib-
rium at temperature T', with density operator

Ro = He—hwjrorj/kBT(l _ e—hwj/kBT)’ (138)
;
where kp is Boltzmann’s constant. It is not necessary to be so specific about
the reservoir model. Haken [1.5], for example, keeps his discussion quite gen-
eral. Aside, however, from its pedagogical clarity, the oscillator model is phys-
ically reasonable in many circumstances. The reservoir oscillators might be
the many modes of the vacuum radiation field into which an optical cavity
mode decays through partially transmitting mirrors, or into which an excited
atom decays via spontaneous emission; alternatively, they might represent
phonon modes in a solid.
The identification with (1.34) is made by setting

s1 = a, sy =al, (1.39a)
Fl :FTEZH;’I’J‘T, FQZFEZI{J‘T‘J‘, (139b)
J J
and then from (1.33) and (1.37), the operators in the interaction picture are
5 (t) _ eiwoafatae—iwoa*at _ ae—iwot’ (1'403‘)
52(t) _ eiwoafata'fe—iwoafat — a’reiwot’ (1.40b)

and
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I(t) = I'(t) = exp <z Z wnrnTrnt> Z /i;ro exp (—i Z wmrmTrmt>
n 7 m

= Z rc;roei""jt, (1.41a)
J
fg(t) = f(t) = exp <z Z wnrnTrnt) Z KjTj €xXp <—i Z wmrmfrmt>
n 7 m
= Z Kjrie” it (1.41b)
J

where in (1.41) we use the fact that operators for different reservoir oscillators
commute. To show, for example, that eiwoa'atge—iwoa'at — ge—iwot ohserve
that the left hand side is just the formal solution to the Heisenberg equation
of motion @ = —iwgla,a’a] = —iwpa. Note that, from (1.38) and (1.41),
(I'1(t))r = (Ix(t))r = 0, as required by the assumption (1.28).

Now, since the summation in (1.34) runs over ¢ = 1,2 and j = 1,2, the
integrand involves sixteen terms. We write

p=— /0 tdt’{[aaﬁ(t’) — ap(t")a]e" o NP I (¢'))g + hec.
+[atalp(t') — alp(t")al e NP4 (t'))g + h.c.
+ [aatp(t') — alp(t")a] e o NPT () D(¢))R + h.c.
+[atap(t’) — ap(t)al] e NPT ()R + h.c.}, (1.42)

where the reservoir correlation functions are explicitly:

(MOTT(E)r = Kjrre™ste™s trp(Ror;rit) = 0, (1.43)
j k

(F®)(t))g = JZ njnke'iwjte_i“"“t/trR(Rgrjrk) =0, (1.44)
jk

(fT(t)f(t')>R = JX:ﬁ;‘»nkei”jte_i“’kt,trR(RgrjTrk)

j k

= JZ |/<;j|2ei“’j(t—t/)ﬁ(wj, T), (1.45)
J

(POITENR = kjrre” s e trp(Rorjmt)
7.k

= 3 JkslPe O afuy, T) + 1), (1.46)
J



1.4 The Damped Harmonic Oscillator 11

with
e—ﬁqu/kBT

The correlation functions (1.43)—(1.46) follow quite readily by evaluating the
trace using the multimode Fock states as a basis. 7i(w;, T') is the mean pho-
ton number for an oscillator with frequency w; in thermal equilibrium at
temperature 7.

The nonvanishing reservoir correlation functions (1.45) and (1.46) involve
a summation over the reservoir oscillators. We change this summation to an
integration by introducing a density of states g(w) such that g(w)dw gives the
number of oscillators with frequencies in the interval w to w + dw. Making
the change of variable

T=t—t, (1.48)
(1.42) can then be restated as

t
p= —-/ dr{[aaTﬁ(t —7)—alp(t - T)a] e (M) I(t — 7))r + hec.
0
+ [a*aﬁ(t — 1) — gt — T)a’r] 0T (POt — 7))r + h.c.}, (1.49)
where the nonzero reservoir correlation functions are

(fT(t)f(t —T)Rr = /Ooodw e“T g(w)|k(w) |*a(w, T), (1.50)

(rrt - VR = /Ooodw e T g(w) k(W) [A(w, T) + 1], (1.51)

with
e—hw/ksT

a(w,T) = T o-ha/kaT

(1.52)

We can now argue more specifically about the Markov approximation. Are
(1.50) and (1.51) approximately proportional to §(7)? We can certainly see
that for 7 “large enough” the oscillating exponential will average the “slowly
varying” functions g(w), |k(w)|?, and fi(w,T) essentially to zero. However,
how large is large enough? Can we get some idea of the width of these cor-
relation functions? Let us look at (1.50), taking g(w)|s(w)|? = Cw, with
C a constant. This correlation function may be evaluated in terms of the
trigamma function [1.10]:

~ ~ * WwT we_hw/kBT
<F’f(t)F(t—7))R=C/ dwe 11— e—hw/ksT

—(1—it/tr)x
= Ct;f/ e —

1—e®

= Ctp*y'(1 — it /tg), (1.53)
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where we have defined the reservoir correlation time tg = hA/kgT. A simple

approximation gives some insight into the behavior of the trigamma function.
Set

—hw/ksT kaT
we ~ BL  _hu/kpT.
T~ e T (1.54)
then
. . T [ .
(PP~ )~ OPEL [ iorenoroT
0

1+ 7/t
~ O AT
1+ (7/tgr)

The approximation is accurate for low frequencies, but is not so good for
w~ kpT/h = t}}l; here the error is ~ 40%. It is adequate, nevertheless, to
give us a feel for the qualitative behavior of the reservoir correlation function.
Actually, the exact result for the real part of the correlation function can be
computed with little effort using the formula [1.10]

(1.55)

Re[¢/(1 — it/tg)] = 372 [1 — coth®(n7/tgr)] + L (/tr) . (1.56)

The exact result is plotted together with the real part of (1.55) for comparison
in Fig. 1.1(a).

2.0

(b)

Re[W/(1-t/1,)]

Re[y(1-ir/t,)]

0.0 2.0 4.0

Fig. 1.1 (a) Real part of the reservoir correlation function for g(w)|x(w)|> = Cw
plotted from (1.56) (solid line) and (1.55) (dashed line). (b) Real part of the reser-

voir correlation function for g(w)|s(w)|* = Cw® plotted from (1.61) (solid line) and
(1.60) (dashed line).

Equation (1.55) indicates a correlation function peaked about 7 = 0 with
a width tg = h/kpT. In (1.49) the reservoir correlation functions are inte-
grated against two time-dependent terms: j(t — 7) and e**°”. Now at room
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temperature h/kpT ~ 0.25 x 10~!3s. If the oscillator a represents an opti-
cal cavity mode, we expect §(t — 7) to vary on the time scale of a typical
cavity decay time, tg ~ 10~8s, and if wy is an optical frequency, et*°™ os-
cillates on a time scale ty ~ 1071%s. Then since tg/tg ~ 10°, it seems we
can justify the Markov approximation and replace p(t —7) by p(t). But, with
to/tr ~ 1072, we cannot set 7 = 0 in the terms e**“°7. Rather, integrating
the reservoir correlation functions against these oscillating terms will extract
their wg frequency components, just as in a Fourier transform.

After taking a closer look we might worry a little about the imaginary
part of (1.55). This has a long tail which decays as (/tr)~!; the integral
of this tail is logarithmically divergent; far out in the tail the replacement
of p(t — 7) by p(t) will not be justified. It is, however, the wy frequency
component of the product (t — 7)(I"T(t)['(t — 7))r that survives the integral
in (1.49), and, with ¢y < tg << tg, this frequency component is contributed
by the short-time behavior of (1.55), where the replacement of p(t — 7) by
p(t) is justified.

In fact, the divergent tail is a consequence of the form we have chosen for

g(w)k?(w). More generally, if we take g(w)|k(w)|? = Cw™, with n a positive
integer,
~ - L dn—l 9
(LTIt = m)r = (=" =[O (1 - ir/tr))]
= 7" (=)™ (1 — i ftg), (1.57)

where the (™ are the polygamma functions [2.10]. In the approximation
(1.54)

(PO~ = (i) { _p 1+ir/tg

ar! 1+it/tg
(T/tR)" 11 + (7 /tg)*

For 7/tg >> 1 the asymptotic form of the polygamma function gives

= Ct7" ) (—iyn ! y (1.58)

(IOt —1))g ~ — Ctr™ V[ (n — 1)!]{%71(7/1&}2)‘("“)
~i(r/tr) "], (1.59)

which has no (7/tg)”" tail for n > 1.

The case n = 3 is of special interest since this corresponds to the form
of g(w)|k(w)|? that we will meet when we apply our theory to the damped
two-level atom (Sect. 2.2). The approximate result (1.58) gives

2[1 - 3(r/tr)?| +12(7/tr) [3 — (1/tr)?] '

(FH(0)F(t — )p ~ Ot TENETNHE

(1.60)
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For comparison with the real part of this result, the real part of the exact
correlation function can be computed from (1.57) using the formula

Re [¢(3)(1 _ iT/tR)] =m*[1 — coth®(n7/tg)][1 — 3coth®(x7/tg)]
—3(r/tm)" (1.61)

This formula is obtained by taking two derivatives of (1.56). The exact and
approximate results for the real part of the correlation function are plotted
in Fig. 1.1(b). Again the correlation function is peaked around r = 0 with
a width ~ ¢g. The approximate correlation function (1.60) explicitly shows
the (7/tr)"* and (7/tr)”> dependence for the real and imaginary parts,
respectively, in the large 7 limit, as given by (1.59).

Exercise 1.1 Consider the correlation function (1.51). The second term in-
side the square bracket comes from quantum (vacuum) fluctuations. It arose
from our use of the boson commutation relation in the derivation of (1.46).
What contribution does this term make to the correlation function?

Continuing our derivation now from (1.49), it is actually more straight-
forward to evaluate the time integral first, without performing the frequency
integrals to obtain an explicit form for the reservoir correlation functions.
This is possible now we are satisfied that the 7 integration is dominated by
times that are much shorter than the time scale for the evolution of p. With
p(t — 1) replaced by p(t) (Markov approximation), (1.49) becomes

p = afapa’ — a'ap) + B(apa’ + a'pa — a'ap — paa’) + h.c., (1.62)
with
t o] )
o= / dT/ dw e~ {207 g () |k (w) 2, (1.63)
0 0
t oS}
g= / dr / ds = 19=40)7 () () 2w, T). (1.64)
0 0

Then, since t is of the order of ts and the 7 integration is dominated by much
shorter times ~ tg, we can extend the 7 integration to infinity and evaluate
a and (§ using

lim [ dre @ 90" = 7§(w — wpy) + i : (1.65)

where P indicates the Cauchy principal value. We find

a = mg(wo)|k(wo)|? + iA, (1.66)
B = mg(wo)|k(wo)*Rwo) +id, (1.67)

with
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A= /wde, (1.68)
wo —
/ dw 9w0_w)| i(w, T). (1.69)

Note 1.2 To obtain (1.65), we have

/th ooy _ sin(w —wo)t 2‘1 — cos(w — wo)t.

w — Wwo w — Wwo
The limit as ¢ tends to infinity is defined anticipating the role of the right-
hand side inside an integration over w, thus:

sin(w — wo)t sin(w — wp)t

= f(w )hm oodw

li
tirgo df() W — o o0o | W — wo
=7Tf(wo)
:/ dw T (w — wo) f(w);
also
&0 1-— - t
Jim oo f (1) 1005 — wo)t
t—oo —o0 w — Wy
[ Ly [ g St oy
— Wy t—oo J o w — Wo
P/ IO
0 w — Wwo
where the term ~

lim do f(w) cos(w — wo)t

t—o00 o0 w — Wy

subtracts the singularity at w = wy to give the principal value integral [1.11].

We finally have our master equation for the damped harmonic oscillator.
After defining

v = 2mg(wo)|k(wo)|?, (1.70a)
7= n(wo, T), (1.70b)
from (1.62), (1.66), and (1.67), we obtain
=—iAlala, p] + %(ZaﬁaT —a'ap — pata)
+yn(apal + o' pa — atap — paat). (1.71)

Here p is still in the interaction picture. To transform back to the Schrodinger
picture we use (1.26) to obtain
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1 ) .
s — —IH ~(i/W)Hst 5 ,(i/M)Hst _
p=ZlHs,pl+e pe (1.72)
With Hg = hwoa'a, we substitute for 5 and use (1.26) and (1.40) to write,
for example,

-z'woafat iwoaTat

e apate ae

i t —3 t i t i T
woa'at =e woa ata (ezwoa atpe woa at)
—iwoa‘\at iwoaTat -iwoafat T iwoaTat
= {e ae pie a'e
= apaT.

Each term can be treated similarly. We arrive at the master equation for the
damped harmonic oscillator

p=—iwylata, p] + %(2apaT —atap — pata)
+ ya(apa’ + alpa — alap — paal), (1.73)

where
wh = wp + A. (1.74)

Note 1.3 An alternate, more compact, writing of the master equation (1.73)
may be given in the form

p=—iwhla'a, o] + 1 (la, pa') + [ap,a’)
+ -g—ﬁ([ap, at] + [af, pa)). (1.75)

In both this form and (1.73) the damping terms are grouped according to
whether they are proportional to 71 or not. This is a natural grouping from the
point of view of the phase-space representations commonly used in quantum
optics, which we meet in Chaps. 3 and 4 [see (3.47), for example, where the
terms proportional and not proportional to 7 have distinct physical interpre-
tations]. Nowadays it is more usual to group the terms so that the Lindblad
form of the master equation is explicit [1.12], writing

2

p =~ iwplala, p] + (7 + 1)(2apa’ — a’ap — pala)

+ %ﬁ(Qana —aa’p — paal). (1.76)

Here the physical interpretation follows from the rate equations satisfied by
the probabilities p, = (n|p|n) for the oscillator to be found in its nth energy
eigenstate:

Pn = (0 +1)(n+ D)ppt1 — yAnpn
+ yanpp—1 — ¥i(n + 1)pp. (1.77)
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The terms on the right-hand side of (1.77) describe transition rates into and
out of the nth energy level (see Fig. 7.4) and originate, respectively, in the
terms proportional to 2apa’, —(atap + pa'a), 2a’pa, and —(aa'p + paat) in
(1.76) [also see the discussion below (2.27) and (2.36d)].

Note 1.4 There is a large literature on the treatment of dissipative quantum
systems using semigroups, from which the work of Lindblad on the form of
the generator for physical semigroup dynamics [1.12] is a result of particular
relevance to quantum optics; thus, the master equations we met in this book
are all of Lindblad form. The foundational work of Davies [1.13] has also
been influential in quantum optics, particularly in relation to the theory of
photon counting [1.14]. We will have more to say about this topic when we
discuss quantum trajectories in Volume 2 (Chaps. 15 and 16). More gener-
ally, the orientation in the literature on semigroups is towards the proof of
rigorous mathematical results and hence the connections to quantum optics
applications are somewhat indirect.

1.4.2 Some Limitations

Equation (1.73) is one of the central equations for future applications. Before
proceeding we should note its limitations as a general equation for the damped
harmonic oscillator.

First, it is derived in the rotating-wave approximation (R.W.A.). We ex-
pect this to be a good approximation for oscillators at optical frequencies
[1.15], but for low frequency oscillators (strong damping, where the decay
time approaches the oscillator period) we would not expect the R.W.A. to
work well. In fact, even at optical frequencies the R.W.A. brings one notable
inaccuracy. The frequency shift A in (1.74) is small, and generally neglected.
However, in the example of the damped two-level atom this is the Lamb shift,
and it is therefore of fundamental importance. Of course, an accurate calcula-
tion of the Lamb shift must include many things that we do not discuss — for
example, relativistic effects. Nevertheless, it is as well to know that the (two-
level) nonrelativistic contribution to the Lamb shift is not obtained correctly
when the master equation is derived using the rotating-wave approximation.
A derivation that does not use the R.W.A. is quite straightforward and pro-
ceeds along the same lines as the calculation in Sect. 1.4.1. The details are
given by Agarwal [1.16, 1.17], who, in Ref. [1.17] in particular, discusses the
question of the frequency shift.

Secondly, (1.73) is not valid at low temperatures. At sufficiently low tem-
peratures the reservoir correlation functions can no longer be treated as é-
functions. There is quite an active interest in this low temperature regime.
Discussions can be found in recent papers by Caldeira and Leggett [1.3],
Lindenberg and West [1.18], and Grabert et al. [1.19].
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1.4.3 Expectation Values and Commutation Relations

Let us make some simple checks to see if (1.73) predicts the behavior we
expect from a damped harmonic oscillator. Since we have formulated our
theory in the Schrédinger picture, we cannot obtain solutions for the oper-
ators themselves, but only for their expectation values. For example, if we
multiply (1.73) on the left by a and take the trace (over the system S) we
obtain an equation for {a) = tr(ap):

(@) = — iwg tr(aatap — apa’a) + g tr(2a?pa’ — aatap — apata)
+ vy tr(apal + aa’pa — aalap — apaa’)
= —iwo tr[(aa’ — a'a)ap] + % tr {(aTa - aaT)ap]
+yntr[(afa — aa")ap + a(aa’ — a'a)p]
=— (% + iwo) (a), (1.78)

where we have used the cyclic property of the trace and the boson commu-
tation relation (1.10). From now on we assume that the frequency shift A is
included in the resonance frequency of the oscillator and do not distinguish
w( from wq. Equation (1.78) correctly describes the damped mean oscillator
amplitude.

As a second example consider (i) = (a'a):

(7)) = —iwo tr(ataatap — alapa’a) + %tr(?a*a%a* —a'aa’ap

—atapa’a) + yatr(ata®pa’ + a'aa’pa — a'aa’ap — alapaa’)

2 2

= ytr[a™a?p — (ala)?p]

+yntr[at?a®p + (aa’)?p — (a'a)?p — aa™ap]
=—7((R) — n), (1.79)
with the solution
(a(t)) = (A(0))e " + a1l — e ). (1.80)
Notice how thermal fluctuations are fed into the oscillator from the reservoir;

the mean energy does not decay to zero but to the mean energy for an
oscillator with frequency wg in thermal equilibrium at temperature T'.

Exercise 1.2 Show that the thermal equilibrium density operator

e—Hs/ksT e—hwoaTa/kBT

Pea = tr (e-Hs/kBT) T 1= e hwo/ksT

satisfies (1.73) in the steady state.
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As a final observation we note that the boson commutation relation is
preserved in time — at least in the mean, which is all we can say in the
Schrédinger picture. Using the initial time commutator we find

([a,a")(#)) = tr{[a, a"]p(t)} = tr{p()} = 1;

it is readily shown that (1.73) preserves the trace of the density operator.

1.5 Two-Time Averages
and the Quantum Regression Formula

We have developed a formalism which allows us, in principle, to solve for the
density operator (reduced density operator) for a system interacting with a
reservoir. From this density operator we can obtain time-dependent expec-
tation values for any operator acting in the Hilbert space of the system S.
What, however, about products of operators evaluated at two different times?
Of particular interest, for example, will be the first-order and second-order
correlation functions of the electromagnetic field. For a single mode these are
given by
GV (t,t +7) o (al (t)a(t + 7)),

GOt t+ 1) o (al (t)aT(t + T)a(t + 7)a(t)).

The first-order correlation function is required for calculating the spectrum
of the field. The second-order correlation function gives information about
the photon statistics and describes photon bunching and antibunching.

Note 1.4 It may seem a strange talking about the spectrum of a single
mode field since we normally associate a single mode with a single frequency.
Here we are dealing, however, with what should more correctly be called a
quasimode — a mode defined in a lossy optical cavity, which therefore has a
finite linewidth.

Clearly, averages involving two times cannot be calculated directly from
the master equation — at least, not without a little extra thought. We need to
return to the microscopic picture of system plus reservoir. At this level two-
time averages are defined in the usual way in the Heisenberg representation.
Our objective, then, is to derive a formula which allows us to calculate these
averages at the macroscopic level using the master equation for the reduced
density operator alone; thus, in some approximate way we wish to carry out
the trace over reservoir variables explicitly, as we did in deriving the mas-
ter equation itself. The result we obtain is the so-called quantum regression
theorem and is attributed to Lax [1.20, 1.21]. The particular designation, as
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a theorem, seems to begin with Mollow’s classic paper on the spectrum of
resonance fluorescence, where it appears in a footnote [1.22]. In a way the
designation is unfortunate, since the so-called “theorem” is not a theorem
at all, but a formula for two-time, or, more generally, multi-time averages,
which follows from the Heisenberg equations of motion for S ® R under the
Born-Markov approximation. Lax did not speak of a theorem in his original
paper [1.20], and there he makes it clear that a Markov assumption is used
to arrive at his principal result, that “even in the nonequilibrium case the re-
gression of fluctuations obeys the macroscopic equations.” The focus on “the
nonequilibrium case” contrasts the case of thermal equilibrium, for which
Onsager was the first to suggest that the regression of fluctuations obeys the
macroscopic equations of motion; Onsager used this hypothesis to arrive at
his famous reciprocity relations [1.23]. We are certainly not in the business
of proving theorems, and since an informal use of a word like “theorem” is
hardly appropriate, we will drop the “theorem” and speak of the quantum
regression formula — a formula that, as we will see, may take on different
forms for different occasions.

Note 1.5 Those interested in theorems might look at the literature on the
semigroup approach to open quantum systems which develops its mathemat-
ics in a rigorous manner [1.12, 1.14]. That is not to suggest that the quantum
regression formula of quantum optics is a theorem there either; it is, rather,
a straightforward expression of the axiomatic definition of a Markovian open
system dynamics. Our derivation of it, below, merely connects a microscopic
model for S® R to the mathematics of semigroups by introducing the Markov
property through an approximation. Interestingly, the rigorous mathemati-
cal approach concerns itself with a question moving in the opposite direction:
given a semigroup evolution for a system S, can this dynamics be rigorously
embedded in some unitary evolution for a larger system S ® R? The answer
turns out to be in the affirmative; the embedding is executed by what the
mathematicians call a dilation; there is no assertion, however, that the S® R
so obtained is precisely that which a physicist would adopt as a fundamental
model for the microscopic world.

Note 1.6 In a recent series of papers, Ford and O’Connell have argued that
“There is No Quantum Regression Theorem” [1.24]. These authors consider
the case of a harmonic oscillator coupled to a reservoir of harmonic oscillators
in thermal equilibrium. They identify weak coupling and resonance assump-
tions — used in quantum optics — which allow the frequency-dependent energy
of the reservoir oscillators to be replaced by a constant; thus, they correctly
recognize that quantum optics assumes a (locally) flat reservoir spectrum
where the reservoir spectrum is strictly not flat. Ford and O’Connell then
note that it is precisely the non-flatness of the quantum mechanical reser-
voir spectrum that reveals itself, at low temperatures, in corrections to the
regression of fluctuations given by the classical Onsager hypothesis (where
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the spectrum is kT per reservoir oscillator, independent of frequency — the
equipartition result). The appearance, and the authors’ suggestion from all of
this is that having eliminated the quantum corrections, the approximations
of quantum optics yield a regression formula that simply implements the
classical Onsager hypothesis; nothing has been added to Onsager to justify
the designation of a separate quantum regression formula. Their conclusion
aside, Ford and O’Connell make a valid and fundamental point; we might
recall, after all, that it is the same non-flat spectrum that underlies Ein-
stein’s quantum mechanical explanation for the low temperature behavior of
specific heats [1.25]. What then might be said to put Ford and O’Connell’s
observations in perspective? First, there can be no quibbling about the ap-
proximations. They are indeed used in quantum optics in order to arrive at a
Markovian description [see the discussion following Eq. (1.52)]; there is also
the rotating-wave approximation, which fails to give the correct frequency
shifts (Sect. 1.4.2) [1.26, 1.27]. The approximations themselves are not the
main point, though, since no one disputes that they are both appropriate
and extremely accurate in quantum optical applications. Lax demonstrates
this explicitly in his response to Ford and O’Connell [1.28]. The central ques-
tion is this: what is one left with after making the approximations? Does the
quantum regression formula take us beyond the classical Onsager hypothesis?
For Lax, the main thing was to establish the validity of a procedure for cal-
culating two-time correlation functions in “the nonequilibrium case” [1.28].
Onsager’s hypothesis concerned fluctuations about equilibrium. This is also
the focus of Ford and O’Connell; their quantum corrections are typical of the
sort of thing found in equilibrium statistical physics. Quantum optics looks
in a different direction, away from equilibrium, to the strong resonant, or
near resonant, interactions made accessible by coherent light sources. Coher-
ence is very much the name of the game; it is established away from thermal
equilibrium and generally has quantum mechanical consequences; the quan-
tum regression formula carries through those aspects of quantum mechanics
dealing with things like coherence, probability amplitudes, entanglement and
so on. This is clear from the more formal versions of the formula [Egs. (1.97)
and (1.98)] which are manifestly quantum mechanical expressions, respecting
operator order and employing a quantum mechanical propagator. For those
cases where a linearized treatment of fluctuations may be made, there is, it is
true, a version of the formula much closer to Onsager, where one has a linear
set of mean-value equations analogous to macroscopic transport equations
[Egs. (1.107) and (1.108)]. Even here, though, quantum mechanical features
can turn up, such as antibunched or squeezed fluctuations. It is important to
note, furthermore, that the quantum regression formula is not limited to the
small fluctuation regime. It can treat large fluctuations, where a classical evo-
lution would necessarily be nonlinear. Of course quantum mechanics is linear,
even in this case. There is a quantum mechanical substitute for nonlinearity,
however, expressed through multiphoton processes, which prohibit a reduc-



22 1. Dissipation in Quantum Mechanics: The Master Equation Approach

tion of the dynamics to a simple set of transport-like equations recognizable
from a classical or semi-classical treatment.

1.5.1 Formal Results

We will not follow Lax in detail, but our method is fundamentally the same
as his. Recall our microscopic formulation of system S coupled to reservoir
R. The Hamiltonian for the composite system S ® R takes the form given
in (1.16). The density operator is designated x(t) and satisfies Schrodinger’s
equation (1.19). Our derivation of the master equation has given us an equa-
tion for the reduced density operator (1.17), which we will now write formally
as

p=Lp; (1.81)

L is a generalized Liouvillian, a “superoperator” in the language of the
Brussells-Austin group [1.29]; £ operates on operators rather than on states.
For the damped harmonic oscillator, from (1.73), the action of £ on an arbi-
trary operator O is defined by the equation

L0 = — iwgla’a, O] + %(2aOAaJr —a'a0 - Oata)
+ ~ii(aOa’ + a’Oa — a’aO — Oaal). (1.82)

Within the microscopic formalism multi-time averages are straightfor-
wardly defined in the Heisenberg picture. In particular, the average of a
product of operators evaluated at two different times is given by

(01(t)02(t)) = trserlx(0)01(£)Oa(t")], (1.83)

where O; and O, are any two system operators. These operators satisfy the
Heisenberg equations of motion

X 1. 4
O; = %[Ol,H], (1.843.)
A 1 -
Oy = %[OZ,H], (1.84b)
with the formal solutions
O1(t) = e/MHLO, (0)e~(/MHE (1.85a)
Oa(t') = el/MHY Oy (0)e~W/MHY, (1.85b)

From (1.19), the formal solution for x gives

We substitute these formal solutions into (1.83) and use the cyclic property
of the trace to obtain
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(O1(t)04(t)) = trsgr [e(i/h)HtX(t)Ol(o)e(i/h)H(t’—t)O”Q(O)e-(i/h)Ht’]
= trsgr [02(0)6‘“/ WHE =) (£)0, (o)e(z‘/h)H(t'—w}
= tr5{0a(0)tra e~/ x(1)01 (0)e M.
(1.87)

In the final step we have used the fact that O, is an operator in the Hilbert
space of S alone.
We now specialize to the case t’ >t and define

T=t -t (1.88)
Xo,(T) = e WPHT ()0, (0)e/MHT. (1.89)
Clearly, Xo, satisfies the equation
dxs 1
= —|H, X, } 1.
dr ih [ O1 (1.90)
with )
X6,(0) = x(£)01(0). (1.91)

If we are to eliminate explicit reference to the reservoir in (1.87), we need to
evaluate the reservoir trace over x Ol(r) to obtain the reduced operator

Po,(T) = trR [Xol (T)], (1.92)
where
p,(0) = tra[x(1)01(0)] = trr[x(£)]01(0) = p()01(0); (1.93)

notice that pél(r) is just the term trg[- - -] inside the curly brackets in (1.87).
If we then assume that x(t) factorizes as p(t)Ro, in the spirit of (1.29), from
(1.91) and (1.93) we can write

X6,(0) = Ro[p(t)01 (0)] = Ro p (0)- (1.94)

Equations (1.90), (1.92), and (1.94) are now equivalent to (1.19), (1.17), and
(1.25) — namely, to the starting equations in our derivation of the master
equation. We can find an equation for p01(T) in the Born-Markov approxi-
mation following a completely analogous course to that followed in Sects. 1.3
and 1.4. Since (1.19) and (1.90) contain the same Hamiltonian H, using the
formal notation of (1.81), we arrive at the equation

with solution



24 1. Dissipation in Quantum Mechanics: The Master Equation Approach

Po

1

(1) = ¢ [05,0)] = €7 [p()01(0)] (1.96)
When we substitute for pél(T) in (1.87), we have (7 > 0)

(O1(1)0s(t + 7)) = trs{02(0)e“" [p()01(0)]}. (1.97)

Exercise 1.3 Follow the same procedure to obtain (7 > 0)

(O1(t +7)02(1)) = trs{01(0)e" [02(0)p(t)]}- (1.98)

Equations (1.97) and (1.98) give formal statements of the quantum re-
gression formula for two-time averages. To calculate a correlation function
(01()04(t")O3(t)) we cannot use (1.97) and (1.98) because noncommuting
operators do not allow the reordering necessary to bring O; (t) next to Os(t).
We may, however, generalize the approach taken above. Specifically, we have

(01 ()02 (t")O3(t))
= trsgr [e(i/h)HtX(t)Ol (Q)e(i/h)H(t'—t)O2 (O)e—(i/h)H(t’—t)

xég(o)e—(i/h)m]
=trsgr [02(0)6—(i/h)H(t’_t)Og(O)x(t)Ol(o)e(i/h)H(t’—t)]
= trS{O2(O)trR [e—(i/ﬁ)H(t’_t)Os(o)x(t)ol (O)e(i/ﬁ)H(t'—t)] } '

(1.99)
Defining - ) A '
Xégél(T) = e—(z/h)HTOB (O)X(t)ol(o)e(z/h)Hr (1‘100)
and
Pos0,(T) = tfR[Xosol(T)] (1.101)
as analogs of (1.89) and (1.92), we can proceed as before to the result (7 > 0)
(01(t)0a(t + 1)05(t)) = trs{02(0)e“[03(0)p(t) 01 (0)]}. (1.102)

Equations (1.97) and (1.98) are, in fact, just special cases of (1.102) with
either Oq(¢) or Os(t) set equal to the unit operator.
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1.5.2 Quantum Regression for a Complete Set of Operators

It is possible to work directly with the rather formal expressions derived
above. The formal expressions can also be reduced, however, to a more fa-
miliar form [1.20], which is often more convenient for doing calculations.
Essentially, we will find that the equations of motion for expectation values
of system operators (one-time averages) are also the equations of motion for
correlation functions (two-time averages).

We begin by assuming that there exists a complete set of system operators
/1“, i =1,2,... in the following sense: that for an arbitrary operator O, and

for each A,,

~

trs[A,(L0)] = Y Myatrs(420), (1.103)
A
where the M, are constants. In particular, from this it follows that

<Au> = trs(/i,,/f)) = trS{Au“:P)]

= Z Mu)\trs</i/\p)
A
= Mua(Ay). (1.104)
A
Thus, expectation values </i,,), uw = 1,2,..., obey a coupled set of linear

equations with the evolution matrix M defined by the M, that appear in
(1.103). In vector notation,

(A) = M(A), (1.105)
where A is the column vector of operators /1“, p=1,2,.... Now, using (1.97)
and (1.103) (7 > 0):
dilT<oA1 (A, (t + 7)) = trs {4, (0) (£e[’T[ o)}
—ZM )\tI‘S{A,\ O ( )]}
= ZMM,\ (O1(t) Ax(t + 7)), (1.106)
A
dii«jl 1A+ 7)) = MO, ()A(t + 7)), (1.107)

where O; can be any system operator, not necessarily one of the /i,,. This
result is just what would be obtained by removing the angular brackets from
(1.105) (written with ¢t — ¢+7, and - = d/dt — d/dr), multiplying on the left
by O1(t), and then replacing the angular brackets. Hence, for each operator
O1, the set of correlation functions (Ol(t)/iu(t+*r)), w=1,2,..., witht >0,
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satisfies the same equations (as functions of 7) as do the averages (A, (t+7)).
This is perhaps the more familiar statement of the content of the quantum
regression formula.

Exercise 1.4 For 7 > 0 show that

d - A ~ o
E—;(A(t‘FT)OQ(t» = M(A{t+7)02(t)). (1.108)
Thus, we can also multiply (1.105) on the right by Os(t), inside the average.
Also show that

d

- (01 (1) At + 7)04(t)) = M(O1(t)A(t + 7)O4(t)). (1.109)

It may appear that this form of the quantum regression formula is quite
restricted, since its derivation relies on the existence of a set of operators A,,,
p = 1,2,..., for which (1.103) holds. We can show that this is always so,

however, if a discrete basis |n), n = 1,2,..., exists; although, in general, the
complete set of operators may be very large. Consider the operators

A, = Anp = |n)(m). (1.110)
Then

= 3 {m (Ll i) 'Ol

- 2,<mi(ﬁln’><m’l)ln>trs(lm’><n’lé)

- nzm My trs(Anim O), (1.111)
v Mo = (] (£lm') ('] ). (1.112)

In the last step we have interchanged the indices n’ and m/. Equation (1.111)
gives an expansion in the form of (1.103). The complete set of operators
includes all the outer products |n){(m|, n = 1,2,..., m = 1,2,...; this may
be a small number of operators, a large but finite number of operators, or a
double infinity of operators in the case of the Fock state basis.
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1.5.3 Correlation Functions for the Damped Harmonic Oscillator

We will conclude our discussion of two-time averages with two simple exam-
ples based on the equations for expectation values for the damped harmonic
oscillator [Egs. (1.78) and (1.79)]. We first calculate the first-order correlation
function (a'(t)a(t+ 7)). Equation (1.78) gives the equation of motion for the
mean oscillator amplitude:

N Z .
(@) = (2 +iwo ) {a). (1.113)
Then, with A; = a and O; = a', from (1.105) and (1.107), we may write

%wt)a(t b)) =— (g + iwo) (at (t)a(t + 7). (1.114)
Thus,

(a¥(t)a(t + 7)) ={al (t)a(t))e™ O/>Fiwo)T
[(2(0))e™ + (1 — e™7)]e~(0/2Faw0)T - (1.115)

where the last line follows from (1.80). If the oscillator describes a lossy
cavity mode, in the long-time limit the Fourier transform of the first-order
correlation function

(aT(0)a(7))ss = tlim (al(®)a(t + 7)) = ne~(V/2Fiwo)T (1.116)
gives the spectrum of the light at the cavity output. This is clearly a
Lorentzian with width v (full-width at half-maximum).

Note 1.7 This statement about the spectrum of the light at the cavity out-
put is not strictly correct for the lossy cavity model as we have described it.
The reason is that we have taken the environment outside the cavity to be in
thermal equilibrium at temperature T (it is the environment that is modeled
by the reservoir). Given this, the light detected in the cavity output will be
a sum of transmitted light — light that passes from inside the cavity, through
the cavity output mirror, into the environment — and thermal radiation re-
flected from the outside of the output mirror. Calculating the spectrum at the
cavity output for this situation is more involved (Sect. 7.3.4). Physically, how-
ever, the result is clear; the spectrum must be a blackbody spectrum. The
Lorentzian spectrum obtained from (1.116) would be observed, as filtered
thermal radiation, for a cavity coupled to two reservoirs, one at temperature
T and the other at zero temperature. If the bandwidth for coupling to the
reservoir at temperature 7" is much larger than for coupling to the zero tem-
perature reservoir, the master equation (1.73) is basically unchanged. Light
emitted into the zero temperature reservoir then shows the Lorentzian spec-
trum obtained from the Fourier transform of (1.116).
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For a second example we calculate the second-order correlation function
(af(t)al (t + T)a(t + T)a(t)) = (al ()A(t + T)a(t)). Writing (1.79) in the form

d((@\ _ (=7 7\(@
dt<ﬁ>_<0 0/\ n )’ (1.117)
we set Ay = 7 = ala and Ay = @ (a constant). Then, from (1.105) and

(1.109), with O; = a! and O, = a,

° ((aT(t)ZE;z;);)a(t») _ (—07 3)(““”222 ?;;)a(t»)' (1.118)

Thus, ,
(aT(t)ﬁ(t + 7)a(t)) = (aT(t)ﬁ(t)a(t»e_W + a(alt))(1 —e 7). (1.119)
(

We obtained an expression for (A(t)) in (1.80). The calculation of {(a'(t)7(t)
a(t)) is left as an exercise:

Exercise 1.5 Derive an equation of motion for the expectation value (a'(t)

A(t)a(t)) = (at?(t)a?(t)) from the master equation (1.73) and show that
(' (®)a(t)a(t)) = [(2*(0)) — (R(0))] e + 2A(1 ~ €™
x [2(A(0))e™ " + (1 — e )], (1.120)

Now, substituting from (1.80) and (1.120) into (1.119),
(aT(t)al(t + T)a(t + T)a(t))
= {[(42(0)) — (R(0))] e~ ?"* + 2n(1 — e~ *)[2(R(0))e "
+n(1 — e“”t)]}e_w +7n [(ﬁ(O))e"’t +7a(l — e‘”)] 1—-e).

(1.121)
In the long-time limit, the second-order correlation function is
(a' (0)al (r)a(r)a(0))ss = lim (al (o' (¢ + T)a(t + T)a(t))
=n*(1+e 7). (1.122)

This expression describes the well-known Hanbury-Brown-Twiss effect, or
photon bunching, for thermal light [1.30}; at zero delay the correlation func-
tion has twice the value it has for long delays (y7 > 1).

Note 1.8 The correlation time, 1/, in (1.122) holds for filtered thermal
light in accord with the comments in Note 1.7.



2. Two-Level Atoms
and Spontaneous Emission

The damped harmonic oscillator provides our elementary description for the
electromagnetic field in a lossy cavity. The damped two-level atom will pro-
vide our elementary description for the matter with which this field interacts.
In an atomic vapor, loss of energy from an excited atom may take place via
spontaneous emission or inelastic collisions. Elastic collisions can also play an
important damping role; although, of course, they do not carry away energy;
elastic collisions interrupt the phase of induced electronic oscillations and in
this way damp the atomic polarization. We will first restrict our treatment to
the case of purely radiative damping, assuming conditions in which collisions
are unimportant. Such conditions are achieved, for example, in atomic beams.
Later we will derive the terms that must be added to the master equation to
describe additional phase destroying processes such as elastic collisions.

We consider an atom with two states, designated |1) and |2), having en-
ergies Fq and E, with E; < E,. Radiative transitions between |1) and |2)
are allowed in the dipole approximation. Our objective is to describe energy
dissipation and polarization damping through the coupling of the |1) — |2)
transition to the many modes of the vacuum radiation field (a reservoir of
harmonic oscillators). For simplicity we assume that there are no transitions
between |1) and |2) and any other states of the atom. The extension to mul-
tilevel atoms can be found in Louisell [2.1] and Haken [2.2]. A treatment
for just two levels which corresponds closely to our own is given in Sargent,
Scully and Lamb [2.3].

2.1 Two-Level Atom as a Pseudo-Spin System

A two-state system can be described in terms of the Pauli spin operators. We
will be using this description extensively and we therefore begin by briefly
reviewing the relationship between these operators and quantities of physical
interest, such as the atomic inversion and polarization. A more complete
coverage of this subject is given by Allen and Eberly [2.4].

If we have a representation in terms of a complete set of states |n),n =
1,2,..., any operator O can be expanded as

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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O = (n|Olm)[n){ml. (2.1)

n,m

This follows after multiplying on the left and right by the identity operator
I = Y. |n)(n|]. The (n|O}m) define the matrix representation of O with
respect to the basis |n). If we adopt the energy eigenstates |1) and |2) as a
basis for our two-level atom, the unperturbed atomic Hamiltonian H4 can
then be written in the form

Ha = E1|1)(1] + E2[2)(2]
= %(El + Eg)j + %(EQ - El)o'zs (22)
where
= [2)(2] - [1) (1. (2.3)

The first term in (2.2) is a constant which may be eliminated by referring
the atomic energies to the middle of the atomic transition, as in Fig. 2.1. We
then write

HAZ%MAO'Z, WAE(EQ—El)/h. (24)
E, 12)
+%ha)A
%
g | 3BrHEy) -----mmpo-m
- 1
—3ho,
Fig.2.1 Energy levels for a two-level
E, 1)  atom.

Consider now the dipole moment operator eq, where e is the electronic
charge and @ is the coordinate operator for the bound electron:

eg=e Y (n|glm)n)(m|

n,m=1
= e((1q[2)[1)(2] + (2|g/1)|2)(1])
=dip0_ +d2104, (2.5)
where we have set (1|¢|1) = (2|¢|2) = 0, assuming atomic states whose

symmetry guarantees zero permanent dipole moment, and we have introduced
the atomic dipole matrix elements

di2 = e(1]1G|2), dor = (d12)", (2.6)

and atomic lowering and raising operators
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o_ =11)(2|, oyp =12)(1). (2.7)
The matrix representations for the operators introduced in (2.3) and (2.7)
are
az=<(1) _01>, a_=<(1) 8), a+=(8 é) (2.8)
By writing
or = 3(0g L ioy), (2.9)
with

ax=<2 é), ay=<? ;f), (2.10)

we see that 04,0y, and o, are the Pauli spin matrices introduced initially
in the context of magnetic transitions in spin- systems [2.5]. When applied
to two-level atoms o,, o0_, and o, are referred to as pseudo-spin operators,
since, in this context the two levels are not associated with the states of a
real spin.
Exercise 2.1 From the relationships above, deduce the following:
1. the commutation relations

[o4,0-] = 0., [o+,0.] = F204; (2.11)

2. the action on atomic states:

o:|1) = —|1), 0:[2) = |2), (2.12a)
o_|1) =0, o_|2) = |1), (2.12b)
oq|l) =|2), o4|2) =0. (2.12¢)

From (2.12b) and (2.12c) the designation of o_ and o4 as atomic lowering
and raising operators is clear.

We will formulate our description of two-level atoms in terms of the op-
erators 0,,0_, and 0. For an atomic state specified by a density operator
p, expectation values of 0,, o_, and o are just the matrix elements of the
density operator, and give the population difference

(02) = tr(poz) = (2/p[2) — (1]p[1) = p22 — p11, (2.13)
and the mean atomic polarization
(eq) = diatr(po_) + datr(po)
= d12(2[p|1) + d21(1]p|2)
= dy2 p21 + d21 p12- (2.14)
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2.2 Spontaneous Emission
in the Master Equation Approach

2.2.1 Master Equation for a Radiatively Damped Two-Level Atom

We consider an atom that is radiatively damped by its interaction with the
many modes of the radiation field taken in thermal equilibrium at temper-
ature T. This field acts as a reservoir of harmonic oscillators. Within the
general formula for a system S interacting with a reservoir R, the Hamilto-
nian (1.16) is given in the rotating-wave and dipole approximations by [2.6,
2.7]

HS = %EMAUZ, (2.158.)

HR = Z hx,ukr,t,)‘rk,,\, (2.15b)
kA

Hgg = Z h(/i,:,/\r;g,/\a- + Kk ATk AT+ ), (2.15¢)
PBY

with

= —jetkra [k o d 2.1
Kgx = —1€ 2560‘/ €k, 21 ( . 6)

The summation extends over reservoir oscillators (modes of the electromag-
netic field) with wavevectors k and polarization states A, and corresponding
frequencies wy and unit polarization vectors ég,x. The atom is positioned at
T4, and V is the quantization volume. kg, is the dipole coupling constant for
the electromagnetic field mode with wavevector k and polarization A. The
general formalism from Sect. 1.3 now takes us directly to (1.34), where from
(1.32) and (2.15) we must make the identification:

s1=0_, Sg = 0y, (2.17a)
n=rt= Z ’9;,,\7";2,,\7 I,=I= Z Kl ATk, (2.17b)
kA %)
In the interaction picture,
Ly(t) = TH(t) = D meard ne™*, (2.18a)
B
fz(t) = _l:'(t) = Z K/k,,\’r‘k,,\e_iwkt, (2.18b)
kA
and
1(t) — ei(LUAUz/Q)ta._e“i(wAUz/z)t = o’_e_iwAt’ (219&)

W W

2(t) — ei(wAU,/2)to,+e—i(w,40,/2)t — 0‘+eiwAt. (219b)
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Note 2.1 To obtain (2.19), consider the Heisenberg equation of motion

§1 = idwael@ao: /Do 0 — o_g,)e " (wac=/2)

= —’iWAgl.
This is trivially solved to give

51(t) = 51 (0)e™ ™At = g_e ™A,

Aside from the obvious notational differences, (2.18) and (2.19) are the
same as (1.41) and (1.40), respectively, with the substitution a — o_,
al — o4. The derivation of the master equation for a two-level atom then
follows in complete analogy to the derivation of the master equation for the
harmonic oscillator, aside from two minor differences: (1) The explicit evalu-
ation of the summation over reservoir oscillators now involves a summation
over wavevector directions and polarization states. (2) The commutation re-
lations used to reduce the master equation to its simplest form are different.
Neither of these steps are taken in passing from (1.34) to (1.62), or in eval-
uating the time integrals using (1.65). We can therefore simply make the
substitution @ — o_, af — o in (1.62) to write

p= 3+ D +id +A)](0-pos —010-p)

+ (gn +il)(o4po- — po_oy) +he, (2.20)
with 71 = i(wa, T') and

N = 2772/d3k g(k)|k(k, \)[26(ke — wa), (2.21)

(k, \)|2

p [z SR)EGe NP .

A= Z /dk YR (2.22)

3. 9(K)|K(k, N)[?
ZP/d kS e ke D). (2.23)

We have grouped the terms slightly differently in (2.20), but the corre-
spondence to (1.62) is clear when we note that, there, & = v/2 + ¢A and
B = (v/2)a + i4’. Equation (2.20) gives

(A +1)(20-poy —010_p— poso-) —i(A + A)[oyo_, p]

(204po- —0_04p—po-oy) +id[o o4, p]

S

i34 + Aoz, bl + 5 (7 + 1)(20-pos —010-p — joro-)

B2 l\DI = o2

3

(2040 —0_04f — f0_04), (2.24)
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where we have used
oro_ = 2112 = 2)(2 = 11 +02), (2.252)
ooy = 1){22)(1] = [1)(1} = 5(1 — 02). (2.25b)

Finally, transforming back to the Schrédinger picture using (1.72), we obtain
the master equation for a radiatively damped two-level atom:

R Y,
b= ikhloe gl + 2+ D)(20_pos — 010 p— poso)
+ %ﬁ(20+pa_ —0_0Lp—po_oy), (2.26)

with
wy =wa + 24"+ A, (2.27)
The symmetric grouping of terms we have adopted identifies a transition
rate from |2) — |1), described by the term proportional to (y/2)(n+1), and a
transition rate from |1) — |2), described by the term proportional to (7/2)n.
The former contains a rate for spontaneous transitions, independent of 72, and
a rate for stimulated transitions induced by thermal photons, proportional
to n; the latter gives a rate for absorptive transitions which take thermal
photons from the equilibrium electromagnetic field. We will have more to say
about this point later. Notice that the Lamb shift given by «/; — w4 includes
a temperature-dependent contribution 2A’ which did not appear for the har-
monic oscillator. Its appearance here is a consequence of the commutator
[0_,0,] = —0., in place of the corresponding [a,a!] = 1 for the harmonic
oscillator. From (2.22), (2.23), and (1 52)

(k,A)|? _
oA 1+ A =S p [ R VI T
+ § / T on ke L+ 2a(ke T)]

B 3, 9(k)|s(k, T)|* T)| hkc
ZP/d k o coth 25T ) (2.28)

where kp is Boltzmann’s constant. The temperature independent term in the
square bracket gives the normal Lamb shift, while the term proportional to 27
gives the frequency shift induced via the ac Stark effect by the thermal reser-
voir field. We will discuss the ac Stark effect later in this chapter. It is only
quite recently that attention has been paid to this temperature-dependent
frequency shift, following the work of Gallagher and Cook [2.8]. A thorough
discussion for real atoms is given by Farley and Wing [2.9]. Beautiful experi-
ments by Hollberg and Hall using highly stabilized lasers have measured the
temperature-dependent shift in Rydberg atoms [2.10].

Note 2.2 Recall from Sect. 1.4.2 that the rotating-wave approximation does
not give the correct nonrelativistic result for the Lamb shift [2.11]. Actually,
(wa — ke)~! should read (wa — ke) ™! + (wa + kc) ™! in (2.28) (Exercise 2.2).
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2.2.2 The Einstein A Coefficient

If we have a correct description of spontaneous emission we must expect the
damping constant v appearing in (2.26) to give us the correct result for the
Einstein A coefficient. We can check this by performing the integration over
wavevectors and the polarization summation in (2.21).

Adopting spherical coordinates in k-space, the density of states for each
polarization state A is given by [2.12]

2

4 ——=dwsin 0d0de. (2.29)

3
g(k)dk = 353

Substituting from (2.29) and (2.16) into (2.21),

oo u 2T 2
wV  w
=2 E d infdf | dp ——————(éx.x - d12)*6(w —
v =27 /\/0 w/o sin ; ¢87r3c32h60V(ek’A 12)°6(w —wa)

OJ3 g . 2 R
A

Now, for each k we can choose polarization states A; and Ay so that the first
polarization state gives ég », - d12 = 0 (taking dy2 real for simplicity). This
is achieved with the geometry illustrated in Fig. 2.2. Then, for the second
polarization state, we find

(Erre - dho)? = diy(1 — cos?a) = d[1 = (dio - B)?],  (231)
where d12 and k are unit vectors in the directions of di2 and k, respectively.

The angular integrals are now easily performed if we choose the k.-axis to
correspond to the dy5 direction. We have

T 27 27
/ sinfdd | de (k- di2)? = d3y d¢/ dfsin (1 — cos® #)
0 0 0 0

8m
= ?dfz. (2.32)
From (2.30) and (2.32)
1 4wdd?,
47'{‘60 3hc3 (2.33)

This is the correct result for the Einstein A coefficient, as obtained from the
Wigner-Weisskopf theory of natural linewidth [2.13, 2.14].

Exercise 2.2 After replacing (wa — k¢)™' by (wa — k)™ + (wa + kc)~!
n (2.23), show that this equation gives the formula for the temperature-
dependent shift derived in Ref. [2.9]:
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€k,

éM/ k Fig. 2.2 Polarization states used in the
evaluation of (2.30).

1 4d? o0 1 1 1
A=—_1p / dw w® .2
4reg 3hmed ~ Jy i Py + wa +w) efw/ksT 1 (2:34)

The corresponding formula for the Lamb shift is

1 2d? ° 1 1
A= — 22 P/ dw w® : :
4dmeq 3hmed o we wa —w + wa +w (2.35)

2.2.3 Matrix Element Equations, Correlation Functions,
and Spontaneous Emission Spectrum

We mentioned earlier that {(c.), (c_), and {(o;) are simply related to the
matrix elements of p. We can derive equations of motion for these expectation
values from (2.26) as we did for the harmonic oscillator, or, alternatively, we
can simply take the matrix elements of (2.26) directly. Following the second
approach, we use (2.12) to find

pa2 = —izwa(2|(o2p — po.)|2)
Y-
+ (A +1){(2|(20-poy —040_p— poio_)|2)

2
+ 2022040 — 7_01p— po-01)|2)
=— (7 + 1)p22 + Ap11, (2.36a)
and, similarly:
p11 = —ynp11 +¥(7 + 1) paz, (2.36b)
po1 = — [%(271 +1)+ iwA]pzl, (2.36¢)
pro = = [ 320 +1) — iwa) pro. (2.36d)

We have dropped the distinction between wa and w’y. Equations (2.36a) and
(2.36b) clearly illustrate our interpretation of the two terms — proportional
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to (v/2)(7 + 1) and (/2)7 — in the master equation; the former describes
|2) — |1) transitions at a rate y(n + 1), and the latter describes |1) — |2)
transitions at a rate y7i. Of course, probability leaves and enters the two
states in such a way that the total probability is preserved — p11 + p22 = 0.
Equations (2.36a) and (2.36b) are in fact just the rate equations of Einstein
A and B theory.

Exercise 2.3 Show that in the steady state the balance between upwards and
downwards transitions leads to a thermal equilibrium distribution between
the states |1) and |2).

Using the relations (0,) = pa2 — p11, (0-) = po1, {04) = p12, and p1; +
p22 = 1, the matrix element equations can be written in the alternative form:

(62) = —v[{o=)(20+ 1) + 1], (2.37a)
(6.) = — {g(zn +1)+ z'wA] (o), (2.37b)
(64) = - [%(277 +1)— z'wA} (04): (2.37¢)

These provide us with a simple illustration of the use of the quantum re-
gression formula (Sect. 1.5). At optical frequencies and normal laboratory
temperatures 7 is negligible, and for simplicity we drop it here. Then, using
(2.25a), we may write the mean-value equations in vector form:

(8) = M(s), (2.38)
with
s = a; ) (2.39)
40—
M = diag [— (% + iwA) - (g - z'wA) : —7}. (2.40)
For 7 > 0, equations for nine correlation functions are obtained from (1.107):
%@_ (0)s(t + 7)) = M{o_()s(t + 7)), (2.41a)
;g—_<0+ (t)s(t+ 7)) = M{(oy(t)s(t + 7)), (2.41b)
4 (o4(t)o—(t)s(t+ 7)) = M{(oy(t)o_(t)s(t +7)). (2.41c)

dr

Equations for a further nine correlation functions with reverse time order are
obtained from (1.108); alternatively, this second set of correlation functions
can be derived from the first, using

(At +1)A, (1)) = (AL () AT(t + 7))*. (2.42)

Equation (1.109) defines a further twenty-seven correlation functions.
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Let us consider an atom prepared initially in its excited state. For this
initial condition (o_) = {(04) = 0, (040-) = pes = 1, and the solution to
(2.38) is

0
(s)y=1 0 |. (2.43)

et

Initial conditions for (2.41a)-(2.41c) are then, respectively,

0
(o_(t)s(t)) = L—e "), (2.44a)
0
(o+@®s) =1 0 |, (2.44b)
0
0
(o4 (t)o-(t)s(t)) = Pwt, (2.44c)

where we have used (2.25), together with the following;:

0% = [2)(12)(1] =0, (2.45a)
o =]1)(2]1)(2| = 0, (2.45b)
oro_oy = [2)(1[1)(2)2)(1] = |2)(1] = o, (2.45¢)
o_opo_ = |1)(2)2)(1]1)(2| = |1)(2| = o _. (2.45d)

The nonzero correlation functions obtained from (2.41) with initial conditions
(2.44) are (1 > 0)

(- (t)o(t+ 7)) = e™ame= (/DT (1 e ), (2.46)

(o, (t)o_(t+7)) = e waTe= (/DT (2.47)

(o (t)o_(t)or(t+T)o_(t+ 7))y =e "Te ", (2.48)

Equation (2.47) provides the result for the spontaneous emission spectrum.

For an ideal detector, the probability of detecting a photon of frequency w
during the interval t = 0 to t = T is given by [2.15]

/ dt/ dt' e (o, (t)o_(t)). (2.49)

We will see how the field at the detector is related to the atomic operators
o— and o shortly (Sect. 2.3.1); clearly, such a relationship is needed to write
(2.49). Using (2.47) and

(o4 (t+ 7)o (1) = (o4(H)o—(t +7))", (2.50)
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we find, for all ¢ and ¢,
(o4 (t)o_ () = ealt=t) = (/D) (2.51)

Then,

T T
Plw) x / dt e~/ Filw—wa)t / &t e~ (/D —ilw—wa)lt’
0

0
1 — e~ (/2T g=i(w=—wa)T | _ o= (v/2)T gilw—wa)T
e ’ e e . e (2.52)
V2t i@ —wa) /2 i@ —wa)
For long times, T' >> 1/, this gives the Lorentzian lineshape
1
Pw) x (2.53)

(7/2)? + (w —wa)?’

2.2.4 Phase Destroying Processes

The interaction with the many mode electromagnetic field that gives rise to
spontaneous emission causes both energy loss from the atom and damping
of the atomic polarization. Polarization damping is described by the loss
terms proportional to (v/2)(272 + 1) in (2.36¢) and (2.36d). This damping
results from a randomization of the phases of the atomic wavefunctions by
thermal and vacuum fluctuations in the electromagnetic field, causing the
overlap of the upper and lower state wavefunctions to decay in time. It is
often necessary to account for additional dephasing interactions; these might
arise from elastic collisions in an atomic vapor, or elastic phonon scattering
in a solid. What terms must we add to the master equation (2.26) to describe
such processes?

A phenomenological model describing atomic dephasing can be obtained
by adding two further reservoir interactions to the Hamiltonian (2.15). We
add

Hgephase = HRr, + Hg, + Hsgr, + Hgg,, (2.54)

with

HRl +HR2 = Zhwlj rijrlj +ZhWQj ’I"gj’l‘gj, (255&)
J J

Hsp, + Hsgr, = Z Rk 1k rijrlk o_oy+ Z hkajk T;j’l"gk o4+o_. (2.55b)

3k g,k
The complete reservoir seen by the atom is now composed of three subsys-
tems: R = Rj2 ® Ry ® Ra, where R is the reservoir defined by (2.15b).

These reservoir subsystems are assumed to be statistically independent, with
the density operator Rg given by the product of three thermal equilibrium
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operators in the form of (1.38). The interactions Hgg, and Hgpg, describe
the scattering of quanta from the atom while it is in states |1) and |2}, re-
spectively; they sum over virtual processes that scatter quanta with energies
hwyk and hwgr into quanta with energies fuvq; and Awp; while leaving the
state of the atom unchanged.

The terms that are added to the master equation by these new reservoir
interactions follow in a rather straightforward manner from the general form
(1.34) for the master equation in the Born approximation. In addition to the
reservoir operators I (t) and I>(t) that are defined by the interaction with
Rj5 [Egs. (2.18)], we must introduce operators I'3(t) and I'4(¢) to account for
the interactions with R, and R,. First, however, we have to take care of a
problem, one which was not met in deriving master equations for the damped
harmonic oscillator and the radiatively damped atom. Equation (1.34) was
obtained using the assumption (1.28) that all reservoir operators coupling
to the system S have zero mean in the state Ry. This is not true for the
reservoir operators coupling to o_o4 and oyo_ in (2.55b); terms with j = k
in the summation over reservoir modes have nonzero averages proportional to
mean thermal occupation numbers. To overcome this difficulty the interaction
between S and the mean reservoir “field” can be included in Hg rather than
Hgg. With the use of (2.25), in place of (2.55a) and (2.55b) we may write

Hgs = th(wa + 6p)0, (2.56)
and
Hgg, + Hsg,
= Zhﬁljk(rij"'lk — 6jk7_l1j)0'_0'+ -+ Zhlﬁzjk(’l‘;j’l‘zk - 6jk77l2j)0'+0'_,
Jik gk
(2.57)

with the frequency shift 6, given by

bp = Y (kajjha; — K1j5M1;)
7

= /000 dw [gg(w)ng(w,w) — q1(w)k1 (w,w)]ﬁ(w,T). (2.58)

n1; = n(wy;, T) and fg; = 7(wy;, T') are mean occupation numbers for reser-
voir modes with frequencies wy; and ws;, respectively, and in (2.58) the sum-
mation over reservoir modes has been converted to an integration by intro-
ducing the densities of states g;(w) and ga(w). The sum of (2.56) and (2.57)
gives the same Hamiltonian as the sum of (2.55a) and (2.55b); but now the
reservoir operators that appear in Hgg, and Hgpg, have zero mean.

We may now proceed directly from (1.34). After transforming to the in-
teraction picture, the interaction Hamiltonian (2.57) is written in the form
(1.33) with
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§3(t) = o_oy, (2.59a)
84(t) = 040, (2.59b)
and 3 ,
Ta(t) =Y k1w (rijrlk el et _ 6jkﬁ1j), (2.60a)
ik
Fu(t) = Z K2k (r;jrgk giwa2j—war)t _ §jkﬁ2j>. (2.60Db)
jk

These are to be substituted — together with 5, (t), 2(t), I (t), and I3 (t) from
(2.18) and (2.19) - into (1.34). Since the reservoir subsystems are statistically
independent and all reservoir operators have zero mean, all of the cross terms
involving correlation functions for products of operators from different reser-
voir subsystems will vanish. Thus, the spontaneous emission terms arising
from the interaction with Iy and I are obtained exactly as in Sect. 2.2.1.
The additional terms from the interaction with I's and I'y take the form

(5>d hase / dt' [o_oro_o p(t') — o_opp(t) oo [(T5(t)3())R,
ephase 0

+[p(t)o-0r0-04 — o0 p(t")o_ o (T5() (1)),
+loro_opo p(t') —oro_p(t oo [(Ta(t)[u(t)r,
+[p(t)oro-o40- — oo p(t")oro [(Ta(t') [u(t))r,-

(2.61)

We will evaluate the first of the reservoir correlation functions appearing
n (2.61); the others follow in a similar form. From (2.59a),

(I3(t)I3(t))r,

= tr| Ry Kk Kujoge (] riee @i et 5o m,
J J

gk 3k

1 (w7 —wy g )t =
X (’)”lj/’rlk/e ( 15/ 1k’) — 6j’k’n1j,

o o
- tr[Rw( D D Rk Kages ryre ] €Tl ment

Jik 3k
R ST i(wyjr—wyg )t
- K1jj K1k M5 Ty Tk €77
Jj gLk
1 = i(wrj—wik)t
- E E K1jk k1515 lerlknlj/e( 197wk
P

+ E : E K1jj K1y g T,
T
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where Rjq is the thermal equilibrium density operator [Eq. (1.38)] for the
reservoir subsystem R;. The nonvanishing contributions to the trace are now
obtained as follows: the first double sum contributes for j = k # j' = k', for
j =k' # k=4, and for j = k = j/ = k’; the second double sum contributes
for j/ = k’; and the third double sum for j = k. The correlation function
becomes

I ey
(I3()15()R,
= = = = i(wij—wy ) (t—t

= D" Ky Ky g Mg+ Y Ky Ry g (g + 1)el19 )0

5:d" , 5’

£’ it

2 3 - -
+ YRR 2 Rugg Ry g g+ ) R R g g
i R T

where the first three terms come from the first double sum, and the fourth
term comes from the second and third double sums. Noting that ni; = @3; +
f1j(P1; + 1), we see that the sums for j # j’ are completed for all j and j'
by the third term in this expression; setting k1;; k115 = |k155|> — required
for (2.55b) to be Hermitian — we arrive at the result

(L33 )Ry = D k1P (s + 1)l 1)), (2.62a)
i

Similar expressions follow for the other reservoir correlation functions:

(Ta(t) ()R, = Z |ajj|Tig; (Tigg + 1)ei(w2s =2 )(t=t) (2.62b)

and
(F5(t") T5(t))r, = (<f3(t)f3(t’)>R1)*, (2.62¢)
(Fa(t) Ty = (<f4(t)f4(t’)>R2)*. (2.62d)

If reservoir correlation times are very short compared to the timescale for
the system dynamics, the time integral in (2.61) can be treated in the same
fashion as in Sect. 1.4.1. After simplifying the operator products using (2.25),
(2.61) then gives

5 =il R Y P
(P)dephase— igAploz, Bl + Z(UZpaz p), (2.63)

with
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— / " [g (@) 2@, ) + g1(@) i (w0, )]
x a(w,T) [A(w,T) + 1], (2.64)

p—P/ d“’/ o 2(@)g2(w Nr2(w, )? = g1(w)gr (W)]k1 (w, )]

w—w
x (w, T (2.65)

We add (2.63) to the terms describing radiative damping given by (2.24), and
transform back to the Schrodinger picture using (1.72) and (2.56) to obtain
the master equation for a radiatively damped two-level atom with nonradiative
dephasing:

. . Y,
p=—izwalos,pl+ 5(+1)(20-pos — 010 p—poso)

+ %ﬁ(%wm —0_04p—po_oy)+ %(Uzpoz —-p),  (2:66)

where the shifted atomic frequency is now
Wy =wa+20" + A+ 6,4+ Ap, (2.67)
with 24" 4+ A, 6,, and A, given by (2.28), (2.58), and (2.65).

2.3 Resonance Fluorescence

The theory of resonance fluorescence provides a good illustration of the meth-
ods we have learned so far, and a simple situation in which to introduce some
of the subtleties that arise in the treatment of damping for interacting atoms
and fields. We are concerned here with a two-level atom irradiated by a
strong monochromatic laser beam tuned to the atomic transition. Photons
may be absorbed from this beam and emitted to the many modes of the vac-
uum electromagnetic field as fluorescent scattering. This scattering process
is mediated by the reservoir interaction (2.15¢) underlying our treatment of
spontaneous emission.

The phenomenon of fluorescence has fascinated physicists for over a cen-
tury [2.16, 2.17]. A simple classical picture can be given in terms of the
Lorentz oscillator model which underlies the classical theory of dispersion
[2.18-2.20]. In this picture, a harmonic electron oscillator is set into forced
oscillation by the incident light and reradiates as a dipole source according
to the laws of classical electrodynamics. Of course, in the absence of damp-
ing the amplitude of a resonantly forced oscillator grows without bound; to
avoid this divergence some account of atomic damping must be given. In the
classical theory this is achieved with the introduction of a velocity-dependent
force derived from radiation reaction. The damping constant introduced in
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this way ensures that the energy appearing in the reradiated field is matched
by energy loss from the oscillator. This classical theory does pretty well
at weak excitation. In particular, the relationship between the fluorescence
spectrum and the spectrum of the excitation is correctly obtained; single-
frequency excitation produces a forced response of the electron oscillator and
a reradiated field with the same frequency. A hastily drawn conclusion for a
two-level atom might expect the fluorescence spectrum to show the natural
linewidth [Eq. (2.53)]. This would follow if the atomic dynamics proceeded
by independent absorption and spontaneous emission events. However, this
is an incorrect view of the scattering process. A perturbative treatment of
the quantum-mechanical problem is adequate to show that at weak intensi-
ties the classical result is correct [2.21]. We must view the scattering as an
essentially coherent process, passing energy from the incident beam to the
scattered field without lingering en route in the excited state [2.22].

Of course, a two-level atom is not a harmonic oscillator, and the classical
theory fails at sufficiently high laser intensities — in fact, it fails even at weak
intensities if we look more carefully at the statistics of the scattered photons.
As we will see, a two-level atom responds nonlinearly to increasing intensity;
also, while a harmonic oscillator can be excited ever higher up its ladder of
Fock states, a two-level atom can only store a single quantum of energy. From
a quantum treatment we will find the following: With increasing incident
intensity, the fluorescence spectrum picks up an incoherent component having
the natural linewidth. This incoherent spectrum splits into a three-peaked
structure and eventually accounts for nearly all of the scattered intensity.
This behavior was first predicted by Mollow [2.23] and has been observed
in a number of experiments [2.24-2.26]. The incoherent spectral component
arises from quantum fluctuations around the nonequilibrium steady state
established by the balance between excitation and emission processes. These
quantum fluctuations are inherent in the probabilistic character of quantum
dynamics, and are not introduced by any external stochastic agent.

Quantum mechanics makes its mark even at weak laser intensities if we
ask the right question. We will find that there is zero probability of detecting
two scattered photons emitted at the same time, independent of the inci-
dent intensity. This photon “antibunching” is a consequence of the fact that
the atom can store just a single quantum of energy, and, after emitting this
quantum, cannot produce a second until it is reexcited. It is the inverse of the
photon “bunching” associated with the famous Hanbury-Brown-Twiss effect
(Sect. 1.5.3) — there the probability for detecting two simultaneous photons is
twice that expected for random photon arrivals [2.27]. Photon antibunching
cannot be treated using a classical statistical description for the scattered
field, and has therefore received special attention as a phenomenon requiring
the quantized electromagnetic field [2.28-2.30]. The earliest reference to the
vanishing probability for simultaneous photon detection in resonance fluores-
cence is contained in the work of Mollow [2.31]. Carmichael and Walls [2.32]
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calculated the second-order correlation function for the scattered light, ex-
plicitly demonstrating antibunching in contrast to the bunching of Hanbury-
Brown and Twiss. Shortly thereafter photon antibunching was observed by
Kimble et al. [2.33] in the fluorescence from a dilute sodium atomic beam.

We will obtain the fluorescence spectrum and a description of photon
antibunching using the master equation methods we have developed. This
is not the only approach to these problems and an extensive literature is
available on this subject. A good review with complete references is given by
Cresser et al. [2.34].

2.3.1 The Scattered Field

The incident laser mode is in a highly excited state that is essentially un-
affected by its interaction with the single atom. We can treat this field as
a classical driving force. Then the Hamiltonian for the resonantly driven
two-level atom interacting with the many modes of the electromagnetic field
separates into system and reservoir terms, as in (1.16), with

Hs = thwao, — dE(e” ™40, 4 e™4to_), (2.68a)

Hp = hwprf \Tka, (2.68b)
kA

Hgp = Zh(mk’t,\rl’/\a_ + Hk7,\7‘k7,\0'+); (2.68c¢)
kA

both interactions are written in the dipole and rotating-wave approximations.
The laser field at the site of the atom is

E(t) = é2F cos(wat + ¢), (2.69)

where € is a unit polarization vector, F is a real amplitude, and the phase ¢
is chosen so that d = é - dy2€%? is also real.

The master equation approach focuses on the dynamics of the atom. We
are ultimately interested, however, in the properties of the fluorescence. The
scattered field is given in terms of the reservoir operators — in the Heisenberg
picture

E(r,t) = BP0+ E @), (2.702)
with
E = ih-r .
(r,t) =1 kz; eV €k ATk A(E)e™T, (2.70b)
~ (=) o) t
E ‘(r,t)=FE '(r,t)'. (2.70c)

We will need the correlation functions
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GO (t,t +7) = (EC O ED (£ + 7)), (2.71)
and
CAt,t+71) = (ECWED @t +7)ED (@t +1)ED (1)), (2.72)

where the field operators are evaluated at the position of an idealized point-
like detector. Since we trace over the reservoir variables in deriving the master
equation for S, our first task is to relate the scattered field to atomic source
operators, so that (2.71) and (2.72) can be expressed in terms of operators
of the system S.

We begin with the Heisenberg equations of motion for the electromagnetic
field modes:

7";4,7)\ = —iwka’A - iK,k*,AU_. (2.73)

Writing
Ty = e Wk, (2.74a)
o_ = G_e WAt (2.74b)

and integrating (2.73) formally, gives

t
Fra(t) = T a(0) — ik y / dt' 5_(t')ewr—walt’ (2.75)
0

The separation of the rapidly oscillating term in (2.74b) is motivated by the
solution to the Heisenberg equations for the free atom [Egs. (2.19)]. Now,
substituting rg x(¢) into (2.70a), and introducing the explicit form of the
coupling constant from (2.16), the field operator becomes

~ (+) ~ (+) ~ (+)

E (r,t)=E; (r,t)+ E; (r,1), (2.76)

with
E(f+)(r, t) = zz \/gﬁ::j;ék’krkv\(o)e—i(wkt—k-r)’ (2.77)

kA
and
Br 1) = i peten Db - dia)e
X / tdt’ F_ (e wr—wa)(t' =t (2.78)
0

Here E;Jr)(r,t) describes the free evolution of the electromagnetic field, in

the absence of the atomic scatterer; EiJr)(r, t) is the source field radiated by
the atom. It remains to perform the summation and integration in (2.78).
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The summation over k is performed by introducing the density of states
(2.29) and converting the sum into an integration:

2w

2. (+) —zwAt
E.(rt) = 16”36003 Z/ dw/ sinfdd [ do

% w3ék,>\(ék,>\ .d12)ei(wr/c) cos9/ dt' 5. (t/)ei(w—wA)(t’—t);
0
(2.79)

we have chosen a geometry with the origin in r-space at the site of the atom
and the k,-axis in the direction of r. One polarization state may be chosen
perpendicular to both k and d;2, as in Fig. 2.2, and for the second we can

write . A
ék7,\2 (ék)\? . dlg) = *ék,/\gdlz sina = ——(d12 X k‘) X k, (2.80)

where k is a unit vector in the direction of k. Setting
k= #cosf+ k, sin9cos¢—|—ffy sin @ sin ¢, (2.81)

where fcm, lAsy, and 7 = r/r are unit vectors along the Cartesian axes in k-
space, the angular integrals are then readily evaluated to give

& (+) 1 < ;
E(rt) = SrTegay (diz X 1) X 7 /0 dw w? [e—w“”/@

/dt 5 zw wa)(t' —t—r/c) _ e—iwA(t—r/c)

x / dt’ &_(t’)ei(“’_“’A)(t,_t“/C)}. (2.82)
0

Now, since the transformation (2.74b) removes the rapid oscillation at the
atomic resonance frequency, 6_ is expected to vary slowly in comparison with
the optical period - on a time scale characterized by y~! ~ 1085 (for optical
frequencies), compared with w;' ~ 10~1%s. Thus, for frequencies outside the
range —100y < w — wq < 1007, say, the time integrals in (2.82) average
to zero. This means that over the important range of the frequency integral
w? ~ w3} +2(w—wa)wy varies by less than 0.01% from w? = w?. We therefore
replace w? by w? and extend the frequency integral to —oo. We then find

B 1)

2
= Tre. T (dz X 7) X 7 { W<t+r/6>/ dt'6_(t')6(t' —t —r/c)

eTiwalt= ’“/C>/ dt' G (t')6(t' -—t-{-r/C)J

— Wi _
= I (dig X #) x Fo_(t —r/c). (2.83)
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This is precisely the familiar result for classical dipole radiation with the
dipole moment operator di20o_ in place of the classical dipole moment.

Since thermal effects are negligible at optical frequencies (hws >> kgT),
we will take the reservoir state to correspond to the vacuum electromagnetic
field — the thermal equilibrium state at T' = 0. Then, the free field (2.77)
makes no contribution to normal-ordered correlation functions such as (2.71)
and (2.72); thus, from (2.83) we may now write

GO (t+r/c,t+r/c+71) = f(r) oL (t)o(t+ 7)), (2.84)
and
CAt+r/e,t+r/c+ 1) = f(r) 2 (or(t)op(t +T)o_(t + T)o_(t)). (2.85)

f(r) is the geometrical factor

2 .
flr) = (wf‘d”) sin” 6 (2.86)

4megc? r2

where 6 is the angle between di2 and 7. (Recall that » measures positions
with respect to an origin at the location of the atom.)

2.3.2 Master Equation for a Two-Level Atom
Driven by a Classical Field

In deriving the master equation for resonance fluorescence we may go directly

o (1.34), with s1, s2, I't, and I3 identified as in (2.17). We meet only one
minor difference from our treatment of spontaneous emission in proceeding
from this equation to the final result: The reservoir operators in the interac-
tion picture are again given by (2.18); but the system operators §; and 32
are now given by

St) = o (1) = exp[(i/h) /0 tdt'Hs(t’)] o exp[—(i/h) /0 s t’)},
(2.87a)

S2(t) =04 (t) = exp[(i/h)/otdt'Hs(t’)] oy exp[—(i/h)/@tdt'Hg t')},
(2.87b)

where Hg includes the interaction with the laser. What effect does this in-
teraction have on the atomic damping? It will turn out, in fact, that any
changes in the treatment of the damping are negligible under normal condi-
tions. However, let us spend some time discussing this question anyway so
that we have an idea of the approximation involved. The same approximation
is made, often without mention, in laser theory and in cavity QED.
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Equations (2.87) are just the formal solutions to the Heisenberg equations
of motion for the atom-field interaction described by Hamiltonian (2.68a).
These equations are given by

1
R
G- = fplo- Hs]
1 (AN it
= —izwalo_, 0]+ f_iE e [o_,04]
: (AN st
= —flwao_ — 1 ﬁE e 0, (2.88a)
and, similarly,
. ' (AN iwat
04 = WA +1 EE erva T4, (288b)
. . d —iwat . d wat
G, =20 f_'zE e WAl — 24 ﬁE evatg_. (2.88c)
Defining
Gy = ope WAl L g_eiwat (2.89a)
Gy = ope WAl _ g_etwal (2.89b)

(2.88a)—(2.88c) become

Gz =0, (2.90a)

oy = 0o, (2.90b)

6, = —06,, (2.90c)
where J

2= 2<ﬁE>. (2.91)

In particular, from (2.90b) and- (2.90c),
G, = —2%,. (2.92)
Then, for an atom initially in its lower state [(5,(0)) = 0, (¢.(0)) = —1],
(o,(t)) = —cos §2t. (2.93)

{2 is the Rabi frequency [2.30]; the frequency at which the atom periodically
cycles between its lower and upper states, following absorption from the laser
field with stimulated emission, then again absorption, and so on.
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The general solution to (2.90) is

S1() =o_(t) =e ™' [o_ + $(1 = cos Rt) (o4 — o) — Li(sin 2t)o.],

(2.94a)

52(t) = 04 (t) = €4 [0y — 3(1 — cos 2t) (04 — o) + Li(sin 2¢)0 ],
(2.94b)
where 04 = 04(0), 0 = ¢_(0), and 0, = ¢,(0) denote operators in the

Schrodinger picture. Our derivation of the master equation for spontaneous
emission proceeded from (1.34) with §;(¢) and 35(¢) given by the expression
(2.94) taken in the limit 2 — 0. The interaction with the laser field has
introduce terms modulated at the Rabi frequency. Now, there is no difficulty
with substituting the full solutions (2.94) into (1.34) and continuing by per-
forming the time integrals as before. The number of terms to be considered
is increased nine fold, however, and we do not want to churn through all of
this algebra if it is not really necessary. A quick review of our calculation for
the damped harmonic oscillator will show that the oscillatory terms in §;(¢)
and §2(t) only specify the frequencies at which the system interacts with the
reservoir; they determine the frequencies at which we evaluate the reservoir
coupling constant and density of states. The final result following from (2.94)
will then be an equation that contains three terms, each proportional to one
of the three damping constants y(wa), y(wa+12), and y(wa —£2), where y(wa)
is given by (2.21), and y(wa + £2) and y(wa — £2) are similarly defined with
the reservoir coupling constant and density of states evaluated at shifted fre-
quencies. At optical frequencies and reasonable laser intensities wa ~ 1019,
and 2 < 109 (this corresponds to 100 times the saturation intensity for
sodium). Then, from (2.33),

Y(wa £ 02) = y(wa)(1 £ 2/wy)? = y(wa)(1 £302/wy). (2.95)

Thus, v(wa £ £2) differs from v = y(wa) by less than 0.01%. We therefore ne-
glect 2 compared with wy4. This is best done in (2.94) rather than at the end
of a lot of tedious algebra. Setting 2 to zero in (2.94) is equivalent to deriving
the master equation in an interaction picture with Hg replaced by the free
Hamiltonian %hw 40,. Then the damping terms in the master equation for
resonance fluorescence are the same as those derived for spontaneous emis-
sion. Neglecting thermal effects (7 = 0), the master equation for resonance
fluorescence is then

p = _i%wA [Uz> p] + 2(9/2) [e_iWAtU‘l‘ + eiWAto'—a p]
+ %(2o_pa+ —040_p—poso_). (2.96)

In fact, a similar approximation was made, without mention, in our derivation
of the scattered field, where we assume o_ oscillates at the frequency wg
[Eq. (2.74b)]. Further discussion of these issues, with specific consideration of
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their relevance in the Scully-Lamb theory of the laser, is given by Carmichael
and Walls [2.36, 2.37].

Note 2.3 Recent work by Lewenstein et al. [2.38, 2.39] describes a situation
in which the near equality of the damping constants vy(wa), v(wa + £2), and
v(wa — £2) does not hold. This happens for an atom inside an optical cavity
when the interaction between the atom and the vacuum modes it sees through
the cavity mirrors significantly perturbs the free-space interaction between
the atom and the vacuum field. Under these conditions the vacuum modes
which are filtered by the cavity have a Lorentzian density of states that can
vary considerably at the frequencies wya, wa + (2, and w4 — §2. The consequent
changes in the three damping constants alter the widths of the peaks in the
fluorescence spectrum. Lewenstein et al. formulate their treatment of this
effect in terms of non-Markovian equations for the damped atom. This is
not necessary, however, if the Lorentzian feature in the density of states is
narrower than (or similar in width to) the Rabi frequency, but is still much
broader than the linewidths v(wy), Y(wa + £2), and y(ws — 2) (computed
with the altered density of states). The method of Carmichael and Walls
[2.36, 2.37] is appropriate for these conditions and leads to a Markovian
master equation; but one in which the variation of the density of reservoir
modes at the three different atomic frequencies is taken into account.

2.3.3 Optical Bloch Equations and Dressed States

Using the quantum regression formula, our derivation of the correlation func-
tions appearing in (2.84) and (2.85) will follow directly from the equations of
motion for the operator expectation values (o_), (6,), and (o,). From the
master equation (2.96), the equations for expectation values are:

v

(6_) = —twa(o_) —i(£2/2)e” ™4t (g,) — §<a_>, (2.97a)
(1) = iwalor) +i(2/2)e 0.) = L(o), (2.97D)
(6.) = ie” ™4 o) — ie™ 4 o) — y((0.) +1). (2.97¢c)

These are the optical Bloch equations with radiative damping, so called for
their relationship to the equations of a spin—% particle in a magnetic field
[2.40]. They combine the terms describing the atom-field interaction given by
(2.88) with the spontaneous decay terms in (2.37).

Note 2.4 When the phase destroying term (vy,/2)(0,p0, — p) in (2.66) is in-
cluded in the master equation, (2.97a) and (2.97b) have y replaced by v+2,.
The energy and phase decay times 1/ and 2/(y+2,), respectively, are often
denoted by 77 and 7% in correspondence with the traditional terminology for
magnetic systems.
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If we neglect the effects of spontaneous decay, which is valid for short
times, the optical Bloch equations are equivalent to the classical equations
for a magnetic moment m in a rotating magnetic field B. With (o,) and
(oy) defined as in (2.9), we can write

m =B xm, (2.98)
where
m = (0)3 + (0,0 + (02)2, (2.99)
and
= —(2coswat) — (2sinwat)y + waz; (2.100)

%, 7, and 2 are orthogonal unit vectors. A strong intuition for the dynamics in
resonance fluorescence can be drawn from this analogy. From (2.98) it follows
that

d
%(m-m):(me)-m+m'(B><m)
~0, (2.101)

since m and B xm are perpendicular vectors. Thus, m is a vector of constant
length. In particular, for pure states, with

p=1V)(W| = (a1]1) + c2|2)) ((Llef + (2le3), (2.102)
we have
(0-) = pa1 = cie, (2.103a)
(04) = p12 = e163, (2.103b)
(02) = pag — p11 = |ea|* — |1 %, (2.103c)
and

m-m = (0,)? + (0,)> + (0,)?
= 4(o_Yoy) + (0,)?
= (Il +eaf?)” (2104)

Thus, for a pure state m - m = 1, and (2.101) expresses the requirement
that probability be conserved. Here the state of the two-level atom can be
represented by a point on the surface of the unit sphere (the Bloch sphere)
as illustrated in Fig. 2.3(b). Dynamics on the Bloch sphere give a simple
interpretation for the solutions (2.93) and (2.94). We define a rotating frame
of reference which follows the rotating magnetic field, writing

coswat sinwat 0
m = R,(wat)m = | —sinwat coswat 0 |m, (2.105)
0 0 1

where R, generates rotations about the z-axis. The motion of 7 is then
determined by a magnetic field frozen in the & direction:
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m = (B — wa?) x m, (2.106)
where B = R, (wat)B and

B —wsi = -0, (2.107)

The modulation at the Rabi frequency shown by (2.93) and (2.94) simply
corresponds to the precession of m about the static magnetic field B — wa?2
[Fig. 2.3(c)].

(O2)

Fig. 2.3 Representation of atomic dynamics on the Bloch sphere: (a) the rotating
magnetic field (2.100), (b) the atomic state represented as a point on the Bloch
sphere, (c) precession of the atomic state in the rotating frame (2.105).

This simple view of the dynamics no longer provides the complete picture
when the dissipative terms are reintroduced. Then (2.97a)—(2.97¢) give

L - m) = 2((02)(62) + (o)) + (0:)(62))

dt
= —7[(02)7 + (0)? + 2(0) ({02) + 1)
2

=—y(m-m-1)—v((o.) +1) (2.108)

Now the length of m is not conserved. This is not inconsistent with (2.104).
Probability is still conserved, but the atomic state has become a mixed state,
rather than a pure state; therefore (2.104) no longer gives a valid interpreta-
tion for m - m. Dynamics cannot be formulated on the Bloch sphere. In fact,
evolution proceeds to a steady state, with

m-m=1-((0,)+1)° =1—4p3, (2.109)

which has the state m within the unit sphere. Since m - m must be greater
than zero, it follows that pge < % in the steady state. Thus, interaction with
the laser field can at best give equal probability for finding the atom in its
upper and lower states — it cannot produce population inversion. Of course,

a higher probability of excitation is possible during transients, which for an
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intense laser (large enough 2) closely resemble the precession on the Bloch
sphere which we have just described.

Exercise 2.4 Solve the optical Bloch equations (2.97). Show that, for an
atom initially in its lower state,

eiiwAt<U:F(t)> =4 zi—y—— [1 — =B/t ( sh 6t + ——— (37/4) sinh 6t)]

V21+Y? )
+iV/2Y e~ 7/t (l/f‘—) sinh 6t, (2.110)
(o:(8) = =5 +1Y2 [1 + Y23/t < cosh 6t + ) sinh 6t>} (2.111)
where Y
Y = iﬂ, (2.112)
gl
2
§= (%) 22 = }\/1 —8Y2. (2.113)

In the limit v < 2, vt < 1, show that these solutions reproduce the dynamics
on the Bloch sphere discussed above.

A complementary view of the atomic dynamics is given by the dressed-
states formalism whose application to the problem of resonance fluorescence
has been championed by Cohen-Tannoudji and Reynaud [2.41]. In this for-
malism we focus on the eigenstates of Hg, from which a full picture of the
dynamics without damping can be constructed in the Schrodinger picture. It
is usual to develop the dressed-states formalism around the fully quantized
Hamiltonian

Hs = thwao, + hwaa'a + h(kao + r*alo_), (2.114)

rather than the time-dependent (semiclassical) Hamiltonian (2.68a). Here af
and a are creation and annihilation operators for the laser mode, and the free
Hamiltonian Awsala generates the time dependence — a(t) = a(0)e~%4; to
make the connection with (2.68a) we must take fik(a) = —dE.

Without the atom-field interaction the eigenvalues of Hg define the infi-
nite ladder of degenerate energy levels illustrated in Fig. 2.4(a). States |n)|2)
and |n + 1)|1) correspond to an n-photon Fock state plus an excited atom,
and an (n + 1)-photon Fock state plus an unexcited atom, respectively; both
have the energy (n + 3)hwa. This degeneracy is lifted by the interaction.
The size of the resulting level splitting may be found, together with the new
energy eigenstates, by diagonalizing the coupled equations

H( )]2) >>:<(n+%)m mnﬁ*x In)[2)

S\n+ 1)1 Vi+ihs (n+3)hwa |n+1>|1>>' (2.115)
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(a) (b)

In)|2) L . (n+ho,+5hQ
(n+§)ha)A ————————— < 1 1
In+1)/1) - (n+3)he, —5h0Q
n—1)12) » (n~ho,+3h 2
—— (-bhe, - <2
1) - (n—hw,—3h2

Fig. 2.4 (a) Degenerate ladder of energy levels for the uncoupled atom-field system.
(b) Level splitting due to the atom-field interaction. Reading from left to right, the
illustrated transitions have frequencies wa, wa — 2, wa + £2, and wa.

The new energy eigenvalues are

Eny = (n+ Hhwa = vn+1h/x|. (2.116)

If the laser field is in a coherent state with mean photon number 7 >> 1, we
may write

dE = hlx||(a)| = hlx|V7,
and for all the populated eigenstates

E,+~(n+ %)th + h(d—;E) = (n+ )hwa £ Jh02. (2.117)
Transitions between the eigenstates of the interacting atom-field system iden-
tify the three frequencies wa, wa + 2, and wa — 2 encountered in (2.94)
[Fig. 2.4(b)]. The three damping constants that arose in our treatment of the
fluorescent decay process (Sect. 2.3.2) may now be associated with fluores-
cent transitions between the states of the coupled atom-field system — the
so-called dressed states. If we suppress the nhw, which distinguishes states
of the Fock hierarchy, the remaining four-level structure gives the dressed
energies —1h(wa F £2) and +1A(wa £ 02) for the atom.

Exercise 2.5 Construct the eigenvectors corresponding to the eigenvalues
(2.116) and hence find explicit expressions for the dressed states as linear
combinations of the states |n)|2) and |n + 1)|1). For large n the dressed
states approximately factorize as the product of a Fock state for the field
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and linear combinations of the states |2) and |1) for the atom (neglect the
difference between |n) and |n + 1)). Locate the atomic states obtained after
the factorization on the Bloch sphere.

Note 2.5 The dressed states are often referred to as the dressed states of
the atom. Clearly, the states obtained by diagonalizing (2.115) should not
really be referred to in this way, since these states are vectors within the
Hilbert space of the atom plus the field. There are, nonetheless, conditions
under which it is appropriate to ascribe the “dressing” to states of the atom
alone — in the large n limit mentioned in Exercise 2.5. There are a number
of ways to give a mathematically well-defined meaning to this limit. If we
start within the Hilbert space of the atom plus quantized field mode, we
must define an approximation scheme that maps all the four-level structures
in Fig. (2.4b) (with n =~ 7) to a single four-level structure that does not
distinguish between photon numbers, and in this way defines the levels of
the dressed atom. Perhaps a more satisfactory approach is to begin from the
semiclassical Hamiltonian (2.68a). This Hamiltonian is time dependent and
does not, therefore, define a normal eigenvalue problem. But it is periodic
in time. For such a Hamiltonian quasiperiodic solutions to the Schrédinger
equation and their associated quasienergies play the role of energy eigenstates
and eigenvalues [2.42, 2.43]. It is easy to find these quasiperiodic states and
quasienergies for the Hamiltonian (2.68a): first transform to the interaction
picture, diagonalize the resulting time-independent Hamiltonian, and then
transform back to the Schrodinger picture. The frequencies of the quasiperi-
odic solutions found in this way, —3(wa F §2) and +1(wa £ £2), are those
given by the dressed energies of the atom.

2.3.4 The Fluorescence Spectrum

We might expect the spectrum of the fluorescent scattering to show features
associated with the three transition frequencies between dressed states, wy,
wa + 2, and wa — 2. Although this seems an obvious conclusion to draw
from Fig. 2.4(b), there is really little basis for accepting it a priori. For weak
excitation by monochromatic light, the fluorescence spectrum is shown by
perturbation theory to also be monochromatic [2.21] - it does not have the
linewidth of spontaneous emission. This teaches us that the scattering pro-
cess is not simply a sequence of absorption and emission events; there is
some coherence involved; a view of the quantum dynamics based solely on
discrete transitions between atomic energy levels is not to be trusted. More-
over, consider the mean scattered field given by (2.83) and (2.110). For strong
excitation this does contain components at the shifted frequencies w4 + £2.
These decay, however, as transients and in the long-time limit

. s (+) _ w‘,24 ~ A i Y —iwa (t—r/c)
tl-l—glo<Es (r.2)) = dmegc?r (diz x7) T<Z\/§ 1+v2)¢ :

(2.118)
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Equation (2.118) suggests monochromatic fluorescence, in agreement with
the established weak-field result. The dynamical picture is one of coherent
reradiation from an induced dipole oscillator, the excitation strength entering
only to saturate the oscillator amplitude.

Surely, however, this essentially classical picture is also incomplete. The
quantum-mechanical dipole operator lives in a probabilistic world, and there-
fore we should allow our oscillator amplitude the opportunity to acquire a
stochastic component. Then, in general, the fluorescence spectrum should not
be calculated from the mean scattered field, but from the Fourier transform
of the autocorrelation function (2.71). Using (2.84), for the long-time limit,
this gives

1 [ -
S@) = fr)3- [ dre (oL 0)o- (e (2119)
2r J_ o
where (0.4 (0)0_(7))ss = lim¢_,o0 (04 (t)o_ (¢t + 7)). Thus, in a rotating frame,
the atomic scatterer decays to the steady state

Y

; 1
~ — +iwat — Sl
<U:F>SS € <0':F>ss iz\/ﬁl T R (2120&)
1
<Uz>ss - _ﬁ—Y-? . (2.120b)

However, fluctuations about this steady state can occur, described by the
operators

A6t =05 — (Gx)sss (2.121a)
Ao, =0, — (0,)ss- (2.121b)
These fluctuations are intrinsic to the quantum mechanics. Now the fluo-

rescence spectrum decomposes into a coherent component, corresponding to
(2.118), and an incoherent component arising from quantum fluctuations:

S(w) = Scon(w) + Sine(w), (2.122)
with
Scoh(w) = f(”‘)é};/_oo dr ei(w—wA)7'<5_+>ss<5__>ss
1 Y?
= f(?‘)ﬁm 5(&)—(4),4), (2123)
and
Sine(w) = f(r)% /_ " dr T (A, (0)AF () (2.124)

Let Ion and [y denote the coherent and incoherent intensities obtained
by integrating (2.123) and (2.124) over all frequencies:
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- (r)% eSO (2.125)
and
Tne = J(r) (454 A5 _)eq
= F(r)((545-)ss — (G4 )ss(T-)ss)
= f(M) [5(1+(02)ss) — (G4 )ss (0 )ss]
_ (T)% 5 :,;2)2 (2.126)

We can now make a judgment about the qualitative form of the spectrum.
At weak laser intensities, the ratio Iine/Icon = Y2 = 202%2/42 is very small,
and coherent scattering dominates, in agreement with the results from per-
turbation theory. However, Ii,./I.on increases with the laser intensity, and
the incoherent spectral component will dominate at high laser intensities.
Since the relaxation, or regression, of fluctuations around the steady state
must surely follow a modulated decay similar to that shown by (2.110) and
(2.111), we expect this incoherent spectrum to show sidebands at ws £ 2.
The general dynamical picture must then be constructed as something of a
mixture, showing both elements of coherent reradiation and discrete quantum
transitions.

Note 2.6 The face the quantum dynamics shows to us depends on the ques-
tions we ask, as is generally the case in quantum mechanics. Illustrating this,
we might note that the radiated intensity admits an interpretation in terms
of discrete quantum transitions even at weak excitation, where Icon () domi-
nates. If I(7) = I.on(T) + Linc(r) = f(1)(G+6_)ss is the total intensity at the
position r, we can integrate over a sphere of radius r (centered on the atom)
to obtain the radiated power:

2w T
P = 2¢c / de / dfsin 021 (r)
0 0

= 2¢pc Wi diz 2 /de¢/ﬂd98in39 (646-)
= 0 47‘(’6002 0 0 +“ —/ss

1 4wdd?,
= —L2 ==V hwa (2]pss|2
(47Teo 3hc? A (2lpss|2)

= v hwa (2|pss|2)- (2.127)

The radiated power is just the product of the atomic decay rate, the photon
energy carried away per emission, and the probability that the atom is in
its excited state. We have an interpretation in terms of discrete spontaneous
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emission events, despite the fact that the weak-field spectrum is not consistent
with these dynamics.

The approach we have outlined for calculating the fluorescence spectrum
is essentially the same as that followed by Mollow [2.23] in his original work.
It certainly leads to a simple calculation compared to some of those that
rederived Mollow’s result (see Cresser et al. [2.34] for a review). We need
only solve for (A5 (0)A&_(7))ss using the optical Bloch equations and the
quantum regression formula. From (2.97), (2.120), and (2.121),

%(A(}_) = ~i(2/2)(40.) - L(25.), (2.1284)
d, .. . .
7 (45,4) = i(2/2)(A0) - %<Aa+>, (2.128b)
%(AU;) = AGy) — i2({A6_) — v(Ao,), (2.128c¢)
and the quantum regression formula gives
d, .. -
E;(Aa+(0)As(r)>ss = M{AG4(0)As(7))ss, (2.129)
where
AG_
As=| A5y |, (2.130)
Ao,
and
1 0 iY/\V?2
M= —g- 0 1 —iY/V2 . (2.131)

W2Y —iV2Y 2
The desired correlation function is the first component of the vector (A (0)
As(7))ss. The initial conditions are given by
<&+&~ >ss - <5+>ss <&— >ss
(AG4 As)ss = (G454 )ss = (04)3%

G4+02)ss = (04 )ss(02)ss

I
N
D=~
—~
—
+
! )
N
| g
/\{A_/
Qi
+ |
@
+
>
w
o
1
%

where we have used (2.25), (2.45), and

oro. = 2)(1(12)62] - 1)) = 201 = oy, (2132a)
oo = [1)(2|(I2)2] — 1)) = )2 = 0. (2.132b)

From the steady-state averages (2.120) we obtain
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y? Y2

(A4 Ass = ~———| 1
(1+Y2)2 i\/—Q_Y

(2.133)

DO | =

Equation (2.129) can be solve by finding a matrix S to diagonalize M.
Multiplying (2.129) on the left by S,

%S(Aﬁq.(O)AS(T»SS = (SMS™1)8(A6,(0)As(T))ss, (2.134)
and, formally,
(A6 (0)As(T))ss = S~ exp(AT)S(AG 4 AS)ss, (2.135)
where
AESMS_lzdiag<—%,—%+6,—§4l— ) (2.136)

is formed from the eigenvalues of M, and the rows (columns) of S (S~!) are
the left (right) eigenvectors of M [2.44]; § is defined in (2.113). After some
algebra we obtain the first-order correlation function for resonance fluores-
cence

(A64(0)AG—(7T))ss

- e~ (/)T

1
41472
1 Y?

S 8(1+v?)?
1 Y?

S 8(1+v?)?

[1 vy - 5y2)(’7_§4_)] (/)-8

[1 —-Y2-(1- 5y2)w] e~ B/ H+6]r
6 (2.137)

Explicit expressions for the incoherent spectrum can be calculated from
(2.124) and (2.137) as an exercise. In general, the spectrum is given by a
sum of three Lorentzian components. It is easy to see that in the strong-
field limit, Y2 >> 1 (22 >> 4?), where incoherent scattering dominates,
this calculation gives the well-known Mollow, or Stark, triplet. Figure 2.5
illustrates the dependence of the incoherent component of the fluorescence
spectrum on the laser intensity.

2.3.5 Second-Order Coherence

We have identified “coherent” scattering with a monochromatic spectrum.
More precisely, a monochromatic spectrum only implies first-order coherence
— i.e. when (Ad4(0)AS&_(7))ss vanishes the first-order correlation function
factorizes:
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(vi)
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-20 0 20
(i)
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(i)
Fig. 2.5 The incoherent fluorescence spectrum. Spectra are plotted as a function

of 2(w—wa)/yfor ) Y =03, (ii)) Y = 1.5, (ili) Y = 2.7, (iv) Y = 3.9, (v) Y = 5.1,
and Y = 6.3.

GO (1) = f(r){o1(0)0—(1))ss = F(r) (04 )ss (0 )ss€ AT,

where Gé;)(T) = limy_, 0o G (¢, t+7). This guarantees nothing about higher-
order correlation functions. Do they factorize in a similar fashion? Is the
scattered light in the weak-field limit — where the spectrum is monochromatic
— coherent to all orders, as would be the radiation from a classical dipole?
It is not difficult to see that it is not. We need look no further than to the
second-order correlation function; the scattered light does not have second-
order coherence. The lack of second-order coherence is associated with the
phenomenon of photon antibunching. It tells us that the fluorescence from
a two-level atom is nonclassical, even in the weak-field limit where a model
based on classical dipole radiation gives the correct spectrum.

The second-order correlation function is proportional to the probability
for the detection of two photons separated by a delay time 7. It is measured
in delayed photon coincidence experiments [2.45, 2.46].

Note 2.7 Actual photodetection probabilities depend on such things as the
photon counting time and the collection and quantum efficiencies of the de-
tector. In (2.127) we saw that the photon emission rate into a 47 solid angle
is y(o40_)ss (the radiated power is iway(o 0 _)ss). Consider a detector lo-
cated at position r which accepts photons over the small solid angle Af2, and
has a detection efficiency 7. The single-photon detection probability during
a short counting interval AT < 7! is the product of the energy density
2e0(E() By, a factor ¢/hwa which convert this into a photon flux density,
the detector area Af2r?, photon counting time AT, and quantum efficiency 7
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Zeoc
hwa

ARsin? 6
— gy AT s 2.1

p(1) = nAT(ARr?)==GL)(0)

After integration over all solid angles this gives p(1) = nYAT (040 )ss =
nyAT(2]pss|2), in agreement with (2.127). The probability for detecting a
first photon and a second photon after a delay 7 is

2
p(2,7;1,0) = [nAT(AQﬁ)&QE] GO(r)
hwa

: 2
__ﬂ_.._} (04(0)o4(T)o—(T)o—(0))ss- (2.139)
This result is proportional to the second-order correlation function (2.85).

In the long-time limit, second-order coherence requires the second-order
correlation function to factorize in the form

ng)(‘r) = f(’l’)2<0'+(0)0'+ (T)G— (T)J- (0)>ss = [f(r)<0+>ss <U—>ss]2§

this factorization must hold in addition to the requirement for first-order
coherence stated above. It clearly never holds for 7 = 0, since (04)Z and
(o_)2 are not zero [from (2.120a)] but 02 = o2 = 0. The latter simply
states that a two-level atom cannot be sequentially raised or lowered twice;
two photons cannot be absorbed or emitted simultaneously; the detection
of one photon sets the atom in its lower state, after which a second photon
cannot be detected until the atom has been reexcited. We might predict
then that the probability for detecting two photons is just the probability for
detecting the first photon,

p(1) o f(r)<g+g->ss = f(r)<2|p55|2>7

multiplied by the probability for detecting a second photon at the time t = 7,
given that the atom was in its lower state at ¢ = 0:

p(2,7(1,0) o< f(r){(040-)(T)) p)=p1y1] = F(T){2[p(T)I2) p0)=11y1)-

We are suggesting that the second-order correlation function may be factor-
ized as a product of photon detection probabilities, with

GO (r) = F(1)22]pss|2)21p(7)12) pioy=11y 1] (2.140)

This is clearly zero for 7 = 0, and gives independent detection events for
large 7, as p(T) — pss- We will use the quantum regression formula to prove
this result. (As with the calculation of the fluorescence spectrum, other ap-
proaches can be used to obtain the result; Kimble and Mandel, for example,
derive (2.140) working entirely in the Heisenberg picture [2.47].)
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First, let us consider the formal solution to the Bloch equations for time-
dependent expectation values. In a rotating frame, (2.97a)—(2.97¢) can be
written in the vector form

(8) = M(s)+b, (2.141)
where
o_
s=|o4 |, (2.142)
Oz

M is the 3 x 3 matrix given by (2.131), and

0
=—y|o0]. (2.143)
1
Then d
E(<s>+M-1b) = M((s) + M~ 'b), (2.144)
nd
) (s(t)) = —M ~'b+ exp(Mt)((s(0)) + M ~'b). (2.145)
Now

GR(7) = [0+ 0)0+ (To—(r)o_(0)s
= 1) §(040 ) + (01 0)02(Do—(0)s],  (2.146)

where we have used (2.25a). We can calculate the correlation function
(04(0)0,(7)0-(0))ss using the quantum regression formula. It is the third
component of the vector (o;8(7)o_)ss. To find the equation of motion for
this vector, the quantum regression formula applied to a complete set of op-
erators tells us to remove the angular brackets from (2.141) (b is a constant
vector multiplied by the expectation of the identity operator), multiply on
the left by 04 (0) and on the right by o_(0), and replace the angular brackets;
thus

4 (5 (0)8(T)r— (0))s = Mo (0)8(T)o—(0))es + (040 )ssb

dr
= M [(04(0)8(T)0_(0))ss + (040_)ss M ~B].
(2.147)

The formal solution to this equation is

<U+(0)S(T)U— (O)>ss = _<U+0->SSM_1b
+ exp(M7) ({0480 )ss + <a+a_)SSM_lb],

.

(2.148)

with initial conditions



64 2. Two-Level Atoms and Spontaneous Emission

(040_0_)ss
(0180 )ss = (04540 )ss

(04020 )ss

0
={o10-)ss| 0 |, (2.149)

-1

where we have used (2.45) and (2.132). Now (2.148), (2.149), and (2.145) give
(04+(0)s(7)o—(0))ss

0
= (a+a_)ss{—M_1b+exp(MT) ( 0 )+M“1b }
-1

= (040 )ss(8(T)) p(0)=|1) 1 (2.150)
0

Here, we have noted that | 0 | is simply the initial condition (s(0)) for an
-1

atom prepared in its lower state — i.e. with p(0) = |1)(1|. Substituting the
third component of (2.150) into (2.146) establishes our result:

GO (1) = f(r)*(o40-)ss (1 + (02(7) p0)=11y(11)
= F(r)?(2lpss|2)(20(7)12) o0y =11 (11 (2.151)

Note that this calculation is independent of the form of M. Thus, while
(2.131) only gives M for perfect resonance, (2.151) also holds for nonresonant
excitation.

Note 2.8 The factorized result we have obtained in (2.151) actually fol-
lows very simply, and quite generally, from the quantum regression formula
(1.102):

G2 (r)

F()*o1(0)o ( Jo —(T)U—(0)>
7‘)2tr{e T[o—(0)psso+ 0)]os 0)}
r)ztr{eﬁTHl 2|pss|2 |]|2 2|}
7)%(2]pss]2) (207 (I1)(1])12)

(
(
I
I

(2]€£7(|1)(1})|2) is just a formal expression for (2|p(7)[2) p0)=|1)(1]-

Equation (2.111) provides the solution for (o,(t)) »0y=|1)(1) from which an

explicit expression for G (1) may be written down. We normalize G (1) by
its factorized form for independent photon detection in the large-delay limit,
and write the second-order correlation function for resonance fluorescence as
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() = [1m @] 6P )
= ((r40-)s) ™ (1 + <Uz(T>>p<o>=u><u)

=1—e GV/H7 (cosh 6t + 3—76/—4 sinh 67') . (2.152)

This expression is plotted in Fig. 2.6. For a field possessing second-order co-
herence g§52 )(7') = 1; the two photons are detected independently for all decay
times; in this case a detector responds to the incident light by producing a
completely random sequence of photopulses. This picture provides a refer-
ence against which the “antibunching” of photopulses is defined. The curves
of Fig. 2.6 actually show two nonclassical features — features that are inadmis-
sible in a correlation function generated by a classical stationary stochastic
process. Let us look at the definitions of photon antibunching that have been

given in terms of each.

2.0

(iif)

g 1.0

0.0 L 1 L |
0.0 4.0 8.0

Fig.2.6 The normalized second-order correlation function (2.152): (i) 8Y? =
0.01 < 1 (6 ~~/4); (i) 8Y? =1 (§ = 0); (iil) 8Y? = 400 > 1 (6 ~ i82).

2.3.6 Photon Antibunching and Squeezing

All of the curves in Fig. 2.6 satisfy the inequality
g2 (0) < 1. (2.153)

This is the definition of photon antibunching given in Refs. [2.28-2.30, 2.32].
The sense of this definition is actually more clearly understood by considering
a closely related quantity to gs(s2 )(7'). Imagine a photopulse sequence gener-

ated by a fast photodetector — response time much faster than min(y~1, 2-1)
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— monitoring the fluorescence. The quantity we will focus on is the proba-
bility density wes(7) for a delay 7 between successive photopulses, a quan-
tity we refer to as the photoelectron waiting-time distribution. This can be
calculated as the probability density that, given a photopulse at time ¢,
there is also a photopulse at time t + 7, conditioned on the requirement
that there are mo photopulses in the intervening interval, thus, the pho-
topulse at time ¢ + 7 is the next photopulse in the sequence. For comparison,
AT 1[p(2,7;1,0)/p(1)] = AT-1p(1)¢2 () [Egs. (2.138) and (2.139)] gives
the probability density for a photopulse at t + 7 without any restriction on
photopulses in the intervening interval. The distribution we(7) must satisfy

/OodT wss(7) =1, (2.154)
0

since the delay between photopulses must take some value between zero and

infinity; AT‘lp(l)gs(f)(‘r) does not have to satisfy such a condition.
To clarify the notation we write

8
solid
angle

="y {(040 )ss, (2.155)

where we have allowed for detection over an arbitrary solid angle, and
0 < ¥ €1 is the product of the collection and quantum efficiencies of
the detector; y(o1o_)ss is the photon emission rate. The functions wgs(7)

AT 'p(1) =17 3 /dQ sin? @ | y(o40o_)ss

and (77’7(0+U_>55)g§s2)(7') approach each other for 7 « 7.y, Where 7o
is the average time between photopulses, since the probability for inter-
vening photopulses becomes small in this limit. In particular, we(0) =

(77’ 'y(a+a_>ss) gég) (0). For longer time intervals, coherent scattering would
give the waiting-time distribution

Wes(T) = n'v{o40_)ssexp ( — n'Y(o10_)sT). (2.156)
In fact, a calculation of wgs(7) for ' < 1 (which holds under the most readily
achievable experimental conditions [2.48, 2.49]) produces the result [2.50]

Wes(T) = 7Y {0 L0_)ss [exp (—n'v{opo_)esT) — e~ Bv/)T

x (cosh 57+ -316/—4 sinh 6T>] (2.157)

for the photoelectron waiting-time distribution of resonance fluorescence at
low detection efficiency. This expression satisfies (2.154) to lowest order in

n'. It should be compared with the expression for (7’ 'y<a+a_>ss)gs(§ )(7') given
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by (2.152). The two expressions agree for 7 < (n/y(o4o- )ss)_l A T,y, but
wss (1) decays to zero for 7 > 7,, as it becomes more and more unlikely that
the next photopulse has not yet arrived.

Note 2.9 Equation (2.156) can be derived by considering a random sequence
of photopulses, with a probability 'y(oo_)ss At for finding a photopulse in
any short interval At and a probability 1 — 7'v{c10_)ss At for not finding a
photopulse in the same interval. The probability for finding no photopulses
throughout an interval 7 = mAt, and then finding a photopulse in the interval
from 7 to 7 + At, is just

77/7<0+U—>ssAt(1 - 77I7<U+0—>ssAt)m

= 77I’Y<U+U->ssAtn§=:0 m (— 77/’Y<0+U—>ssﬂt)
= 77/7<U+U—>ssAt Z m(m—1)---(m—n+1)
n=0
" (— n"y<0+a_>ssAt)n
n!
B AV A A
=7 7<U+0—>ssAt;)<1 m) <1 m) (1 — )
x (_ 77/'7<U+U—>ssAt)n
n! '

On taking the limit m — oo, At — 0, with mAt = 7, this gives

Wss (T)dt = 77"7<U+U— )ssdt EXp(_ 77/7<0'+0'— >ssT)-

Now, in what sense does (2.153) imply an “antibunching” of photopulses?
Figure 2.7 illustrates the behavior of wss(7) for the light scattered in reso-
nance fluorescence compared with coherent light of the same intensity. There
is unit area under both of the curves plotted in the figure [Eq. (2.154)], and
both distributions give the same mean time 7,, between photopulses. Note,
now, that we have the equivalence

2)

gs(sz) (0) <l <= WSS(O) = (77,7<U+0—>SS)gs(s (O) < 77,7<U+‘7—>ss-

Thus, (2.153) guarantees that wss(0) falls below its value for coherent light of
the same intensity. Then with increasing 7, wss(7) must first rise above the
exponential curve for coherent light, ensuring that both distributions have
unit area, and then fall below it once again to ensure that both distributions
give the same 7,,. We conclude that in comparison with coherent light of
the same intensity, on the average, photopulse sequences are redistributed
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Fig. 2.7 (a) Waiting-time distribution for resonance fluorescence [curve (i)] and
coherent scattering of the same intensity [curve (ii)], for Y? = 1, and ' = 1.
(b) Rearrangement of a typical random photopulse sequence to account for the
change in the waiting-time distribution shown in (a).

as illustrated in Fig. 2.7: some photopulses are moved from positions where
they separate two very short time intervals, to new positions where they di-
vide some of the very long time intervals into two. The result, as displayed
in Fig. 2.7, is that the very shortest and very longest intervals between pho-
topulses become less likely, and the intervals of intermediate length become
more likely. A move is made away from photopulse sequences showing bunches
and gaps, towards more regimented, evenly spaced, sequences.

Exercise 2.6 For perfect collection and detection efficiencies (' = 1) wgs(7)
can be calculated from [2.50, 2.51]

wss(1) = Y{(215(7)12) po)=1y (1) = ¥{21eT(11)(11)12),
where the action of the superoperator £ on an operator O is given by
L£0 =0 — 70_00+,

with £ defined by the right-hand-side of (2.96). For these conditions show
that the photoelectron waiting-time distribution of resonance fluorescence at
unit detection efficiency is given by

Y2

wee(r) = e~ O/

5y7 1(1 — cosh 8'7), (2.158)

with

V1-2v2 (2.159)

§ =

N2
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Verify that (2.154) is satisfied and that the mean interval between photopulses
is Ty = Yy 12(1 +Y?)/Y2 = (’y(o+0_)ss)—1 = (photon emission rate) 1.
Plot we(7) for 2Y2? = 1 and compare it with the exponential we(7) =
(v/6) exp[—(v/6)7] obtained for coherent light of the same intensity.

The central feature of this definition of photon antibunching is that it is
made in comparison with coherent light of the same intensity. An alternative
definition adopted by Mandel and co-workers [2.48, 2.49] does not make such
a comparison. In addition to satisfying (2.153), the curves of Fig 2.6 also have

/ "
g2 (0)=0, g7 (0) >0 (2.160)
the prime denotes differentiation with respect to 7. Classically, g§§ )(7') must
decrease from its value at 7 = 0, or, of course, remain constant if the light
is coherent. Stated in terms of wss(7), no interval between photopulses may

be more probable than 7 = 0. Mandel and co-workers identify photon an-

tibunching with an initially rising gS(SQ )(7'). Since the most probable interval

between photopulses is then some 7 # 0, photopulse sequences show a dirth
of “tight” bunches in favor of somewhat larger photopulse separations, giving
alternative definition to the term “antibunched.”

This concept is drawn entirely from a comparison made within the pho-
topulse sequences for the antibunched light — there are more slightly longer
photopulse separation times than there are very short separation times. No
comparison is made against the reference of coherent light of the same in-
tensity. It is actually possible for photopulse sequences to be bunched in the
sense of our previous discussion — with increased probability for short and long
photopulse separation times and decreased probability for intermediate sep-
aration times — and be antibunched according to this second definition. This
possibility is illustrated by Fig. 2.8. The converse also occurs, with (2.153)

satisfied and gs(s2 ) (7) initially decreasing. Such behavior is seen in the forwards
fluorescence from a single atom inside a resonant optical cavity [2.53].

The use of two definitions for photon antibunching might be a little con-
fusing; but it is not really a major problem. Both definitions identify non-
classical effects. We must remember, however, that strictly these are distinct
nonclassical effects. Both effects have been demonstrated in experiments on
resonance fluorescence [2.33, 2.48, 2.49]. Of course, whenever g )(0) =0 [as
in (2.152)], the two definitions will be satisfied together. For definiteness we
will use “photon antibunching” in the sense of (2.153), which seems to be
more in accord with the traditional interpretation of the photon bunching of
Hanbury-Brown and Twiss.

Note 2.10 The definition of photon antibunching given by (2.153) is equiv-
alent to the condition for sub-Poissonian photon counting statistics for short
counting times. A single-mode field illustrates this point:
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wSS/f

Fig. 2.8 Waiting-time distribution for light that is bunched in the sense of the
discussion below (2.153) and antibunched according to the definition (2.160) [curve
(i)]. An example of this behavior is shown in Ref. [2.52], Fig. 11(c). F is the mean
photon flux and curve (ii) is the waiting-time distribution for coherent light.

9?(0) = (a'a)~?
t

where 7 = ata is the photon number operator. Then
g?0) 1= = (2.161)

where the Mandel (Q parameter,

Bl (2.162)

measures the departure from Poissonian statistics. Clearly, (2.153) is equiva-
lent to the condition for sub-Poissonian statistics, @@ < 1. On the other hand,
when counting times are not short on the scale of the field correlation time,
the definition of @ involves integrals over field correlation functions; then
(2.153) is no longer equivalent to the condition @ < 1.

Before we leave our discussion of photon antibunching, now is a good time
to introduce some of the ideas concerning “squeezed” states of the electromag-
netic field [2.54]. Walls and Zoller [2.55] pointed out that the light scattered
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in resonance fluorescence is squeezed in the field quadrature that is in phase
with the mean scattered field amplitude. This squeezing is closely related to
photon antibunching. We do not want to make a diversion into a detailed
discussion of squeezed states here, and anyone who is totally unfamiliar with
the subject may find it helpful to refer to the introductory article by Walls
[2.56]. We will return to the subject of squeezing in Volume 2 (Chap. 9) and
the discussion of background material is postponed until then.
When we write

92(0) = (030 )ss) (0202 )ss (2.163)

it is quite obvious that gs(s2 )(0) vanishes; we have discussed the simple reason
for this above. There is something more to be learned, however, if we look at
(2.163) in a slightly different way [2.57]. We may always regard the scattered
field as the sum of a coherent component <E§+)>ss, which is proportional
to (0_)ss, and a fluctuating component described by the operator AE§+) =
B — ( A§+)>Ss, which is proportional to Ac_ = o_ — (o_)ss. Looked at in
this way, (2.163) may be expanded along the same lines as the fluorescence
spectrum [Egs. (2.122)—(2.126)]; after transforming to a rotating frame, we
may write

92(0) =1 = (A% + (A6, A5_)e) " [A24< L A63)% e
+4ARe (€' T ((A51)2 A5 )s) + ((A51)2(AG_)?)ss
- (<A5+A&—>ss)2]a (2.164)

where ( : : ) denotes the normal-ordered average (with Agy to the left of
Ag_); using (2.120a), we have defined

1 Y

A= |(G5)ss| = BV (2.165)
and . .
Ay = 3(e72A6_ + €2 A6,) (2.166)

describes fluctuations in the quadrature of the scattered field that is in phase
with the mean scattered field amplitude. What is to be gained from this
decomposition? To answer this question we must first calculate the steady-
state correlations that appear in (2.164):

Exercise 2.7 Show that

o 1y .
(AGLAG )ss = 2————(1 Tyee (2.167a)
CAsz.y _ LY2(Y2—1)

< : (AO-D') . >ss - 4 (1 n Y2)2 5 (2167b)
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2Re(e'? ((A54)2 A6 )ss) = \/5(1_3/;2_)3 : (2.167¢)
4 2 _ 4
(46485 )~ (A2 85)) = 1 (1(1+f3;2)4 Y ey

Now, when (2.165) and (2.167a)—(2.167d) are substituted into (2.164), the
answer gg )(0) = 0 must, of course, be recovered for all field strengths Y. The
relative importance of the terms within the square bracket changes with Y,
however, and it is here that the new insight lies. For weak fields (Y2 < 1),

the dominant terms in (2.164) are

A? 4 (A5 A6 ) ~ A® ~ 3Y72, (2.168a)
A24(: (Abry2)? t )es = —3Y Y, (2.168b)
(A54)2(A5_)2)es — (A4 A5 o) = 1Y (2.168¢)

For strong fields (Y2 >> 1) they are

A? 4 (AGL A6 Yoo = (A5 AG )ss ~ L, (2.169a)

(A54)2(A5-)2)es — ((A64 AG_)ss)” ~ —1. (2.169b)

(a)
Fig. 2.9 Schematic illustration of the
fluctuations in the two quadrature phase
amplitudes of (a) a displaced weakly
squeezed vacuum state (squeeze param-
(b) eter 7 = A?) and (b) a one-photon

Fock state. Both states have g(® (0) = 0
(to lowest order in A® for the squeezed
state). The curves are contours of the
Wigner distribution (see Chap. 4).

Observe that the negative term, which is the source of the antibunching — it

will produce the —1 on the left-hand side of (2.164) [remember that the gg ) (0)
on the left-hand side is zero] — comes from the first term inside the square
bracket on the right-hand side of (2.164) for weak fields, and from the third
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term inside the square bracket for strong fields. These terms, respectively,
describe self-homodyning between the incoherent and coherent components
of the scattered field, and intensity fluctuations in the incoherent component
of the scattered field. Thus, a different physical picture for the fluctuations
in the antibunched field is suggested in the weak-field and strong-field limits.
A negative value for ( : (A, /2)2 : )ss IS the signature of squeezing; thus, at
weak fields photon antibunching arises from the self-homodyning of squeezed
fluorescence; here photon antibunching is associated with the nonclassical
statistics of a phased oscillator. Phase information is destroyed in the strong-
field limit. For strong excitation the coherent component of the scattered field
saturates and the homodyning term in (2.164) becomes unimportant. Photon
antibunching in the strong-field limit arises from sub-Poissonian intensity
fluctuations in an unphased scattered field. For a suggestive illustration we
can compare a displaced squeezed vacuum state (weak fields) and a one-
photon Fock state (strong fields), as illustrated by Fig. 2.9.

Note 2.11 One scheme for detecting squeezing, described by Mandel [2.58],
involves homodyning the scattered light with a strong local oscillator and
measuring photon-counting statistics as a function of the local oscillator
phase. Squeezing is indicated by a phase dependent variation from super-
Poissonian statistics, when the unsqueezed quadrature is selected by the local
oscillator phase, to sub-Poissonian statistics, when the squeezed quadrature
is selected by the local oscillator phase. Equation (2.164) corresponds to a
special case of this procedure where the local oscillator is the coherent flu-
orescent scattering itself. Under these conditions we do not, of course, have
control over the local oscillator amplitude and phase. To convert the expres-
sions we have derived so that they describe a squeezing measurement for the
fluorescence in accord with Mandel’s scheme we simply replace A by a large
local oscillator amplitude B, and replace & by an adjustable phase ¢. If the
local oscillator intensity is much larger than the fluorescence intensity, the
combined field of local oscillator plus fluorescent scattering then gives

20) -1~ %. (2.170)

Actually, B is not the local oscillator field amplitude, it is only proportional
to this amplitude. The proportionality is the same as that between o_ and

A§+); from (2.138), it is such that the mean number of photons counted

during AT, for a detection efficiency n and solid angle Af2, is

A2sin? 0
8n/3

Substituting from (2.170) and (2.171) into (2.161), the photon counting dis-
tribution is characterized, as either super-Poissonian or sub-Poissonian, by

(RYy = myAT B2 (2.171)
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Af2sin? 6

8n73 4(:(A54)?: ss- (2.172)

Qp =M AT
When the oscillator phase is 7,

AQsin? 0 Y2(Y2 - 1)
Q% = 2
8m/3  (1+Y?)

(2.173)

This gives sub-Poissonian counting statistics for Y2 < 1. An explicit expres-
sion for arbitrary ¢ can be calculated as an exercise.



3. Quantum—Classical Correspondence
for the Electromagnetic Field I:
The Glauber—Sudarshan P Representation

In Chap. 1 we developed a formalism to handle dissipative problems in quan-
tum mechanics. The central result of this formalism was the operator master
equation for the reduced density operator p of a dissipative system. This
equation can be written formally as

p=Lp, 3.1)

where £ is a generalized Liouvillian, or “superoperator”, which acts, not on
the states, but on the operators of the system. In a specific application £ is
defined by an explicit expression in terms of various commutators involving
system operators. While it is generally not possible to solve the operator
master equation directly to find p(¢) in operator form, we have seen that
alternative methods of analysis are available to us. We can derive equations
of motion for expectation values, and if these form a suitable closed set,
solve these equations for time-dependent operator averages. Alternatively,
we may choose a representation and take matrix elements of (3.1) to obtain
equations of motion for the matrix elements of p. We have also seen how
equations of motion for one-time operator averages can be used to obtain
equations of motion for two-time averages (correlation functions) using the
quantum regression formula.

We are now going to meet an entirely new approach to the problem
of solving the operator master equation and calculating operator averages
and correlation functions. For the present we will only consider the elec-
tromagnetic field —i.e. the harmonic oscillator. In Chap. 6 we will general-
ize the techniques learned here to collections of two-level atoms. This new
approach establishes a correspondence between quantum-mechanical opera-
tors and ordinary (classical) functions, such that quantities of interest in a
quantum-mechanical problem can be calculated using the methods of classical
statistical physics. Under this correspondence the operator master equation
transforms into a partial differential equation for a quasidistribution function
which corresponds to (represents) p. For the damped harmonic oscillator this
quasidistribution function is a function of the classical phase-space variables
q and p, or alternatively, the complex variables @ = (mwq + ip)/v2hmw
and o* = (mwq — ip)/v2hmw that correspond to the operators a and af.
Operator averages, written in an appropriate order (e.g. normal order), are

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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calculated by integrating functions of these classical variables against the
quasidistribution function, in the same manner in which we take classical
phase-space averages. This quantum—classical correspondence is particularly
appealing when the partial differential equation corresponding to the oper-
ator master equation is a Fokker—Planck equation. Fokker—Planck equations
are familiar from classical statistical physics, and in this context they have
been studied extensively [3.1]. When the operator master equation becomes
a Fokker-Planck equation, analogies can be drawn between classical fluc-
tuation phenomena and fluctuations generated by the quantum dynamics.
This helps us develop an intuition for the effects of quantum fluctuations.
Also, mathematical techniques that were developed for analyzing Fokker-
Plank equations in their traditional setting can be sequestered to help solve
a quantum-mechanical problem.

There are, in fact, many ways in which to set up a quantum-classical
correspondence. We will meet a number of these in this book and still more
in Volume 2. The original ideas go back to the work of Wigner [3.2]. Wigner,
however, was interested in general questions of quantum statistical mechanics,
not specifically in quantum-optical applications; wide use of the methods of
quantum-—classical correspondence for problems in quantum optics only began
with the work of Glauber [3.3] and Sudarshan [3.4]. These authors indepen-
dently developed what is now commonly known as the Glauber-Sudarshan P
representation, or simply the P representation, for the electromagnetic field.
The representation is based on a correspondence in which normal-ordered op-
erator averages are calculated as classical phase-space averages; it has been
tailored for the special role played by normal-ordered averages in the theory of
photodetection and quantum coherence [3.3, 3.5, 3.6]. The Wigner represen-
tation gives the averages of operators written in Weyl, or symmetric, order;
other representations exist which use still different ordering conventions.

3.1 The Glauber—Sudarshan P Representation

The Glauber—Sudarshan P representation was introduced primarily for the
description of statistical mixtures of coherent states — the closest approach
within the quantum theory to the states of the electromagnetic field described
by the classical statistical theory of optics. An understanding of this represen-
tation can therefore be built on a few simple properties of the coherent states.
Formal definition of the P representation can, alternatively, be given without
any mention of the coherent states; this is the more useful approach when we
want to generalize the methods of quantum-—classical correspondence to other
representations for the field, and to representations for collections of two-level
atoms. We will follow both routes in turn, to define the P representation and
then illustrate its use by deriving a Fokker—-Planck equation for the damped
harmonic oscillator. We first follow the route based on coherent states, where
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we begin with a review of some of the more important properties of these
states. Further discussion of the coherent states can be found in Louisell [3.7]
and Sargent, Scully and Lamb [3.8].

3.1.1 Coherent States

The coherent state |) is the right eigenstate of the annihilation operator a
with complex eigenvalue a:

ale) =ala),  (ala’ = (ala))’ = a*(al. (3.2)
From this definition we may prove the following properties of the coherent

states:

Proposition 3.1 If a harmonic oscillator, with Hamiltonian H = hwa'a,
has as its initial state the coherent state |ap), then it remains in a coherent
state for all times with the oscillating complex amplitude a(t) = age™ ™t -
i.e. the time-dependent state of the oscillator is given by

(1)) = e~ (/M Ht|ag) = e=i0r' ot ag) = [e~ ag) = |a(t)). (3.3)

Proof. We show that [U(t)) is the right eigenstate of a with eigenvalue a(t):

alW(t)) = ae~# % ap)

. 1 . t . i
_ ,—twa'at ( iwa'at —iwa'at
=e ( )

e ae |ao)
_ (e—iwtao) (e—iwaTatlaO>)

a(t)[E(t)),
where we have used (1.40a) and (3.2). O

Proposition 3.2 The coherent states are minimum uncertainty states: for
a mechanical oscillator with position and momentum operators ¢ and p, re-
spectively,

Mgt =@ - @)W - @)% = in, (3.4)

where the averages are taken with respect to a coherent state.

Proof. From (1.12a) and (1.12b),

i= 1\ 5(ata), (3.52)

(a—al). (3.5b)
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Then, for an oscillator in the state |a),

(@ - @)% =@ - @?

= %1;@4((12 +aa’ +afa+ aT2)|a) - (d)z

= 5 [(al(aa’ ~ a'a)la) + (a +0*)?] ~ ()

= %@ll[avama)
h
= %, (36&)
where we have used (3.2) and the commutation relation (1.10); we assume
that the state |a) is normalized. Similarly,

hmw

(p— (7)) = — (3.6b)
Thus,

O

Proposition 3.3 A normalized coherent state can be exrpanded in terms of
the Fock states |n), n =0,1,2,..., as

az—%la‘2oo—ain. .
la) =e g;)ml) (3.7)

Proof. We write
la) =Y caln)
n=0

and substitute this expansion into (3.2). Using a|n) = v/n|n — 1), this gives
the relationship

[e9) [e9)
Z cnVnn — 1) = a Z Cn|n).
n=1 n=0

Multiplying on the left by (m| and using the orthogonality of the Fock states,
we have

L) 00
§ cn\/h_(sm,n—l =« 5 Cn(sm,na
n=1 n=0

or

Cmy1VM+1 = acpy;

thus,
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an

Cp = Co-

3

¢g is determined by the normalization condition (aja) = 1:

(ala) = |cof® Z

nlm)

thus
’ _ —iapP
Cop = ¢€ ’

where the arbitrary phase has been chosen so that ¢y is real.

79

O

Proposition 3.4 The coherent states are not orthogonal; the overlap of the

states |a) and |B) is given by

[(lB)? = el AT

(3.8)

Note that |a) and |B) are approzimately orthogonal when |a — B|? becomes

large.

Proof. Using (3.7)

_ o blal? — 318 a* ﬂ’"
(alB) =e n;g 7o (nim)

= e—%la!ze—%|ﬁ|2 i Eg*_ﬂi

n!

n=0

— e~ 3lal =387 "B

Then
[{a])|? = e~lol =107 o’ eas”

2
_ o la=p?

Proposition 3.5 The coherent states are complete:

1
- [ d? =1
7T/ ala)(al =1,

the integration being taken over the entire complex plane.

(3.9)
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Proof. From (3.7),

1 2 _l 2 —lal? -
7T/do¢|o¢>(oz|—ﬂ_/doze Z

n,m=0

\/—I n)(ml,

or, in polar coordinates,

1 2 1 |n m'/ n+m+1 /2 —i(n—m)¢
. / ala)(al \/n'_ dre- doe ,

where a = re!®. The integration over ¢ gives zero unless n is equal to m.

Thus,
1[5 _ = [n){n| [ —r2_ 2n+1
;/d a|a>(a|—2n2=0 A dre™" ot

After integrating by parts n times,

S [ IOET) SLL LR STATE
™ nl 2 '
n=0 n=0
The final step follows from the completeness of the Fock states. O

Proposition 3.6 The coherent states can be generated from the vacuum state
by the action of the creation operator a':

o) =e —szlal?ga |O) (3.10)

Proof. Using af|n) = v/n + 1|n + 1), we have

e_%|a|2eaa1|0 -—e 2|O‘| Z_aTn‘O
_liq2 a”
= e zlel ZOF\/EM)
n=

11,12 > a™
:e“i]al Zﬁ|n>

n=0

This is the expression (3.7) for the Fock state expansion of the coherent state
o). O
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3.1.2 Diagonal Representation for the Density Operator
Using Coherent States

Using the completeness of the Fock states, a representation for the density
operator p in terms of these states is obtained by multiplying on the left and
right by the unit operator expressed as a sum of outer products:

p= (i ln><nl>p<i |m><ml)

Z Pr.mln)(ml, (3.11)

n,m=0

with pp m = (n|p|m). The Fock states are orthogonal as well as being com-
plete, as is the common situation for a set of basis states. The coherent states
are not orthogonal (Proposition 3.4). However, they are complete (Proposi-
tion 3.5), and this is all we need to define a representation for p analogous to
(3.11). From (3.9), we may write

(1 J#alaal)o( [ o100
= [ #a [#810)(5lalol5) (3.12)

Glauber has defined what he calls the R representation, expanding the density
operator in the form [3.3]

=_/ o / d?Bla)(Ble~ 1ol e~ 2187 R(a, 8), (3.13)

o

where

Rla*,8) = eHoF 3 ol

N RIEEY RN ST W TR
= ezlal® 318l (e Ilgmw)p( ZZ\/_ )

-y @ 5',;”,,,1, (3.14)
n,m=0

nlm!

Clearly, this representation follows the familiar methods for specifying an
operator in terms of its matrix elements; the exponential factors appearing
in (3.13) merely simplify the relationship between the function R(a*, ) and
the Fock state matrix elements p,, ,,,. The P representation is rather different.

The Glauber-Sudarshan P representation relies on the fact that the co-
herent states are not orthogonal. In technical terms they then form an over-
complete basis, and, as a consequence, it is possible to expand p as a diagonal
sum over coherent states:
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p:/faMMMPm) (3.15)

This representation for p is appealing because the function P(a) plays a role
rather analogous to that of a classical probability distribution. First, note
that

/dza Pla) = /d2a (a|a)P(a)

=u</¥aMMde9

= tr(p)
=1, (3.16)

where we have inserted {a|a) = 1 and used the cyclic property of the trace.
Thus, P(«a) is normalized like a classical probability distribution. Note also
that for the expectation values of operators written in normal order (creation
operators to the left and annihilation operators to the right), on substituting
the expansion (3.15) for p,

(a'Pa?) = tr(pa'Pa?)

=tr </d2a |a>(a|P(a)a“’aq>
= /anP(a)(a|anaq|a>
= /d2a P(a)a*Pal. (3.17)

Normal-ordered averages are therefore calculated in the way that averages are
calculated in classical statistics, with P(«) playing the role of the probability
distribution [(3.16) is a special case of this result with p = ¢ = 0]. We will
introduce the notation

(a7aq), = / o P(a)a*"ad, (3.18)

and write
(a'Pa?) = (a*Pod),,. (3.19)

As mentioned earlier, obtaining normal-ordered averages in this way is par-
ticularly useful because measurements in quantum optics have a direct re-
lationship to such normal-ordered quantities, a consequence of the fact that
photoelectric detectors work by the absorption of photons.

The analogy between P(a) and a classical probability distribution over
coherent states must be made with reservation, however. In the Fock-state
representation p,n, = (n|p|n) is an actual probability; it is the probability
that the oscillator will be found in the state |n) — the probability that the
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field mode will be found to contain n photons. But because of the orthogo-
nality of the Fock states, only a limited class of states can be represented by
the diagonal matrix elements p,, , alone. There exist states whose complete
representation requires that at least some nonzero numbers p, ., = (n|p|m),
n # m, be specified in addition to the probabilities p,, . The coherent states
are not orthogonal, and it is therefore possible to make a diagonal expansion
for p that is not restricted in the same way; the expansion (3.15) does not
automatically require that the off-diagonal coherent state matrix elements
vanish. With the help of (3.8), from (3.15) we obtain

(alolB) = / X (o N (AIB)YP(N)
= / d*re 2 -el’e=3 A=A p(y). (3.20)

There is no need for this to vanish when a # (. There is a price to pay
for this versatility, however. We must now accept that P(«) is not strictly a
probability. When o = 3, (3.20) gives

(alpla) = /d2>\ e~ p(y). (3.21)

Since e~1*=¢” is not a &-function, (alpla) # P(a). Only when P()) is suffi-
ciently broad compared to the Gaussian filter inside the integral in (3.21) does
it approximate a probability. Also, although the probability (a|p|a) must be
positive, (3.21) does not require P(a) to be so. Thus, unlike a classical prob-
ability, P(a) can take negative values over a limited range [although (3.16)
must still be satisfied]. P(«) is not, therefore, a probability distribution, and
for this reason it is often referred to as a quasidistribution function. We will
simply use the word “distribution”. In fact, this is quite correct usage if “dis-
tribution” is interpreted in the sense of generalized functions. We will see
shortly that P(«) is, most generally, a generalized function.

3.1.3 Examples: Coherent States, Thermal States, and Fock States

It is clear from (3.15) that the coherent state |ag) — density operator p =
lag){ap| — is represented by the P distribution

Pla) = 52 (a0 —ap) = 6(x — 20)6(y — wo), (3.22)

where a = z+iy and ag = zg+1iyo. Can we find a diagonal representation for
any density operator? To answer this question we must try to invert (3.15).
This is made possible using the relationship
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tr(pei e i) = tr{[ / o |a>(a[P(a)} efz*a*eiza}

_ / o P(a){ale’™ ™ ¢i%|a)
=/d2aP(a)eiz*°‘*eiz°‘. (3.23)

Equation (3.23) is just a two-dimensional Fourier transform. The inverse
transform gives

= —/d2ztr pe'* a! ”“) —iztal gmiza (3.24)

Thus, if the Fourier transform of the function defined by the trace in (3.24)
exists for a given density operator p, we have our P distribution representing
that density operator. A general expression for P(a) in terms of the Fock-
state representation of p follows by substituting (3.11) into (3.24) and using
the cyclic property of the trace:

1 > et e
P(a) — F d2Z< Z pn’m<m|ezz afezzaln>> e~ 12" g—iza

n,m=0

> iz*a)™ (iza)"™
== [ ool ) G0
™ n,m= On

/ /
m’ n'
,m’=0

X e—iz a* e—zza

c© m oo m i * m’ !
m.
= [ D> D Z
- m" (m —m/)!

n=0n'=0m=0m

Zz) —ZZ a —zza
o/ TL — n, On—n’ ,m—m/ €
Noting that

FEST

n=0 n'=0

(=}

oo oo oo oo
0 m’'=0 n'=0 n—n'=0 m’'=0 m—m'=0

and changing the summation indices, with n’ — n, m’ — m, and n —n' =
—m' — k, we find

) —/d2 (Z DD Ptk Vin k)!ﬁ.ﬁm* k)|

n=0m=0 k=0

(iZ*) (ZZ) )e—iz*a*e—iza.

X

o E—" (3.25)
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Exercise 3.1 Substitute p = |ag){ao| into (3.24) and the Fock-state rep-
resentation for this density operator into (3.25); show that both of these
equations reproduce the P distribution (3.22) for the coherent state. For the

thermal state
p=(1- e—hw/kBT)e—huaTa/kBT’ (3.26)

show that (3.25) gives

1 N o w
P(a) — p/dQZ e—|z|2<n)e—zz a” —iza

_ ?<17> exp G%) (3.27)

e—hw/ksT

where

() = (a'a)

= T—hEaT (3.28)

Now, consider the P distribution representing a Fock state. We will take
p = |){l| where [ can be any non-negative integer. From (3.25),

1 [0 o= o= — 0 (iz*)™ (iz)"
P(a) = p/d Z<Zo Z()kz(sn+k,l§m+k,lﬂ iy
n=0m=0 k=0
x g% a*e—iza
1
— 1 2 (_1)k|z|2k I —iz"a* —iza
= d z(kzzo i RO—F) e e, (3.29)

where we have changed the summation index, with [ — k& — k. Since the
summation in (3.29) does not extend to infinity, the expression inside the
bracket is a polynomial, and it clearly diverges for |z| — oo. Thus, this
Fourier transform does not exist in the ordinary sense; it would appear that
we cannot represent a Fock state using only a diagonal expansion in coherent
states. If, however, we write

§@(a) = iz/dzz eTiTe gz (3.30)
7

and use the ordinary rules of differentiation inside the integral in (3.29), we
may evaluate the integral in terms of derivatives of the §-function. This gives
the P distribution

l
il 1 9%
Ple) = ];) K — k) & dakdar*

§@(a). (3.31)
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Note 3.1 We will have many occasions to take derivatives with respect to
complex conjugate variables. It is convenient to do this by reading the com-
plex variable and its conjugate as two independent variables. This is allowed
because

KO (R N ¥ (R VNP (NI B
9a” " \oar?) T 2\oz Oy W =\6e” ayy -
(3.32a)

and, of course,

D (BN (0 0N L (0 0N
8a” ~ \dar - 2\0z Zay L= 5\ 8yy o

(3.32b)

The mathematical theory that gives precise meaning to (3.31) is the
theory of generalized functions [3.9-3.11] or distributions (in the technical
sense of “Schwartz distributions” and “tempered distributions” [3.12, 3.13]).
Within this theory the Fourier transform can be formally generalized to cover
nonintegrable functions such as polynomials. Such Fourier transforms are not
functions in the usual sense; (3.31) does not tell us how to associate a number,
P(a), with each value of the variable a. There is certainly no way, then, to
interpret P(a) as a probability distribution. It is, however, a “distribution”
in the sense defined by the theory of generalized functions. There is no need
for us to get deeply involved with the formal theory of generalized functions.
Those interested can study this in the books by Lighthill {3.11] and Bremer-
mann [3.13]. Nevertheless, in order to appreciate the sense in which (3.31)
provides a diagonal representation for the Fock states we should spend just
a little time refreshing our memories about some of the basic properties of
generalized functions.

Generalized functions “live” inside integrals. There, they are integrated
against some ordinary function from a space of test functions. The value of
the integral for a given test function is defined as the limit of a sequence
of integrals obtained by replacing the generalized function by a sequence of
ordinary well-behaved functions. The generalized function is then, in this
sense, the limit of a sequence of ordinary functions. Of course, the sequence
of functions defining a given generalized function is not unique. For example,
for a suitable class of test functions, the §-function acts inside an integral as
the limit of a sequence of Gaussians:

§(z) = lim \/ge—mﬁ, (3.33)

where the strict sense of this statement is
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o o0 n 2
/ dz é(z)¢(x) = lim dx \/je_"z d(z) = ¢(0). (3.34)
L n—oo J_ T
Here, the test function ¢(z) must be continuous and grow more slowly at
infinity than Ce®?®l, with C' and a constants. A sequence of functions that
decrease faster than Gaussians at infinity would allow us to define the 6-
function on a larger space of test functions; most generally, for all continuous
functions. Thus, in formal language, generalized functions operate as func-
tionals; they associate a number (the limiting value of a sequence of ordinary
integrals) with each function from a space of test functions.

The derivative of a generalized function is also a generalized function,
defined via the rules of partial integration. Taking ¢(z) = ¢'(z) in (3.34), we
can write

/ " 4z s (@)
= lim h dz \/Ee_mzw’(x)
n—oo J_ o T

= lim_ Wg e ) (z) : - /_ O; dz (—an \/2 e*nr"‘) z/z(x)]

oo

= lim [ do (—an\/ge—”z) ¥(). (3.35)

—
n—oo |

Then, if §'(z) is the generalized function defined by the sequence of functions
obtained as the derivative of the sequence defining 6(x) — the functions inside
the bracket in (3.35) — the formula for partial integration is preserved:

/00 dz &' (z)v(z) = _/00 dz §(z)y'(z) = —¢'(0). (3.36)

— 00 —o0

More generally, for the nth derivative of the §-function, 6™ (z), we have

oo o0

[ e @ie) = (-1 [ des@u@ = (-1, (337
— 00 — 00

where (™ (z) is the nth derivative of 1(x). [Do not confuse the notation

for the nth derivative of the §-function with the notation §(?)(a) for the

two-dimensional é-function.]

Let us now use (3.37) to see explicitly how (3.31) provides a diagonal
representation for the Fock states. We will consider the one-photon state, the
simplest example; the general case can be done as an exercise. For [ = 1,
from (3.31),

82
dada*
Substituting into the diagonal expansion (3.15), and using (3.37) (twice for
the two-dimensional é-function),

P(a) = 6@ (a) + 6@ (a).
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o= / da |a) (0| P(e)

_ /d2ala>(a| [5(2) (a) + aaf?;a*(s(m(a)]

= 001+ [ #a (52 laal)8(a)

82
= 1001+ ggarlodlol (3.38)
From this we must recover p = |1)(1|. Using (3.10), we note that
a 8 2 1 *
_ — 2 (o—lal® jaa a*a
sla)(al = 5= (eI e joy(oje")
= (a' — a*)|a)(al, (3.39a)
0 3} 2 gt .
— — —la|® jaa a*a
sola(al = 5 (e71 e o) (0je")
= |a){a|(a — a). (3.39b)

Then (3.38) readily gives the required result:

p=10)(0] + a% lla)(al(a - o)

a=0

+[(a" — a”)le)el(a — @) - |a){al]

+ (a?|0)(0la — |0)(0])

= [D)(1].

Exercise 3.2 Equation (3.31) is not always the most convenient form to use
in calculations. Show that P(a) for the Fock state |l) takes the alternate
forms

1 2 O
= 1] S < ¢))
Ple) I 8al(9a*l(S (@), (3.40)
and in polar coordinates, with a = re®?,
1 l! 2 82l

Show that both of these expressions give p = |I)({l| when substituted into the
diagonal expansion for p [Eq. (3.15)].

Applications of the P representation in quantum optics have largely been
restricted to situations in which P(a) exists as an ordinary function, as it
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does, for example, for a thermal state [Eq. (3.27)]. With the use of generalized
functions it is actually possible to give any density operator a diagonal repre-
sentation [3.14, 3.15]. As we stated earlier, however, our main objective when
introducing the quantum-—classical correspondence is to cast the quantum-
mechanical theory into a form closely analogous to a classical statistical the-
ory. P(a) is never strictly a probability for observing the coherent state |a),
but it can take the form of a probability distribution, and when it does,
this can be used to aid our intuition — as an example, the phase-independent
distribution given by (3.27) essentially corresponds to the classical picture
of a field mode subject to thermal fluctuations. Our intuition finds little as-
sistance from a representation in terms of a generalized function. The value
of preserving the analogy with a classical statistical system will be further
underlined as we now use the P representation to describe the dynamics of
the damped harmonic oscillator.

3.1.4 Fokker—Planck Equation
for the Damped Harmonic Oscillator

In Sect. 1.4.1 we derived the master equation for the damped harmonic os-
cillator:

p = —iwola’a, p] + %(2(1/)@4f —alap — pata)
+ y7(apal + a'pa — atap — paal). (3.42)

Our goal in this section is to substitute the diagonal representation (3.15) for
p, and convert the operator master equation into an equation of motion for P.
Obviously, we must assume the existence of a time-dependent P distribution,
P(a,t), to represent p at each instant ¢.

After substituting for p, (3.42) becomes

/dza |a>(a|%P(a,t)
= /d2a P(a,t)[ — iwg (alale)(al — |a)(ala’a)
+ %(2a|a>(a|aT — alala)(a] - |a)(ala’a)
+ 77 (ale) (ela’ + a’la)(ala — a'ala)(a| — |a)(alaal)].(3.43)

The central step in our derivation is to replace the action of the operators
a and a! on |a)(a| (both to the right and to the left) by multiplication by
the complex variables o and «*, and the action of partial derivatives with
respect to these variables. This can be accomplished using (3.2) and (3.39):
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ala)(ala’ = ala(ala® = [af|a)(al, (3.44a)

0
afale)(a] = atala)(a| = aalla)(a| = a(a + a*>|a>(a|, (3.44b)

la)(alata = |a){a|a*a = a*|a)(ala = o <% + a>|a)(a|, (3.44c¢)

|} (alaa’ = <8(Z* + Oz>|oz)<o¢|aJr = (% + oz) o |ay{al, (3.44d)

atla)(ala = ('5% + oz*>|a>(a|a = <% + a*) (% + a>|a)<a|.

(3.44e)

Using these results in (3.43), after some cancelation, we find

) v 0
2 o _ |2 (7 9
/d a|a><a|atP(a,t) /d ozP(a,t)[ (2 +zwo)aaa
Y ., 0 0
_(2 zwo)a da* +7n8aaa*}|a><a|'
(3.45)

It is a short step to an equation of motion for P. The partial derivatives which
now act to the right on |a) (| can be transferred to the distribution P(c,t) by
integrating by parts. We will assume that P(a,t) vanishes sufficiently rapidly
at infinity to allow us to drop the boundary terms. Then (3.45) becomes

/ |a><a| o P(a t) = /dza |a><a|[(% + iwo> 8%&

v 0 02
~|—(§——zwo)a —a” ~|—’7n8 o }P(a,t).( |
3.46

Note 3.2 When integrating by parts o and o* may be read as independent
variables, as in differentiation (Note 3.1). Explicitly, for given functions f(c)
and g(a) (whose product vanishes at infinity),

[ #as@)cate)
- /_O:odx /_O:ody f(m,y)% ((% — iagy)g(w,y)
1 T [ ste i)

5/00 dy {f(x,y)g(fv,y)
—i%/_o:odx [f(w,y)g(:v,y) ::_Oo—/oo dyg(fv’y)(%f(x,y)]

— 00
— 00
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= —/_(:dx/_o;dyg(x,y)%<(% —iaﬁy)f(xvy)

- [Eagt)zf@)

[ s

A sufficient condition for (3.46) to be satisfied is that the P distribution
obeys the equation of motion

% = [(g +iw) %a +(3 ) ai aaaa2 P (347)

Similarly,

(@ = [Eagl)zms@)

We have replaced the operator equation (3.42) by a partial differential equa-
tion for P. This is the Fokker-Planck equation for the damped harmonic
oscillator in the P representation.

Exercise 3.3 The question arises as to whether (3.47) is a necessary con-
dition for (3.46) to be satisfied. Multiply both sides of (3.46) on the left by
ei#"a" ¢iza and take the trace to show that the necessary condition is that the
Fourier transforms of both sides of (3.47) are equal.

3.1.5 Solution of the Fokker—Planck Equation

We will discuss the properties of Fokker—Planck equations in detail in Chap. 5.
For the present let us simply illustrate how (3.47) describes the damped har-
monic oscillator. We will solve this equation for an initial coherent state |ay).
Thus, we seek the Green function P(a, o, t|ap, of,0), with initial condition

P(aa a*, 0|a07 a[);, 0) = 6(2) (a - aO) = 6(‘7" - .T())(S(y - yO) (348)

From now on we display P with two complex conjugate arguments consistent
with the interpretation of derivatives and integrals explained below (3.31)
and (3.46).

It is convenient to transform to a frame rotating at the frequency wg, with

—iwot ~

a=e @, o = etotar, (3.49)

and ~
P(a,a* t) = P(&,a’t). (3.50)

We have
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OP _ 0P 0Pda 0P do
ot ot  Hda Ot Oar Ot

o°P . (6P *6P)
== —wolaz— —«

ot O oa*
o°P . 0 a9
= E — Wo (El—a — %a >P (351)
After substituting for 9P/0t from (3.47),
OP [v( 0 . a 62 -
or, in terms of the real and imaginary parts of &,
OP [y[ 0 9 v 82 02\] =
E—[ ((9~ +—y>+T(%—2-+6—g2 P, (3.53)

where & = I + if. Solutions can now be sought using separation of variables.
We write

P(,3,t) = X(Z,t)Y (§,1), (3.54)
where the functions X and Y satisfy the independent equations
0X vy 8 . ~n 02
= L= —— X .
ot (2 o5 T 1) (3:55a)
o (v 8 i 02

These are to be solved for X (Z, t|Zo,0) and Y (g, t|Jo, 0), subject to the initial
conditions

X (&,0[Z0,0) = 6(Z — Zo), (3.56a)
Y (%, 0[g0,0) = 6(§ — Jo)- (3.56b)

Consider (3.55a). Its solution is found by taking the Fourier transform on
both sides of the equation. We find

ou vy.0 AN _g
5 = (2”811 + 1l U, (3.57)
where -
U(a, t|Zo,0) :/ dz X (,t|%o,0)e™", (3.58)

and, from (3.56a), the initial condition for U is

Ui, 0o, 0) = e%o?, (3.59)
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We then solve (3.57) by the method of characteristics [3.16]. The subsidiary
equations are

élt- B (vig)ﬁ B —(vﬁd/z)ﬁzU ’ (3.60)
with solutions
e~ /2t = constant (3.61a)
Ue™% = constant . (3.61b)
Thus, U must have the general form
U (@, t|70,0) = ¢(ae™(1/2)e~ (/98 (3.62)

where ¢ is an arbitrary function. Choosing ¢ to match the initial condition
(3.59),

U(ii, t|Z,0) = exp|idoie” /P! ]exp[ — (a/4)a(1 — e~ )] (3.63)

Taking the inverse Fourier transform, we have

X(&,t|Zo,0)
1L [% —iFd
= %/_oodu U(a,t|Zo,0)e
1 [ e
=5 _Oodu exp[—iii(z — Zge~ /)]
x exp|— (7/4)5%(1 — e~ )]
= % dii cos[i(z — Zoe~/D't)exp| - (7/4)3*(1 — e )]
1 (% — Zoe= (/D)
S Ve T {‘ A= | 00

Equation (3.55b) can be solved in a similar fashion, whence,

P(i‘a ga t|i‘07 gOa 0)
1 (& — Zoe=(/D1)? 4 (j — fpe(1/2)t)?
=— exp | — - ;
(1l — e ) a(l—e )

(3.65)
or, equivalently,

~ ~x g~ o~k 1 a— doe_(w/Q)t
P(aaa 7t,a07a050) = ’/T’Fl(l — e__yt) exp [—-’

(1l — e )

| ] (360

Then the P distribution for a damped coherent state is given by
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= aoe—('y/2)te—iwot'2

a(l — e~ )

* * 1
P(a,a 7tla0aa050) = 7['77L(1 — e_.yt) exp | —

(3.67)

P(a, a* t|ao, o, 0) is a two-dimensional Gaussian distribution. Thus, for
this example the P distribution has all the properties of a probability dis-
tribution. The mean of the Gaussian gives the oscillating and decaying os-
cillator amplitude calculated previously directly from the master equation
[Eq. (1.78)]: o '

(a(t)) = (at))p = cpe™/Dteiwot, (3.68)

The phase-independent variance describes the thermal fluctuations added to
the coherent amplitude by the oscillator’s interaction with the reservoir:

{(a'a)(®) — (" (1))(a(t)) = ((a*@)(®)p — (" (1)) p(a(?))

= [(@®)p+ D)) - [=E)5+ WD)
=a(l—e ). (3.69)

For an initial coherent state, (af(¢))(a(t)) = |ag|?e™7* = ((a’a)(0))e™ 7, and
therefore (3.69) also agrees with our previous calculation [Eq. (1.80)]. In the
long-time limit the coherent amplitude decays to zero and the variance of
the fluctuations in each quadrature of the complex amplitude grows to 7,/2.
A comparison of (3.67) with (3.27) shows that the oscillator reaches a ther-
mal state with mean photon number 7 equal to the mean photon number
for a reservoir oscillator of frequency wqg. Figure 3.1 illustrates these dynam-
ics with P(a, a*, t|ag, af, 0) represented by a single circular contour of ra-
dius 1/(7/2)(1 — e~ 7). For a Gaussian, the mean and variance determine all
higher-order moments. Hence, (3.68) and (3.69) determine all of the normal-
ordered operator averages for the damped oscillator [Eq. (3.19)]. Using the
P representation we have put the statistical properties of the quantum-
mechanical oscillator into a correspondence with a classical statistical de-
scription in terms of the phase-space variables  and y. (For a mechanical
oscillator the coordinate and momentum variables are ¢ = x+/2h/mw and

p = yv/2hmw, respectively.)

3.2 The Characteristic Function
for Normal-Ordered Averages

We now look at an alternative way of defining the P representation and
deriving an equation of motion for the P distribution. This second approach
leaves the relationship to coherent states somewhat hidden, but introduces a
method that can readily be generalized — to define representations based on
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Fig. 3.1 Time evolution of P(a, a*, t| ao, a5, 0)
[Eq. (3.67)]. The center of the Gaussian distri-
bution follows the spiral curve while the width
of the distribution increases with time, as il-
lustrated by the filled circular contours c;(8) =

age” (12t gmiwot | o0 (7/2)(1 — e—1).

different operator orderings, and to define representations for collections of
two-level atoms.

We have recently met two relationships that might suggest the new ap-
proach to us. In (3.23) and (3.24), and in Exercise 3.3, we saw that the
Fourier transform of P(a, a*) played an important role. Why not begin from
the function appearing on the left-hand side of (3.23) and define P(«, a*) to
be its Fourier transform. Indeed, this approach is suggested on the following,
more general grounds.

3.2.1 Operator Averages and the Characteristic Function

The function o
Xp(2,2%) = tr(pe'® @ e*?) (3.70)
appearing on the left-hand side of (3.23) is a characteristic function in the

usual sense of statistical physics [3.17]; it determines all normal-ordered op-
erator averages via the prescription

(a'Pa?) = tr(patPa?)
oprta

= WXN(Z,Z*) (3.71)

z2=2z*=0

The definition of a distribution for calculating normal-ordered averages fol-
lows quite naturally from this result. If we define P(«,a*) to be the two-
dimensional Fourier transform of x (2, z*):

Pla,a™) = —/dngN (z,2%)e™ @ g7

F du/ dv x (1 +iv, p —iv)e ~Ziluz—vy) - (3.72)

with the inverse relationship
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XN(ZVZ*) — /d2a P(a’a*)eiz*a*eiza
e} [o 0} .
= / d:v/ dy P(z + iy, © — iy)eZBe—vy) (3.73)
—o0 —00

then, from (3.71) and (3.73),

(aTPa(I> — —?p-‘rq—- d2aP(a *)ez’z‘a‘eiza
Biz*)o(iz)" @ S
~ (a7as),, (3.74a)
with
(a*Pal), = /d2a P(a,a*)a*Pal. (3.74b)

Equation (3.73) is the same as (3.23), and (3.74) reproduces (3.19); the
P(a,a*) defined in this way is the distribution introduced in (3.15) to give a
diagonal expansion in terms of coherent states. Let us see how the Fokker—
Planck equation for the damped harmonic oscillator can be derived by start-
ing from this new definition of P(a, o).

3.2.2 Derivation of the Fokker—Planck Equation
Using the Characteristic Function

We will derive an equation of motion for the characteristic function and then
use the relationship between x (2, 2*,t) and P(a,a* t) to convert this into
an equation of motion for P(a, a*,t).

From the definition of x,

CN —tr(peiz*‘ﬂeiz“) = tr(p'eiz*ateiz“). (3.75)
Then, the master equation (3.42) gives

0
%AL :tr{[—iwo(aTap — pa'a) + %(QGPCLT —atap — pata)
+yi(apat +afpa —atap — paa*)] eiz*atei”}. (3.76)

Our aim is to express each of the nine terms on the right-hand side of (3.76)
in terms of x, and its derivatives with respect to (iz*) and (iz). For two of
the nine terms this can be achieved directly; we may write

tr(apa*eiz*afei“) = tr(pa‘reiz*aTeiZaa)
92
) K : XN )
O(iz*)0(iz)

(3.77)
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where we have simply used the cyclic property of the trace. The remaining
seven terms require a little more algebraic manipulation; but the goal is
always the same — to rearrange the terms inside the trace so that a! is to
the left of e*"®' and a is to the right of €. Then, a! and a can be brought
down from the exponentials by differentiation with respect to (iz*) and (iz),
respectively. Generally, the rearrangement may require us to pass a' through
the exponential ¢, or a through the exponential ei#"a" | For this purpose
we use

ei#agte=i7e = ot 4 iz, (3.78a)

-1z aT 2z a

emi7 g eiztal = g 4 p*, (3.78b)

Equation (3.78a) follows by writing a'(iz) = e**ale™%*¢, with a'(0) = a;
then differentiate with respect to (iz):

al(iz) = e*%(aat — ala)e ¥ = 1.

d(iz)

Thus,
al(iz) = a'(0) + iz = a' + iz.

Equation (3.78Db) is obtained as the Hermitian conjugate of (3.78a) and the
replacement z* — —z*.

Now, using (3.78) and the cyclic property of the trace, the remaining
terms in (3.76) are:

tr(afapeiz*aT eiza) — tr(peiz*aT eizaaTa)
[pezz a*(ezzaa‘re—iza)eizaa]

( T+Zz)ezz aTezzaa]

tr
< +ZZ> (peiz*afeizaa)

0
) 56 v (3.79)

Il
rf

tr(pafaeiz*a’feiza) — tr{paT iz*al e—zz at zz aT)eiza]

= tr[pale’” o' giza(q 4 j2* )]
(75
(5

*)t T iz*al zza)

(3.80)

8
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tr(paaT@iz*aT eiza) = tr [p(aTa + l)eiz*a"eiza]

— Ka(?z) + zz> % + 1] X (3.81)

which follows from (3.80); the last term is left as an exercise:

Exercise 3.4 Show that
tr (anaeiz*“T eiza)

, 0 ., 0 o2
:<1_‘Z| 5 T B +a(iz)a(z‘z*)>XN' (382)

After substituting (3.77) and (3.79)—(3.82) into (3.76) the equation of
motion for x (2,z",1) is given by

0 3] 0
% = [—(% +iw0>zaz— —<% —iwo)z*% —'yﬁzz*] X (3.83)
To pass to an equation of motion for P(a, a* t) we use the Fourier transform
relation (3.73) and exchange the differential operator in the variables z and
z* for one in the variables o and a*:

/d201 aP(O(;ta 7t) eiz*a*eiza

= /dQOtP(Oz,Oz*,t) [— (% + iw(])zg; - <% - iwo)z* 82*

— ;yﬁzz*] elz [0 ezza

= /d2a P(a,a,t) [— (% + iwo) (ia) 8(?0[) — <% — iwo) (z’a*)_é_(_;&i_*)
_Vﬁa(sz;(ia_*S] ez e gl (3.84)

The action of the derivatives on the right-hand side of (3.84) can be moved
from the product of exponentials, e @ e** to P(a, a* t) by integrating by
parts; we took the same step in passing from (3.45) to (3.46). Once again we
assume that P(a, o*, t) vanishes sufficiently fast at infinity to justify dropping
the boundary terms. Then, (3.84) becomes

eow o OP N 2 N
2 izha” jiza — 2 2o jiza | 1
/d ae e B /d ae e [<2+zwo)—8aa

2

Y. \O .. . O
+<§ - zw()) S +7n8a8a*] P. (3.85)
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This is the Fourier transform of the Fokker—Planck equation derived in
Sect. 3.1.4. It is precisely the equation derived from (3.46) in Exercise 3.3.
Thus, after inverting the Fourier transform we arrive once again at the
Fokker—Planck equation (3.47).



4. Quantum—Classical Correspondence
for the Electromagnetic Field II:
P, Q, and Wigner Representations

The definition of the P representation as the Fourier transform of the normal-
ordered characteristic function can be generalized by simply taking different
characteristic functions — characteristic functions that give operator averages
in other than normal order. Here we will look at two new representations: the
Q) representation, which is defined in terms of the characteristic function that
gives operator averages in antinormal order, and the Wigner representation,
defined in terms of the characteristic function that gives operator averages
in symmetric, or Weyl, order. This is not a comprehensive list. Cahill and
Glauber [4.1], and Agarwal and Wolf [4.2] have introduced formalisms in
which whole classes of different representations are defined. In particular,
Agarwal and Wolf take the possibilities to their ultimate extreme and de-
velop a very general and elegant formalism which they call the phase-space
calculus. These general formalisms are not of much interest, however, when
it comes to applications. The P, @, and Wigner representations are the only
examples that have traditionally seen any use in quantum optics. They are
special cases within the classes defined by Cahill and Glauber, and Agarwal
and Wolf. In Volume 2 we will meet one recent addition to the list which has
been used quite extensively, particularly in the treatment of squeezing and
related nonclassical effects. This is the positive P representation introduced
by Drummond and Gardiner [4.3]. As the name suggests, the positive P rep-
resentation is closely related to the Glauber-Sudarshan P representation.
We postpone its discussion, however, until we have acquired the background
needed to appreciate its special purpose and application. Certain properties
of the positive P representation are still only partly understood; this repre-
sentation therefore belongs with the modern research topics that are taken
up in Volume 2.

For additional reading on the @ and Wigner representations reference
may be made to Louisell [4.4] and Haken [4.5]. Also, Hillery et al. provide a
comprehensive review with numerous references [4.6].

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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4.1 The Q and Wigner Representations

4.1.1 Antinormal-Ordered Averages and the Q Representation

If we wish to calculate antinormal-ordered averages, the rather obvious gen-
eralization from (3.70) is to define the characteristic function

X 4(2,27) = tr(peizaeiz*“T). (4.1)
Then in place of (3.71), antinormal-ordered operator averages are given by
(a%a'P) = tr(paa’?)
a2 (4.2
= -—*—'X Z,Z . .
I T LA N
If we define the distribution Q(«a, a*) as the Fourier transform of x ,(z,2*):
A
1 e
Q(a,a*) = ﬁ/d%ZXA(Z,Z*)e_M o’ g-iza
1 [ o ,
= F/ du/ dvx ,(p +iv,p — iv)e 2Ure—vy) - (4.3)
— 0O — 00

with the inverse relationship

XA(zaz*) — /d2aQ(a7a*)eiz*a*eiza

:/ dm/ dyQ(a:+iy,a:—iy)eZi(’”’_l’y), (4.4)

corresponding to (3.74), we now have
orte ek
<aanP> — ——.—*—.—/dzaQ(a,a*)e” a” giza
A(iz*)Po(iz)? .
= (a*paq)Q, (4.5a)

with

(a*”aq)Q = /d2a Q(a, a)a*Pal. (4.5b)

The Q distribution, so defined, has a very simple relationship to the co-
herent states. Consider (4.3) with x ,(z,2*) substituted explicitly from (4.1)
and the unit operator judiciously introduced in the form (3.9). We find

* 1 2 iza 1 2 iz*al | —iz*a* —iza
Q(a,a):p/d ztr[pe (;/d )\|)\>(/\|)e ]e e

— ig/d2z/d2/\ <)\|eiz*a*peiza|/\>e—iz*a*e—iza
s

1 wyw Ry
l/d2>\ <)\|p|/\>|:—2/d226” A\ —e )ezz(z\—a):|
™ ™

Il
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- %/dQA (Al (A — a)

= ~{alpla). (4.6)

Thus, 7Q(a, a*) is the diagonal matrix element of the density operator taken
with respect to the coherent state |a). It is therefore strictly a probability —
the probability for observing the coherent state |a). This immediately gives
us the relationship between @ and P.

From (3.21) and (4.6),

Qa,a*) = l/d2)\ e~P=el® p(x, 7). (4.7)

™

Note 4.1 It can be shown that the diagonal matrix elements {a|p|a) specify
the density operator completely. Then the convolution (4.7) forms the basis
of formal proofs that every density operator may be given a diagonal repre-
sentation if P is allowed to be a generalized function. See [4.7] and [4.8] for
the details.

Another useful result is the relationship between the characteristic func-
tions x ,(2,2*) and x (2, 2*). We will make use of this shortly to derive the
Fokker—Planck equation for the damped harmonic oscillator in the @ repre-
sentation. The relationship follows from a special case of the Baker-Hausdorff
theorem [4.9]: If O; and Oy are two noncommuting operators that both com-
mute with their commutator, then

01902 — 01602=5101,03] _ 0201,3101,03], (4.8)
Since the commutator of @ and a' is a constant, this result can clearly be
applied to the exponentials in the definitions of x (z,2*) and x ,(2,2*). It
follows from (3.70) and (4.1) that

( iza zz a

X 4(2,2%) "l
)

— ( iza+iz*al e——% |z|2
— ( iz*al zza e |z|?
=e |z|2 ~(z2%). (4.9)

Exercise 4.1 Use (4.9) to derive (4.7) directly from the definitions of the Q
and P distributions [Eqgs. (4.3) and (3.72)]. Also, use both (3.40) and (3.41)
to show that (4.7) gives the correct @ distribution for the Fock state |I) —
namely;
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(4.10)

An alternative relationship between the @Q and P distributions follows
from (4.9). Using (4.3) and (4.9),

1 P
Q(a,a*) — —2/d22XA(Z,Z*)€_u o’ p—iza
™
1 e e
_ P/d2ze—|z|2XN(Z’Z*)e—zz a g—iza

Then, writing x (2, 2*) as the Fourier transform of P(A, A*), we have

Q(a,a”) .
— F/d?Z6—|z|2/d2/\ P()\, )\*)eiz*)\*eiz)\e—iz*a*e—iza

1 2 2 * 8 i2*A* iz | —iz¥ e —iza
7T2/d z/d AP(A A ){exp((,»\a/\* e e”e €

1 2 2 i * iz* (A —a”) jiz(A—a)
7T2/d z/d A[exp(a)\a/\* P()\ M%) e e ,

where the last line follows after integrating by parts. The integral with respect
to z gives a §-function and we find

2
Qa,a*) = exp(%;) P(a,a). (4.11)

Note 4.2 If (4.11) is to hold for the coherent state |ag), (4.7) and (3.22)
require that we prove the rather unlikely looking result

9? 1 2
(2) — = — —|a—ao|
P <8a6a*> 67— o) e '

In spite of its unlikely appearance, this result follows from the limit defining
the é-function [Eq. (3.33)] and

0? N _pa2 1 m 2
Denlel® — 2T —nlal/(1+n) 4.192
P <8a8a*) . T1+tn’ (4.12)

Equation (4.12) can be proved using the identity (4.46):
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0? —nlal? Clalz o= (n|al)?* 1
nlal® _ g—nlal
xp <8a8a*>e ¢ Z k' (14 n)k+1

k=0
_ 1 nlenla?/ (40
1+n
1

— e—nlal?/(14n)
14+n

4.1.2 The Damped Harmonic Oscillator in the Q Representation

A Fokker—Planck equation for the damped harmonic oscillator can be derived
in the @ representation by following the same steps as in Sect. 3.2.2. A
convenient shortcut is available, however; we can use the relationship (4.9)
between x (2, 2*) and x ,(z,2*) and the equation of motion (3.83) for Xy to
quickly arrive at the equation of motion for x A

(9XA ol 3XN
ot ot

It

|
VN
N |
+

-

€

o
N——

=
I~
N

+

N*
~_

|
/N
N[

|

-

£

o
N—

N

*
TN
[e5)

*

+
N

0 . 0
~[Gri)egt - (3 - ) a4 0T
(4.13)
This is the same as the equation of motion for x - except for the replacement

7 — n+1. We can therefore write down the corresponding equation of motion
for Q directly from (3.47):

2
66—? = [(g + i %a +(3 ~iwo) 8‘3*(1* + (R + 1)80[68&*}@. (4.14)
This is the Fokker—-Planck equation for the damped harmonic oscillator in the
Q representation.

We exploit the relationship between the Fokker-Planck equations in
the P and @) representations further to solve (4.14). The Green function
Q(a, a*, tlag, af, 0), which has initial condition

Q(av Ot*, O|O[0, a3> 0) = 6(2) (a - aO) = (5(.7,‘ - ‘TO)é(y - yO)a (415)

follows directly from (3.67) in the form
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Q(aa a*a t|a03 QSa 0)
1 |a _ aoe—(7/2)te—iwot|2

T @I DA —e) TP @ D — et

.(4.16)

It is important to realize that while the Green function in the P rep-
resentation describes an oscillator that is initially in a coherent state —
P(a, o tlag,af,0) = P(a,a*t)y0)=|ao)(a] — the Green function in the @
representation does not describe an oscillator initially in a coherent state; a
S-function in the @) representation does not correspond to a coherent state. In-
deed, (4.6) tells us that the @ distribution for an initial state p(0) = |ao) (o]
is

{al(loo) (o))

[{alao)l®

Q(a3 Ol*, 0)p(0)=|°¢0) (o] =

= |

- = —|a—ap|? 4.1
—e ; (4.17)

where we have used (3.8). The time evolution of the @ distribution for this
initial state is then calculated using

Q(@, % 1) p(0)=| o) (aol
= /d2)\ Qa, a* tIA, A™,0)Q(A, A%, 0)p(0)=|a0>(a0|. (4.18)

Substituting (4.16) and (4.17) into (4.18), and making the change of variable
e~ (V/Dte—iwot _, ) we have

Q(a, &, t) p(0)=|ao) aol

-/ dgA{ s [‘ Ia@z 11;(1/i >|]}

N {1 exp[ — |A — a0|2]}

- / d”{wm 1><11 —emt) P [‘ (7 +|f><—1 A—|>]}
x {e%t exp [—|)\ - aoe“('Y/z)te"i“’otFe'“]}. (4.19)

This integral is a two-dimensional convolution; therefore, the Fourier trans-
form of the left-hand side is given by the product of the Fourier transforms
of the bracketed terms in the integrand; of course, the Fourier transform of
the left-hand side is the characteristic function XA(z, 2%,1) p(0)=|ao) (a0} - Thus,
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X 4(2, 2% ) p(0)=| o) (ar0] = exp[—|z]2(R+1)(1 — e™)]
% {exp [_|z|26——'yt]eQiz*ag(t)e%zao(t)}’ (4.20)

with ag(t) = apge™("/Hte~ot The inverse transform gives the Q distribution
for a damped coherent state:

Q(a, @ 1) p(0)=Jaro) (el
1 o= (7/2)t p—iwot)2
- _ exp o aoe e -(4.21)

w1+ n(l — et 1+n(l—e)

Compared with the solution for the P distribution [Eq. (3.67)], the
solution (4.21) for the @ distribution shows one simple difference — the
phase-independent variance [variance of x = Re(a) or y = Im(a)] is now
(n/2)(1 — e~ ) + 1/2 rather than (7/2)(1 — e~7*). Thus, the time evolution
of the @) distribution can be represented as in Fig. 3.1, but with a circular
contour of somewhat larger radius; in particular, the @ distribution has a
width at t = 0 given by the initial condition (4.17), whereas the P distribu-
tion begins as a é-function; when 7 = 0, this initial width is preserved for all
times. We find then that the @ distribution has a width even in the absence
of thermal fluctuations. We have again set up a correspondence with a clas-
sical statistical process; but now there is noise where before there was none.
What can this mean? The answer to this question illustrates an important
point about the fluctuations at the “classical” end of the quantum-—classical
correspondence. Although thermal fluctuations from the reservoir are not
too quantum mechanical — they should be present in a classical theory of
damping also — in general, the fluctuations observed in the distributions de-
rived via the quantum-—classical correspondence have a quantum-mechanical
origin. They are manifestations of the probabilistic character of quantum me-
chanics, and arise through the noncommutation of the quantum-mechanical
operators. Therefore, the fluctuations that appear in the classical stochastic
processes that correspond to a quantum-mechanical system via different op-
erator orderings are different. In our present example, the difference in the
variances of the P distribution and the @ distribution arises to preserve the
boson commutation relation. From (3.74) and (3.67), we calculate

((ata)(t)) = (a" (1)) {a(t)) = ((e*)(1)p — (a* (1)) p(a())p
=na(l—e ), (4.22a)

while from (4.5) and (4.21) we calculate

((aa")(1)) = (" (D) (a(®)) = ((a*a)(#)), — (e* (1), (W))Q
Al —e ") + 1. (4.22b)

The extra fluctuations in the ¢} representation, which give the “+1” in
(4.22b), are just what are needed to preserve the expectation of the com-
mutator — {[a, a'](t)) = 1.
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4.1.3 Antinormal-Ordered Averages Using the P Representation

We should not be misled into thinking that the P and @ distributions are
inadequate on their own for calculating operator averages in arbitrary order.
Of course, an average in antinormal order can first be normal ordered so
that moments of the P distribution can be used to calculate the average of
the resulting normal-ordered object. Antinormal-ordered averages can also be
evaluated, however, directly from the P distribution, without first reordering
the operators. Consider (4.2) with x ,(z,2") written in terms of x(z,2")
using (4.9). An arbitrary antinormal-average can be calculated from the re-
lationship

orta

quipy — 9|2 *
(a%a’®) 8(iz"Pa(iz)" Xn(227)

z=z*=0
_ ﬂ_e—:zlz(iz* + L)qx (2,2%)
a(iz*)? Aiz)) "N o

o i ) 52 et
- a—(i—iv (zz + %)qxjv(z, z")

Substituting for x (2, 2*) from (3.73), we have

z=2*=0

z=2z*=0

(a%alP) = /dza Pla a*)—ép-—— iz* + _(9_ qeiz*"“*e"z‘JZ
B R d(iz)
) 9 U o irtat
=/d aP(a,a)(aa*-l-a)a e e

We now integrate by parts, setting P(z,z*) and its derivatives to zero at
infinity, to arrive at the result

z=2*=0

z2=2*=0

(a%a'P) = /dza a*p< - %)qP(a,a*). (4.23a)
Exercise 4.2 Prove also that

(a9a'P) = /d2oz al <a* - —%)pP(a,a*), (4.23b)
and

(aPa?) = /d2a a*P (a + (9?1* qQ(a,a*), (4.24a)

(aPa?) = /dza al <oz* + —a—)pQ(a,a*). (4.24Db)
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As an illustration, let us calculate {(aa')(t)) for the damped harmonic
oscillator using (4.23a) and the Green function solution for the P distribution
[Eq. (3.67)]. We set aq(t)equive™(7/2te=iwot and then

{(aa)(®)) ,

_ . 0 1 la — ao(B)]

= /d2aa < — W){vrﬁ(l T exp [— Al = Z—W)} }

B . a— ap(t) 1 o = ao(t)?

- /d2aa [0‘ TRa- eo—’Yt)Hﬂr‘L(l “et) P ['m] }
= /d2a {a*[a - ao(t)]':l + mr} + a*ao(t)}

! o= an()

If A is a constant,

/d2a ai:— exp[—Ala — ao(t)]*] = ao(t),

1

/d2a la — ao(t)|2§ exp[—Ala — ap(t)|*] = I

We can therefore replace o* by o* — ag(t) in the first term in the integrand
(this adds zero to the integral) and perform the resulting integrals to obtain

Qﬁ(l — e_“/t) +1
Al —e )
o= o(t)]”

1
X { (1l —e™7t) P { (1 — e )

=a(1—e ") + 1+ |ag(t)]?

((aa")®) = [ [aa ~ aol)| ; a*aou)}

}

=((aa)(t)) + 1,

where the last line follows from (3.68) and (3.69). We have arrived at the
result that would be obtained by first writing aa’ in normal order and then
using moments of the P distribution to evaluate the normal-ordered operator
average.
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4.1.4 The Wigner Representation

The Wigner representation is introduced by defining a third characteristic
function: o
Xg(2,2") = tr(per* @ +29). (4.25)

The Wigner distribution W (a, @) is the Fourier transform of x ,(z, 2*):

*

1 -
ﬂ—2/d2zxs(z,z*)e‘” “e

1 oo oo .
F/ du/ dv xg(p + v, p — iv)e 2 me=vY) (4 96)
—o0 —o0

—iza

W(a,a™)

with the inverse relationship
Xs(zv Z*) — /d2a W(Ot, a*)eiz*a*eiza
oo oo .
= / dx/ dy W (z + iy, z — iy)e®Hz—ry), (4.27)
—00 —00

The relationship between the Wigner distribution and operator averages
is a little more complicated than the relationships that connect the P and
Q distributions with operator averages. In terms of position and momentum
variables (proportional to z and y respectively) the moments of W(a, a*) give
the averages of operators written in Weyl order [4.10]. Details can be found in
the review by Hillery et al. [4.6]. The relevant quantities for quantum optics
are operator averages corresponding to moments of the complex variables o
and o*. These can be found as follows. The exponential in (4.25) has the
expansion

)
iz*al i ) )
giz’a +iza _ § : —(zz*aT—{—zza)m
0

3
I
3|~

! nz;; n!(mm— n)!(lz )" (i)™ (0™

|-

NERTgE
[M]8

E

(iz7)" (i)™ "

n!(m — n)! (a'a™™")s

3
I
o
3
Il

(i2*)" i)™

o (ai"a™)g, (4.28)

e
M]8

3
]
=4
3
I
o

where (af™a™) g denotes the operator product written in symmetric order —
the average of (n+m)!/(n!m!) possible orderings of n creation operators and
m annihilation operators:
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(a'a)g = 2(a’a + aal), (4.29a)
(a?a)g = 3(a'?a + a'aa’ + aa'?), (4.29b)
(a'a®)s = 3(a'a® + aa’a + a®al), (4.29¢)

(at?a?)g = L(a™a® + a'aa’a + a'a’a’ + aa'?a + aa’aa’ + azaTz(), 20

Then, from (4.28) and the definition of x(2,2*) [Eq. (4.25)], symmetric-
ordered operator averages are given by

((a™a%)g) = tr[p(a'Pa?) ]

gr+a
B NP
substituting for x4(z,2*) in terms of W(a, ) [Eq. (4.27)] gives
((76)s) = Gryrgrias [ oW aae e
= (a*Pad),,, (4.31a)
with
(a*Pad),, = /an W(a, a*)a*Pal. (4.31b)

Note 4.3 We have defined the Wigner distribution W(a, @*) to be normal-
ized such that [d?a W (a,a*) = 1. The Wigner distribution is often defined
with a different normalization, such that [d?a W (a,a*) = 7. This is the
case in [4.4] and [4.6]. With the alternative definition W (a, a*) is the classi-
cal function associated with the density operator p by writing it as a power
series in symmetric-ordered operators (anaq) s and replacing each term in
this series by a*?a? (see Sect. 4.3.1).

The quantum-classical correspondence defined in terms of symmetric-
ordered operators (also antinormal-ordered operators) is not really the most
convenient for applications in quantum optics because it is normal-ordered
averages that relate directly to quantities measured with detectors that ab-
sorb photons. However, often only low-order moments are of interest and the
symmetric ordering is then easily untangled using (4.29a)—(4.29d). More gen-
erally, a symmetric-ordered operator can be written in normal order in the
following way. With the help of the Baker-Hausdorff theorem [Eq. (4.8)] we
write
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orta

(a'Pa?)g = 3(i7")P0(iz)" i#taliza s
_ orta e 3127 giz"al giza
0(iz*)" (iz)* p—
It can then be proved by induction that
8(iz?;:(iz)q'€_éleeiz*"feiz“
_ mm(PvQ)_l—i P! q! iy _Zz>p—k
2 FHp-k)(g- )
% =32 giz"al 'Lza(a+ %zz )q_k, (4.32)
and hence, that
( tp e _min(m) 1_ 7 ¢! tp—k q—k
a'Pal)g = kzzo k) (—q-—k)—a a?™" . (4.33)

The Baker-Hausdorff theorem also yields the relationship between the
characteristic functions x 4(z,2*) and x (2, 2*), and x4(z,2") and x ,(2,z*):

Xg(22%) = tr(peiz*“T“Lim) = tr(pe”*“feiz“)e—%\ 1 _ e—3lz® X(2 7,
(4.34a)

XS(Z7Z*) = tr(peiz*af-l—iza) _ (pezza iz aT)62|212 = e%|2|2XA(Z, 2%).
(4.34b)

From these results relationships between the distributions W(a, a*) and
P(a,a*), and W(a, a*) and Q(a, a*), analogous to those given in (4.7) and
(4.11), can be obtained. The derivations are left as an exercise:

Exercise 4.3 Show that

W, o) = %/dh e~2A=al’ p(x, A%, (4.35a)
Qa,a*) = %/d2>\e"2|A_a|2W(/\,>\*), (4.35b)
and that
1 92 .
W(a,a*) = exp 2 Jador Pla,a”), (4.36a)

. 1 92 .
Qa,a*) = exp(2 Sado )W(a,a ). (4.36b)
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From the relationships (4.7) and (4.35), (4.9) and (4.34), and (4.11) and
(4.6), the Wigner distribution appears to fall in some sense in between the P
and Q distributions. This observation is illustrated explicitly by the example
of the damped harmonic oscillator. There is no need for a new calculation to
treat this example in the Wigner representation. From a comparison of (4.9)
and (4.34a), we immediately conclude that the method of Sect. 4.1.2 will
bring us to the following Fokker—Planck equation for the damped harmonic
oscillator in the Wigner representation:

ow (7 92
dada*

0 o +y(n+3)

o —\3 +z’wo> ﬁa-l—(z —iwo) o

2 Oa 2
(4.37)

Thus, where 7 appears in the Fokker—Planck equation in the P representa-
tion [Eq. (3.47)], and 7 + 1 appears in the Fokker—Planck equation in the @
representation [Eq. (4.14)], now 7+ % appears in the Fokker—Planck equation
in the Wigner representation. The factor of % carries over into the solution
for a damped coherent state. By referring to (3.67) and (4.16) we see that
the Green function W(a, o t|ag, g, 0), which has initial condition

W (e, a*,0lag, af, 0) = 6@ (a — ao) = 6(z — 20)8(y — o), (4.38)
is given by

W(a, o™, tlag, g, 0)
1 ‘a _ aoe—('y/2)te—iwot|2

T rm+ Da-en P T R A e )

(4.39)

Then, using (4.35a) and the P distribution for a coherent state [Eq. (3.22)],
an initial coherent state (p(0) = |ao){ao]) is represented by the distribution

. 2 L
W (0, 0%, 0) p(0)=jaco) (o] = €~ 1770 (4.40)

By following the steps used to derive (4.21) we find that the Wigner distri-
bution for a damped coherent state is given by

W(aa o, t)p(0)=|a0>(00|
1 IOt _ aoe—('y/2)te—iwotl2

= ex
T[4+ n(l — e )] P 1 +a(l—e )

(4.41)

We have now constructed a third correspondence with a classical statisti-
cal process. Here the phase-independent variance lies in between those given
by the solutions (3.67) and (4.21); the picture of Fig. 3.1 still applies, but
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now with a circular contour of radius 1/1/2 + n(1 — e~7) representing the
distribution. As we observed for the Q distribution, the quantum fluctuations
added over and above those coming from the reservoir are required by the
commutation relations and the ordering convention underlying the represen-
tation. From (4.29a), (4.31), and (4.41), we have

I{(ata)(®)) + ((aah)(®))] - (o’ (t))a(t))
= ((ata)s (1)) — ((ah)s (1)) ((a)s ()
) Nw

=n(l—e )+ 1. (4.42)

This is the average of the expressions in (4.22a) and (4.22b). The factor “+3”
is the contribution obtained from the boson commutation relation by normal
ordering the operator (afa)g = 1(a'a + aa').

4.2 Fun with Fock States

We have followed the treatment of the damped harmonic oscillator prepared
in a coherent state throughout our discussions of the P, @, and Wigner rep-
resentations. For this example, each of the three distributions has all the
properties of a probability distribution, and we can therefore associate the
quantum-mechanical problem with each of three classical statistical descrip-
tions. We should remember, however, that the distributions obtained from the
quantum-—classical correspondence are not guaranteed to have all the proper-
ties of a probability distribution. We have already seen in Sect. 3.1.3 that the
P distribution for a Fock state is a generalized function, involving derivatives
of the é-function. We now explore the representation of Fock states a little
further.

4.2.1 Wigner Distribution for a Fock State

Let us derive the Wigner distribution for the Fock state |I) using (4.35a) and
the form of the P distribution given in (3.40). We have

Wiaa = 2 [gxe—2r—al? Loar 9" s@)

(a,a") = p e ﬁe NN ()
21

2107 opap

7l XN

21 o > o—2IA17 220" 23

1! ONONH

A=A*=0

(4.43)

A=A*=0
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To evaluate the right-hand side of (4.43) we consider the more general ex-
pression (for any complex constants A, B, and C)

21 ! /
9 6—A|)\|26B>\eC/\* _ 9 eBA 9 ec,\*e—A|,\|2

ONON! N oart
. 8\ o\ 2
_ ,BA,CA v —AA|
e“e (B+B>\><C+8/\*)e
* a ! 2
= eBreC? (B + 5) (C — AN)le™ AN (4.44)
For n <, it can be proved by induction that
o \!
B+ — — AN)!
( + 6)\> (C )
a\""& nl ! a\""*
_ g AR (O — —k(g,. 9 _
(B+ ax) ;::0 R a— it (€= 4 ( * 8>\>
(4.45)
Using this result, with n = [, we obtain
! —A|,\|2eB,\ec,\*
NN
!
. I i
_ _BA,CX 1k AR(C — ANk
e ;;;( Vg ma—mA ¢ )
N e
- —AA|
X (B + (9/\> e
l
_ —AR B CA” _\l—k ! ﬂ I—k(p _ Ax*\k/ k
e eBre ;( 1) k!(l—k)!k!A (B — AN )*(C — AN,
- (4.46)

where in the last line we have changed the summation index, with [ — k — k.
The right-hand side of (4.43) may now be evaluated using (4.46): setting
A =1and B* = C = 2a, the Wigner distribution for the Fock state |I) is
given by

l
®Y zl —2|a|? _1\l—k I l_' 2k
W(a,a*) = ~e I;)( 1) AT 1 1200”" (4.47)

The distribution (4.47) is an ordinary, well-behaved, function. Neverthe-
less, it can clearly violate one of the conditions required of a probability
distribution — it need not be positive. The one-photon Fock state illustrates
this point; for [ =1,
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2
W(a,o*) = ;e_2|a|2(4|a|2 -1), (4.48)
which is negative for |a| < 3.

Note 4.4 It can be shown that Xs(z,z*) is square integrable and, hence,
that its Fourier transform W, a*) is always a well-behaved function; there
is no need for generalized functions in the Wigner representation. To prove
this result we use (4.34) and (4.1) to write

1 * 1 * * ) *
= [l = ¢ [ 22
1 - )
= ;tr [/sz Xy (2,27 )e™* “Tpe_”'a}.

Then, introducing the identity in the form (3.9) and using the cyclic property
of the trace, and the relationship between x (2, 2*) and P(a, a*) [Eq. (3.72)],
we find

1 2 *\[2 1 2 2 * —iz*al —iza
L[ g(en = e [ [y ol et
1 *\ _—iz*a" —iza
= Ftr [/d2a (alpla) /szXN(z,z )e e ]
= tr [p/dza |a) (| P(a, a*)]

= tr(p?).
The last line follows from (3.15). The square integrability of x 4(z,z*) follows
because tr(p?) < 1.

As a simple check on our result for the Fock state Wigner distribution, let

us evaluate (dTa)W and show that it gives the symmetric-ordered average

Hala+ad') = 1(2(ala) + 1) = J (20 +1). (4.49)
From (4.47) we obtain

(oFa),, = /dza W (o, a*)a*a

l
21 ol
Tl ?]ﬂ/dg 2le? 2% |af?
4 k=0
2 ! Al [e3) 2w R
— _Z(_l)l—k__z_'—22k/ dr d¢e—27‘ ,’_2(k+1)+1
(U (kY"1 — k) 0 0
l ' |
= EZ(_l)l—k 5 l 22k27r (k 2_+§)
A T TSR
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The integral over r has been executed by performing k + 1 integrations by
parts. The summation on the right-hand side may now be split into two pieces

by writing
l l l
k—i—l 1 1
Z= —E= ---mg;m

k=1

Then, changing the first summation index, with £k — 1 — k, we arrive at the
result

1 -1
(a*a)wz 212 yi=1-k [(1(—1 2’“+Z —hz)—!zk
= %[21(2 - 42— 1)
=120 +1).

Thus, we recover the symmetric-ordered operator average (4.49) for a Fock
state.

4.2.2 Damped Fock State in the P Representation

Nothing in the derivation of the Fokker-Planck equation for the damped
harmonic oscillator precludes its use in situations where the distribution is
a generalized function, or takes negative values. We certainly lose the corre-
spondence with a classical statistical description under such circumstances,
but the mathematics works just fine. The Green function for the appropriate
Fokker—Planck equation provides all we need to find the time evolution from
an arbitrary initial state; we simply integrate the Green function against the
representation for the initial state. This will work even if the initial state is
represented by a distribution that is more singular than a é-function. For
an interesting illustration we will calculate the P distribution for a damped
harmonic oscillator prepared in the Fock state |I). Recall that a Fock state
is represented by a distribution involving derivatives of a two-dimensional
é-function.

The Green function solution to the Fokker—Planck equation in the P
representation is given by (3.67). Using this result and the distribution for
an initial Fock state [Eq. (3.40)], we have
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Pla, o™ 8) )=yl
= /dQ)\ P(a, o™ |2\, A", 0)P(A, A7, 0)p(0)=|l><l|

1
_ 2
= /d A TRl = e ) exp
21
o Lo 9
i oAgat

o — /\e_';‘te_iw°t|2
(1l — e )

5())

1 9 1
oAt | (1 — e )
 yo—Tt,—iwot|?
X exp {—Ia heTFe | ]e"\'Q}

(1l — e )

A=A*=0
where the integration is performed using (3.37). Expanding the function in-
side the curly bracket,

P(a, a*,t) )=

T ra(l—et) P [_ Al lfl:—vt)]

1 0% g€ M — 7l —e )
W anar! {P’Xp {_W A(l— e ]

y /\a*e—('y/Z)te—iwot ¢ ae—(’y/Z)teiwot
X —_———— | € —_—
P (1l —e ) P (1l —e )

A=A*=0
The derivatives can be evaluated using (4.46), with

e —n(l—e ) and B = C = ae~(1/2)tgiwot

A= A= Al —et)

the P distribution for a damped Fock state is then
Pla, o™ t) )=y
1 { |ae|2 } 1 [e—"’t —na(l - e—vt)]’
= exp|— I

mi{l — e ) (1 — e ) n(l — e )
l - I I |a|2e~t k
P ;0(—1)1 k R —]g{ﬁ(l —e~t) e~ — (1l — e~)] } .

(4.50)

In the long-time limit this expression clearly approaches the Gaussian
describing a thermal state with mean photon number 7. This asymptotic
solution is, of course, independent of the oscillator’s initial state. To follow
the evolution of P(a,a* t),0)=1y¢ for short times, it is helpful to rewrite
(4.50) in an alternative form. We define
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e” " — a1l —e ) and A ae~ (/2

A= (1 — e=7t) e~ —qn(l —e )’

and then (4.50) reads

Pla, o, t) po)=11y 1

1 |2 1 P
= — — -1 -
(1 — e—t) exp[ Al — e“Vt)} 52 (1) kIl — k)!
!
X %Al"k(—AA*)’“(—AA)’“.
Equation (4.46) may now be used a second time, with B = C = 0, to obtain

P(a, 1) p0)=1

_ |af® Loapp 0% e
_m(l—e—”f)exp[ Al —e | 1° anoatt

After resubstituting the explicit expressions for A and A, we have an alter-
native form for the P distribution for a damped Fock state:

P(a, o™ 1) p0y=11y
1 |a)? e — (1l — e )]
TUP et TR — e e= (/2

9! 1 |af2et
* 9alda! {mu —e) P [" Al — e )e " —na(l - e—vm” ‘
(4.51)

From this expression

P * _1 e 0% li 1 —la|? /Ayt 4
(o, 0%, 0) p0y=(1yqt| = e ol Do Jm m‘wte . (4.52)

Equation (4.52) shows explicitly the time-reversed approach (t — 0+) of
P(a,a*t) to its initial form in terms of derivatives of a two-dimensional
é-function.

Note that if 7 # 0, P(a, o t) is actually a well-behaved function for all
times ¢ > 0. Thermal fluctuations destroy the singular character of the initial
Fock state as soon as the interaction with the reservoir is turned on: for short
times the singular distribution representing the initial Fock state is replaced
by a derivative (of order 2) of a very narrow Gaussian whose variance is
growing linearly with time. Nonetheless, P(a, a* t) remains unacceptable as
a classical probability distribution for a finite time after ¢ = 0. During the
early part of its evolution it takes on negative values — for example, for [ =1,
(4.50) has the form
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. 1 |af?
P(a,a ,t)p(o)=|l)<l| = mexp —m
et la)2e=7
1— 4.5
e R = D

This distribution takes negative values inside the circle ||? = (1 —e™ 7)1~
n(e? — 1)] during the time interval 0 < v¢ < In(n + 1) — In 7.

Exercise 4.4 Show that (4.50) gives
(ata)(1) = (37a(®)p = e~ +a(1 - e™),

in agreement with (1.70).

4.2.3 Damped Fock State in the Q and Wigner Representations

We have seen that the @ distribution is proportional to the diagonal matrix
elements of p in the coherent state basis, and therefore it cannot become
negative [Eq. (4.6)]. Indeed, the Green function (4.16) and the distribution
(4.10) representing an initial Fock state in the @ representation are every-
where positive; it is clear then that Q(a,a t),0)=y( for a damped Fock
state will be nonnegative at all times. To calculate this distribution explicitly
we use (4.16) and (4.10) to write

Q(a, ™, 1) p0)=11y (1)
Z/dsz(a,a*,tI/\,/\*,O)Q(/\ A*50) 500y =11y 11

—Zt,—iwot
2 _Ja—Aemztemo | 1 e AP
/d 1 p— exp -

i+ 1)1 — e ) I
xp| 1P
T ><1 o) P TRy A e
11 [ 2 g€ M+ (A + 1)(1 — e )
A
ﬂl/dM/\' eXp[ A (m+1)(1—e )
ar e~ (V/Dte=iwot 1 o* ) e—(71/2)t giwot
(R+1)(1 —e ) ]

X exp[
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1 |af?
Tt D1 —et) P [_ @+ 1)1 — e—vt)]

11 2lt1 €M+ (A +1)(1—e )
X - l'/ drr exp[ (T—L-f- 1)(1 _ e—'yt)

2ﬂd 2|ale= (/2
X/o ¢€Xp[(ﬁ+1)(1—e—7t)rcos J,

where r = ||, and ¢ = arg(A\) — arg(a) + wpt. The angular integral gives a
Bessel function. With this Bessel function expressed in its series representa-
tion we find

Qo o™, 1) p0)=11y 1|

1 o [_ |or|? }
it D —e) P T mE D) = et

e+ (n)+1)(1—e )
x;ﬁ/ drrm“exp[ 2 =0 }

2k
rlale (v/2)t
X2WZ [n+1(1—e )

_ 1 [_ o2
TaEr DI e P T mr D - >J

I 1 la|e=(1/2)t 2
< =)

X Z/Wdr p2(k+0+ 1 exp | —r2 1_+ n{l—e™) )
0 (n-l—l)(l —6_7t>

o~

The remaining integral is performed by repeated integration by parts and
gives

Qlo, 0%, t) p0)=11y 1)
B 1 [ |af?
T+ DA —e ) P T my (- e‘”t)}

131 laje (/20 2k (A+1)(1 — e k+l+1
Xﬁkzz()(k!)2[(ﬁ+1)(l—e—vt)J v [ 22 J

The @ distribution for a damped Fock state is then
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Q (o, &, ) p0)=11y 1|

= - o J1[@+na-em)’
= 71'[1 + ﬁ(l — e_‘yt)] exp |:— (’I’—l + 1)(1 _ e—’yt):| _l— [ 14+ ’ﬁ(l — €_7t) :|
(k +l laf2e=t k
" Z { +1)(1—e )1 +n(l - e—vt)]} ' (4.54)

Again, this expression clearly shows the evolution to a Gaussian distri-
bution describing a thermal state in the long-time limit — now with the in-
creased variance (i — fi+ 1) discussed below (4.21). Our result does not have
the most convenient form, however, since the summation includes an infinite
number of divergent terms in the limit ¢ — 0. Of course, Q(«, a*, 0) does not
diverge; this is prevented by the exponential multiplying the sum. It would
be nice to have a form that cancels the divergent sum explicitly to reproduce
the @ distribution for the initial Fock state in an obvious way. This can be
accomplished using the following result:

i (kD! 4 _ d ( X1 ka)
2 = dot k!
(k1) dxt \ = k!

k=0
dl | x
dxl(x@)
_Z ! - kdl k e
k'l— (—kN"  dzk©
1
. N,
=e kzzo—w_k)!gx. (4.55)

The third line follows from (4.45), with A = -1, B = C = 0, and n = 1;
also, in the last line we have changed the summation index, with | — k — k.
Using (4.55), equation (4.54) may be recast to give an alternative form for
the Q distribution for a damped Fock state:

Qo &, 1) p(0)=11y 1]

B 1 a2 1[(A+ 1)1 —e)]
L+ a(l - e )] e"p[‘lmu—e—vw}l‘[ T+ na(l—e) }
Lo o 2e=(1/2) .
x kz=o R = k)!H{(m D1 e 1 Fa(l = e—vt)]} - (456)

Equation (4.56) produces the correct initial distribution in an obvious way
(only the k£ = [ term in the sum survives), and it also produces the Gaussian
form in the long-time limit. It is clearly everywhere positive; for example, for
=1,
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. 1 la]?
Qe Dol = T 7 g o) &P [_ 1+l - e‘”t):'
X {1 o loffem™ } (4.57)
1+na(l—et)2f’ '

which is to be compared with the result (4.53) for the corresponding P dis-
tribution.

Exercise 4.5 The Wigner distribution can be derived in a similar manner.
Show that the Wigner distribution for a damped Fock state is given by

W (e, ™ t) p0)=1y 1|

_ 2 2|af?
T A+ 20(1 — e-1t)] P [_1 ¥ 2n(l - e‘Vt)}
1 e U T+ —et))”
“7 ;H)l Ty HQ%{ T — }
R R la|2e= 7t r
% ; ri(k —r)! ﬁ{ 7+ 3)(1—e )1+ 2n(1 - e‘“ft)]} '

(4.58)

Like P(a,a*t),0)=|i)(, this distribution can be negative. Analyze its be-
havior for [ = 1.

4.3 Two-Time Averages

In Sect. 1.5 we obtained expressions for calculating two-time averages from
an operator master equation. We have now seen that the operator master
equation can be converted into a partial differential equation — in the case of
the damped harmonic oscillator, a Fokker—Planck equation — by setting up a
correspondence between p and a phase-space distribution function. How can
the formal operator expressions given in Sect. 1.5 be cast into phase-space
language to allow us to calculate two-time averages at the “classical” end of
the quantum-—classical correspondence? This is the question we now address.
Answering the question in a general way requires that we first develop a little
more formalism. The notation of this formalism is itself a bit burdensome, and
certainly some of the calculations we eventually perform with it are rather
arcane. It is perhaps helpful, then, to look ahead to (4.100a) and (4.100b).
These state the result used most widely in applications; namely, that normal-
ordered, time-ordered two-time averages, such as those needed to calculation
an optical spectrum or intensity correlation function, are given by phase-
space integrals in the P representation analogous to those met in classical
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statistics. The effort expended with the formalism allows us to generalize
from this result in two directions: to determine which two-time averages are
given by similar phase-space integrals in the () and Wigner representations,
and to see how derivatives of the phase-space distribution must be taken, as
in Sec. 4.1.3, if inappropriately ordered operator averages are considered.

4.3.1 Quantum—Classical Correspondence for General Operators

Consider the relationship defined by (3.70) and (3.72) between the opera-
tor p and the distribution P(a,*). There is actually no reason to restrict
this relationship to density operators; we can generalize it to set up a cor-
respondence between any system operator O and a function F((ja)(a, a*) (we
use “function” remembering that this may be a generalized function). As a
generalization of the characteristic function x (2, 2*) we define

ﬁ‘éa)(z, ") = 7rtr((§e””fr eiz”); (4.59)
the generalization of the P distribution is then
(a) *\ — 1 2 f(a) *\ ,—iz¥a* —iza
Fy (a,a):; Az F57 (2, 2")e e e, (4.60)
with the inverse relationship
Fgl)(z, 2*) = /dza Fé“)(a,a*)e”*a*eim. (4.61)

Taken together (4.59) and (4.60) set up a correspondence between the oper-
ator O and the phase-space function Fg‘)(a, o*). In place of the relationship
that gives normal-ordered moments in the P representation [Egs. (3.71) and
(3.74)] we now have the more general result

l orta F(fL)
m 8(iz*)P(iz)?" O
1 opte

_ - 2 (A'l) *\ iz¥a* iza
N ﬂ@(iz*)pa(iz)q/ FoFg (man)e™ e

Il

tr(OaTPaq) (2,2%)

z=2*=0

z=2z*=0

= %/dza F((ja)(a,a*)a*poﬂ. (4.62)

Within this scheme the P distribution is defined with

IIl

A~ J |

Xy (2:57) = ZE9 (5, 2%), (4.632)

Pla,a™)

Il

F{® (a,a”). (4.63b)
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We have slipped in some changes here that need an explanation: a factor
of  has been added in (4.59) and the subscript N on x, has been replaced

by the superscript (a) on F*

mind.
Consider an operator A expanded as a power series of terms written in
antinormal order:

. This has been done with the following in

A= A(a,d ZC’ )a%a'?, (4.64)

where the C{% are constants. Then, from (4.59),

ﬁ’/ga)(z,z* :WZC(a)tr J”’eiz*afeiz“aq)

or+a iz*a' iza
—WZ pqazz o0 ———————tr(e"* * %),
Introducing the expansion (3.9) for the unit operator,

(a) *\ (a) orta l/ 2 iz*a' iza
Fi(2,27) WZCP‘Q—__—_—a(iz*)pa(iz)qtr - d“X| Ay (Ale €

p,q
orta e
— (a) 2y 12" AT iz
pzqcp’q 8(iz*)p6(iz)q/ FAem e
ap+q
pz SR 8(2).

We substitute this result into (4.60) and integrate by parts to obtain

(a) _ a orta —iz*a” j—iza
F (a (0% ) ZC( )/ [W(S(z):’e e

opta e e
(a 2 —iz¥a* —iza
C /d z6(z 807 70(iz)" ———e e .
Thus,
(a) E C{Da*Pal = Ala,a*). (4.65)

Equations (4.64) and (4.65) state that, for operators written as an anti-

(a)(

normal-ordered series, F(j a,a*) is obtained by replacing the operators

a and af in that series by the complex numbers a and a*, respectively.

Fé )(oz o) is called the antinormal-ordered associated function for the oper-

ator O. The superscript (a) denotes the antinormal-ordered associated func-
tion. The factor of 7 in (4.59) leads to the direct association of functions and
operators expressed by (4.64) and (4.65), rather than with a 1/7 multiplying
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the right-hand side of (4.65). We must be careful now not to become confused
between our “normals” and “antinormals”. In (4.63b) we see that P(a,a*),
which is used to calculate normal-ordered averages, is, apart from a factor
of 7, the antinormal-ordered associated function for p. This relationship will
become clearer as we follow the idea of associated functions a little further.

Analogous definitions of normal-ordered and symmetrically ordered asso-
ciated functions for ar(l c))pera,tor can be given. We define the normal-ordered

n

associated function Fy (a, *) in terms of its Fourier transform ﬁ‘é")(z, z*)

introduced as a generalization of (4.1): We define

Fén)(z, ") = Wtr(OAeimeiz*”T), (4.66)
and
F™(a,a*) = L @2z FV (2, 2%)e " et (4.67)
O ) - 7T2 é ) ) .

with the inverse relationship
ﬁ‘én)(z,z*) = /d2a Fé")(a,a*)eiz*o‘*eizo‘. (4.68)

In place of the relationship that gives antinormal-ordered moments in the @
representation [Eq. (4.5)], we have

. 1 N
tr(Oa%a'?) = ;/d2a Fé o, a®)aPadl. (4.69)

The Q distribution is proportional to the normal-ordered associated function
for p:

X4 (2,2%) = ~,§")(z,z*), (4.70a)

Qa,a™) =

A==

F{(a,a"). (4.70b)

Similarly, the symmetric-ordered associated function Fg)(a,a*) is de-

fined in terms of its Fourier transform ﬁ‘g)(z, z*) introduced as a generaliza-
tion of (4.25): We define

ﬁ’és)(z, Z¥) = ﬂtr(OAeiz*aT“m), (4.71)
and 1
Fg)(a,a*) = ﬁ/d% ~g)(z,z*)e_iz*o‘*e_iz". (4.72)

with the inverse relationship

Fi)(2,2%) = /d2a FS) (a,00)e e, (4.73)
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In place of the relationship that gives symmetric-ordered moments in the
Wigner representation [Eq. (4.31)], we have

tr [O(anaq)S] = -:r—/dzoz Fés)(a,a*)a*paq. (4.74)

The Wigner distribution is proportional to the symmetric-ordered associated
function for p:

* 1~ s *
Xg(2,2") = ;ng ) (2, 2%), (4.75a)
1
W(a,a*) = ;Fp(s)(oz,a*). (4.75Db)

Relationships between the various associated functions, and between their
Fourier transforms, can be obtained as generalizations of earlier results: equa-
tions (4.9) and (4.34) generalize to give

~(n * — L1212 & * —1z|? & *
FSV(z,2%) = e 3 F) (2, 27) = e F (2, 27), (4.76)

Egs. (4.7) and (4.35) generalize to give

My ey _ L[ oy acal? @)y s

Fy (a,a)—w/d Ae FSV (A7), (4.77a)
(s) *\ z 2 —2|>\—oz|2 (a) *

F&(a,0%) = 7T/az e FO (0,07, (4.77b)
(n) oy _ 2 [ oy op—al2 () y gk,

F&(a,a%) = 7T/d Ae FOON); (4.77¢)

finally, Eqs. (4.11) and (4.36) generalize to give

(n) 19 e 0\ p@ (0. o
F (a,a)—exp<2aaaa )F (aa)—exp(aaaa* Fy (o, a).
(4.78)

We can now understand the relationships between the various associated
functions for p (the P, Q and Wigner distributions) and the ordered operator
averages that are calculated from their moments in a more general context.
First, we note the extension of the result expressed by (4.64) and (4.65) to
normal-ordered and symmetric-ordered series. For an operator N written as
a normal-ordered series,

N = N(a,a") ZC(")aT”aq (4.79)

the normal-ordered associated function is obtained by replacing a by « and
al by o*:
=> CMarPal = N(a,a*). (4.80)
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For an operator S written as a symmetric-ordered series,

S = S(a,a ZC’S) (a'Pa?)g (4.81)

the symmetric-ordered associated function is obtained by replacing a by a
and a by o*:

ZC(S a*Pa? = S(a,a). (4.82)

Now, if O, and O, are arbitrary system operators, and Np = Ny(a,al) = 0,
is the normal-ordered form of Oz, we can apply (4.62) to each term in the
series expansion of Na(a,a') to obtain

tr(Olég) = tr[01N2(aa aT)]
1 a * *
;/d2a Fél) (a, (e )N2(a7a )

-1 / PaFP (00" FY) (0,0%), (4.83)
where the last line follows from (4.80). Equations (3.74) and (4.5), giving
normal-ordered and antinormal-ordered operator averages as moments of the
P and Q distributions, respectively, are special cases of this more general re-
sult. With O; taken as p, moments of the antinormal-ordered associated func-
tion for p give the averages of operators O, written in normal-ordered form.
Alternatively, with O, taken as p, moments of the normal-ordered associated
function for p give averages of operators 0, written in antinormal-ordered

form. A similar result can be obtained by writing O, as a symmetric-ordered
series and using (4.74) and (4.82):

tr(0,0;) = /d2aF &) (@, )F( )(a a®). (4.84)

The relationship (4.31) between symmetric-ordered operator averages and
the moments of the Wigner distribution is a special case of this result.

Note 4.5 The association given by (4.79) and (4.80) is easily proved following
an argument analogous to that used to establish (4.65). A similar proof of
the association given by (4.81) and (4.82) is not so straightforward because
partial derivatives with respect to (iz) and (iz*) act in a rather complicated
way on eiz"al Fiza (see Sect. 4.3.5). A simple proof can be devised, however,
by arguing backwards as follows: Set F )( *) = a*Pad. What, then, is the

operator O having this symmetrlc-ordered associated function? The answer
to this question can be obtained by converting everything into normal order,
using (4.78) to write
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() L0\ wpoa
FO (a, ") = eXp<28a8a*>a !

min(p,
_ ZM)ll p! ¢! epk
- k — k! —
= 28kl (p—k)! (g —k)!
Then, from (4.79) and (4.80),
Zp ii ¢ tp—kga—k
. R |

But (4.33) tells us that this is just the symmetric-ordered operator (a”’aq ) g-

4.3.2 Associated Functions and the Master Equation

We saw how to derive an equation of motion for the P distribution to replace
the operator master equation in Sect. 3.2.2. Generally, we will refer to such an
equation as a phase-space equation of motion. We now see what this equation
of motion looks like in the language of our generalized formalism of associated
functions for arbitrary operators.

Let us start with a rather formal summary of the derivation of the equa-
tion of motion for the P distribution. From the operator master equation
(3.1) we write

%tr [p(t)e“*“T eim] =tr [(lﬁp(t))eiz*aT eiz“], (4.85)

which, after substituting the explicit form of £ for the damped harmonic
oscillator, is just (3.76). In the language of associated functions (4.85) states
that P
m(a) x\ _ o(a) *
&Fp&)(z,z )= Fﬁz(t)(z,z ) (4.86)
The Fourier transform of this equation gives the equation of motion for the

antinormal-ordered associated function for p — the P distribution (multiplied
by ):

9 (a
8tF’E t))(a a*) = Fl(:p)(t)(a o). (4.87)

Formally, this is the Fokker—Planck equation. But the next step is needed to
reveal its explicit form as a partial differential equation; this is the step where
most of our effort was spent in Sect. 3.2.2. We must express Fé )(t)(a, a*) in

terms of F;E?t))(a’ a*), with the action of £ on the density operator p trans-
formed into the action of some differential operator on the associated function
for p. Leaving out the details, the aim is to write

(a) 5 _ (e 0 0 N @,
Fﬁ(:;(t) (o, a) = L )<a,a B %> Fp?t)(a,a ), (4.88)
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where L(“)(a, a¥, 3%, %) is a differential operator associated with L. For any
particular example this must be found from an explicit calculation similar to
the one in Sect. 3.2.2; for the damped harmonic oscillator

0 0
(a) * 22
L (a,a "oa’ 8a*>
2

(L i) ot (L i) pare” + A (489)

Now (4.87) becomes

8 (a * a * a 6 (a) *
—6—tFp(t))(a,a ) = L )<C¥,C¥ ' 9a 5;) Fp(t)(a,a ), (4.90)
and setting
* 1 a *
P(a,a* t) = ;Fé(t))(a,a ), (4.91)

the equation of motion for P(a, a* t) is

0
— P(a, 0 t) = LY a,a
5 (a,a’t) (a,a,

0 0

da’ da*

)P(a, a’,t). (4.92)

More generally, we may write (4.88), not just for density operators, but
for any operator O. Then, by induction,

o o\]"
Fl(;?é(a,a*) = [L(“)<a,a*, 3" %)] Fg‘)(a,a*), (4.93)
from which it follows that
é:;(ET)é(a? a’) = eL(a)(a’a*’B%’ag*)TF((ja)(av o). (4.94)

This result, and (4.83) from the last section, will serve as centerpieces in
our conversion of the expressions from Sect. 1.5 for two-time averages into
phase-space form.

Of course, we define the differential operators L(")(a,a*, 3%, 6%*) and
LO(a,a*, 2, 52+) which govern the dynamics of the @ and the Wigner
distributions, respectively, in an analogous manner. For the damped har-
monic oscillator L(")(a, a, a%v 3%) is given by (4.89) with the replacement
7 — 7+ 1, and L(s)(a, a’, 6%, 3%[*) is given by the same expression with the
replacement 7 — 7 + 3.
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4.3.3 Normal-Ordered Time-Ordered Averages
in the P Representation

We first set ourselves the task of finding a phase-space form in the P repre-
sentation for the average (1 > 0)

(@P()N(t + 7)a?(t)) = tr{(e“ [a%p(t)alP)) N}, (4.95)

where the expression on the right-hand side is obtained from (1.102); N can be
any system operator written as a normal-ordered series [Eq. (4.79)]. Equation
(4.95) provides an expression for calculating a general normal-ordered, time-
ordered, two-time average — every a' to the left of every a, every af(t + 7)
to the right of every af(t), and every a(t + 7) to the left of every a(t). These
are the averages that most interest us for applications in quantum optics.

Using (4.83) and (4.94), we write the average (4.95) as the phase-space
integral

()N (t +7)a’(t)

= /d2 Fé:; (£ arp(tyate) (O O )FI(V”)(a a®)

/dz L< (oo™, £, 52)7 (@) (a,a*)]F<”>(a a). (4.96)

adp(t)atr N

Then, from (4.60) and (4.59),
Fég,),(t)afp (,a") = /d2 Faqp(t) i (2, Z*)e_iz*ake_im
— /dZZ rtr aq Tpeiz"aT eiza] e—iz*a*e—iza

P T N ia* * i
— __E/dZZ Ttr p(t)a‘i'pezz a ezzaaq]e iz7a’ —iza
e

1 2 orta - (a) R
7/“[Wpr‘o<z,z> e i
Substituting for F(?t))(z,z*) from (4.61), we have

(a) (a) *\ 127 AT iz
Faqp(t aJTP( ) /d2 l: pa ZZ) /dz/\ Fp(t)()\’)\ )6 e )‘:l

—iza
6

— __/dZ)\ F(?t)) A )\*))\*p)\q/dQZez’z*(A*—a*)eiz(A—a)
=5 / PAF (L ANPA6D (A — a)

= F\) (0, 0%)a* o, (4.97)
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We now substitute this result into (4.96) to find (7 > 0)
(@ (t)N(t + 7)a’(t)
! L aa", 2, (a) ") (0. o
:;/d2 [ (oo, w7 F(t)(aa)a aq]FN (o, ™).
(4.98)

At first sight, this expression may seem to be a rather useless formal result.
However, a little more work casts it into a simple form — a form which might
already have been anticipated. In simpler notation, (4.98) reads (7 > 0)

(@P()N(t+7)a’ (1)
= /dza [eLm)(o"a*’%’%)TP(a, a, t)a*paq] N(a* ), (4.99)
where we have used (4.91) and (4.80). Now the action of the propagator
exp[L¥(a, a*, Z, 52:) 7] on the §-function 6 (e — ap) generates the Green

function for the equation of motion (4.92). This suggests that we should write
the operand of the propagator in (4.99) as

P(a,a* t)a*Pal = /dzag 8@ (a — ag) P(ew, o) o P o,

whence (7 > 0), in the P representation a normal-ordered, time-ordered,
two-time average is calculated as

(@ (t)N(t + 7)a’(t
/d2 /dzaoa PalN(a,a*)P(a, a, T|ag, of), 0) P(ag, o, t)

= ((a*Pad)(t)N (¢ +7'))P, (4.100a)
where we have introduced the notation
((erPat)(t)N(t+ 7)),
/d2 /d2a0 atPalN(a,a*)P(a,a* t + T; a9, g, t),
(4.100b)
and
P(a,a*t+ 7;a0,a(,t) = P(a, o, T|ag, af, 0) P(ag, ag, t) (4.101)

is the two-time, or joint, distribution. Thus, the correspondence with a clas-
sical statistical description has been extended one step further. Equation
(4.100b) is formally equivalent to the formula for calculating two-time aver-
ages in a classical statistical theory.
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4.3.4 More General Two-Time Averages
Using the P Representation

We have seen that antinormal-ordered one-time averages can be calculated
using the P representation [Sect. 4.1.3]; although, with some inconvenience,
since the expressions for these averages involve derivatives of the P distribu-
tion. The situation is similar when we consider two-time averages that are
not in normal-ordered time-ordered form. To see how (4.100) must be modi-
fied to give these averages we will seek a phase-space expression using the P
representation for the general average (7 > 0)

<Or,q,m(t)N(t + T)Ol \Ds A ) = {( [OT,p np< )Or,q,m])N}v (4.102)

where .
Oklykz,h = G'Tkl akzaTk:«;’ (4.103)

and N is again the arbitrary normal-ordered operator defined by the series
expansion (4.79). Once we have a solution to this problem, results for various
combinations of normal-ordered and antinormal-ordered operators will follow
with little extra effort.

We begin as before, using (4.83) and (4.94) to write

(Orqm®)N (£ +7)0! . (1))
- l/dQQ[eL( oot a5 ) s (0" )]F(n)(a a®)

s O; P, np(t)or q,m N
1 (@ (a)

— d2a 6L (aa,@a,sa d2 ZZ*
T Ol p, np(t)O,. q, m( )

Xe-”z*a*e—mJ F(”)(a o*); (4.104)

the second line follows from (4.60). Our aim now is to express the function

Néal),,,,np(t)ér,q,m(z’ z*) in terms of F,S?t))(z, z*) and its derivatives. Using (4.59)

and (4.103), we have
(a) *\ __ n_ip,.s tr g tm _iz*al iza
Fél,p,np(t)ér,q,m(z’z ) = mtr[a”a'Pa’p(t)aalal™ e * €]
= mtr [p(t)a”aanmeiZ*aTeizaa”afpas]
omtn e b
= ———mtr[p(t)a"a%e * e*2aiPa’],

A(iz*)"0(iz)
and then, from (3.78),
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() .

FéLvP,SP(t)ér,q,m<z’ z )
6‘m+n

~ Oiz)"0(i2)"

am+n 9 q L

= . % ir iz*a' Jiza ,ip s

6(22 ) 8(22 ( ) + ZZ) Tl'tr[p(t)a e e atPa ]

ﬂtr[p(t)a“eiz*“te”“(a +i2%)1a'Pa’)

8m+n

(iz*)"0(iz)

- s (o ) ™

= am+n (8 > < + zz)pwtr[p(t)a”e”*“Te”“as]
77 (o )
FD (2, 2%).

()
X Bz Aiz) P
We write this to reflect the order of the operators in (4.103):
- (a) . om 0 N\ o
F A =— — [ ——— -
Ot 3200 ? ) = iy <6(iz) +”> a(iz")"

on A N
X Bz (6(iz*) “Z) By e (#2 )
(4.105)

7TtI‘ T + ZZ) iz*al ez’zaas]

8m+n

8r+s

We now substitute the Fourier transform of Fé?t))(a,a*) for F (t)(z z*) to
obtain

(a) *
ES1 o op®0nan® )

o (9 LN (0N

T (izr)™ \9(iz) d(iz*)" 0(iz)" \O(iz*) d(iz)°
X/dQ)\ Fp(?t))()‘? )\*)eiz*/\*eizA

— 2 (a) *\)8 [ ) * 9 ny*T 9\ *M_iz* A" iz

_/d AFS (A A <,\ m) A" A (’”a») AFm et

2 *mM 0 g *xT\ 7 * 0 s p(a) * 7,z *AY _izA
= [ (A= g ) ATA (X - o1 /\Fp(t()\/\) ¢,
(4.106)

where the last line follows after repeated integration by parts. When we
use this result in (4.104) the integral with respect to z gives a é-function,
8@ (a— )), and the integral with respect to A is then trivially performed; we
find (r > 0)
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<Or,q,m (t)N(t + T)OAL,p,s(t»

1 (a) x 8 _8 0 \?
—— d2a eL a (a,a ,m,%—*%a*m o — a*r
T da*

n * 2\’ s (a) % (n) .
Xa ' {a — 0 e} Fp(t)(a’a ) FN (o, ) (4.107)

If we proceed, as below (4.98), to express this result in terms of P(ag, of,t)
and P(o, a*, 7|, o, 0), (4.107) becomes (1 > 0)

<OAT7qym<t)N<t + T)OAjz,p,s (t»

= /an /d2a0 N(a, a*)P(a, ", T|ag, gy, 0)

m d\" . 2\
X af <a0 - 87“3) ag ap™ (a(’j — Tag) ao’Plag, g, t).
(4.108)

The replacement of a'? and a? by differential operators, below (4.104), may
also be performed in the reverse order; this gives an alternative to (4.108) in
the form (7 > 0)

<OA7’7‘17m(t)N(t + T)Ojl,p,s (t)>

= /dza/dzao N(o,a™)P(a, o, T|ag, oy, 0)

n * 0 P s __xm 0 ? *T *
X " | afy — o ap’ay g — 07‘4’6 ag P(ag, o, t).
(4.109)

With p = ¢ = 0, both of these expressions reproduce the result (4.100)
for the average (a'™+"(t)N(t +7)a™t5(t)). When p # 0, or g # 0, derivatives
of P(ag, ag,t) are involved, as in (4.23). Equation (4.23a) can be recovered
from either (4.108) or (4.109); for example, with ¢ # 0, N = af?, 7 = 0, and
r=m =n =p=s = 0. Similarly, (4.23b) can be recovered with p # 0,
N = al, 7=0,and r = ¢ =m =n = s = 0. There are other combinations
of parameters that also recover these earlier results.

A number of results for two-time averages of operators expressed as
normal-ordered and antinormal-ordered series now follow from (4.108) and
(4.109). We introduce the normal-ordered series

Ny = Ni(a,a') = ZCl(Z?anpaq, (4.110a)
P

Ny = Ny(a,al) = Z Cé;;a“’aq, (4.110b)
P,

and the antinormal-ordered series
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A, = Ay(a,al) = ZC(%‘I tp, (4.111a)

Ay = Ay(a,al ZC(%‘I 7 (4.111b)

Then, applying (4.108) term by term, we prove the following (7 > 0):
(NN (t +7)Na(2)

= /d2a /d2a0 N(a, a*)P(a, o, T|ag, og, 0)

by3 8 * by * a *
x Ny ao—(—aa—s,ao Ny ao,ao—aTQO P(ao,ao,t),

(4.112a)
(N ()N (t + 7) Az (1))
/d2 /d2a0 a,a*)Pla, o, T|ag, ag, 0)
9 .
><N1 oo — dar *,ao A2 o, af — B P(ag, g, t),
(4.112b)
(A1 ()N (t + 7)Na(t))
= /d2a /d2a0 N(a,a*)P(a, o, Tlag, a5, 0)
o N\« N 0 X
X Z;(ao - mva())]\&(aﬂaao - %})P(ao,aoﬁ)a
(4.112¢)
(A ()N (t+7)As(t))
= /dza /d2a0 N(a,a*)P(a, a*, 7|, g, 0)
a * * 8 *
x 71’1<ao - ﬁ,%)zz(ao,ao — 87%) P(ag, g, t).
(4.112d)

The arrows indicate whether the power series are to be written with the
differential operators placed to the right or to the left. Equation (4.109)
allows the order of the functions Ny, Na, A1, and As to be reversed in these
expressions.

Note 4.6 We have not exhausted all combinations of normal-ordered and
antinormal-ordered operators here. 1f N is replaced by an antinormal-ordered
series [Eq. (4.64)], it can be shown that N(a, o*) may be replaced in (4.112a)—
(4.112d) by either A( *, «a ) or A(a a* — —) The resultlng expressions
reproduce (4.23a) and (4.23b), respectively, when Ny = Np = =Ay, =1
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and A = a%'?. To prove this, use the relationship between Fén)

Flga)(a,a*) given by (4.78).

(a, a*) and

4.3.5 Two-Time Averages
Using the Q and Wigner Representations

Just as the operator averages corresponding to the moments of the single-
time distribution vary from one representation to the other, so too do the
averages corresponding to the moments of the two-time, or joint, distribution.
In the @) representation a calculation parallel to that of Sect. 4.3.3 shows
that antinormal-ordered, reverse-time-ordered, two-time averages are given
by (1 >0)

(@?(t)A(t + 1)a'?(t)) = ((a*Pat)(t)A(t + T))Q, (4.113a)
with
(@Pan DA+ 7)),
= /d dPag P ad A, a*)Q(a, a* t + 75 g, ), 1),
(4.113b)
and
Qla,a* t + 7500, o, t) = Q(a, &, 7|, af, 0)Q(ao, afy, t), (4.114)

where A is any operator written as a series in antinormal order [Eq. (4.64)].
More general averages not of the antinormal-ordered, reverse-time-ordered
form involve derivatives of the @ distribution after the fashion of (4.112a)-
(4.112d).

Exercise 4.6 Show that (7 > 0)
(A1(O)A(t + ) As(1)
/d2 /d2a0 a, a”)Q(a, o, T, af), 0)
X A1<a0, af + ai()) A2<a0 + 86* , a0> Q(ao, a5, t),

(4.115a)
(A1 () A(t + )Ny (t

/d2 /d2a0 a, a”)Q(a, o, Ty, oy, 0)

1o} 0
X Al(ao,ao + 6_>N2<a0 + 5= By 1 Q& )Q(ao,aa,t),
a0 (4.115b)
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(N1 (£)A(t + 1) A (1))
= /d2a/d2ao Ao, a")Q(a, o, Ty, ag, 0)

— % a ~ a * *
X N1<a0, ag + (97@0) A2<OZO + 50737 Oll')) Q(OlOa Qo t)a

(4.115¢)
(N1 (O)A(t + ) No(t))
- [ [ a0 Ata, a0\t o, rla, 04,0
X N1<a0, aO + §>N2(a0 + 88* ) O‘S) Q(ao, O‘Sa t)'
(4.115d)

As mentioned in Note 4.6, if A is replaced by an operator N = N (a,al) writ-
ten as a normal-ordered series, A(a, a*) may be replaced in these expressions

. 7 8 X7 8 . .
by either N(a + 357 a*) or N(a, o* + %). From the resulting expressions
we can recover (4.24a) and (4.24b) by setting A; = Ay = Ny = Ny = 1 and
N(a,a') = afPad.

We might expect the operator averages that correspond to moments of the
two-time distribution in the Wigner representation to be some rather tangled
mess. The symmetric-ordered operators related to moments of the one-time
distribution are themselves a little imposing beyond the first few orders; how
must we distribute the “¢’s” and “¢ + 7’s” within the terms of the symmetric
operator sums [Egs. (4.29)] to come up with the two-time operator whose
average is given by a double integration like (4.100) or (4.113)? The answer
to this question is found by studying Sect. 4.3.3 a little more carefully to
find out what really makes the calculation there work. Needless to say, the
extension of this calculation to two-time averages calculated in the Wigner
representation is going to call for a little more algebraic muscle.

First, note that a sum of averages (7 > 0)

Z(O() (t+7)0 Ztr{ £710,p(t)04)) S} (4.116)

can be written as a phase-space integral analogous to (4.96):
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Z(O'( £)5(t + )05 (1))

2 L(s> Dcoc, s * (s) *
/d oo Z,,ngu)o a)}Fs‘ (e, @7),
(4.117)

where we have used (4.84) and (4.94), and S denotes any operator written as a
symmetric-ordered series [Eq. (4.81)]. Now, the point on which the calculation
of Sect. 4.3.3 turns is found in the fourth line of the equation below (4.96); if
we can substitute F (st))(z z*) for Fé&))(z, z*) here we will be able to proceed
in a parallel calculation to a result analogous to (4.100) — with W replacing
P, and S replacing N. But to connect such a calculation with (4.117) we must

answer one question: What operators O; and O; must be chosen so that

5 0007 = e
2 50,0005 ) T BlizPa(iz)T P\ ?
4,J

With the answer to this question the two-time operator average obtained
from moments of the two-time distribution in the Wigner representation will
be the average (4.116).

The key to an answer lies with the following observation. Using (4.71)
and the Baker-Hausdorff theorem [Eq. (4.8)], we find

O ms) (,
3Gz o0
9 iz*af+iza
a io* ot 11,02 %t =
— 7Ttr ¢ 82|z| ei7epiz e _‘_e—§Iz| etz al giza

= §7rtr{p(15)[(a - %iz*)eiz*awiza + gi7"al Hiza (@ + 3iz")]}

%[Fa(:%t)( ) + F((t))a (Z, Z*)], (4118&)

and, in a similar fashion,

0 s * (s)
5y b (3:2) = 31T (2 2) + Fg i (2027)] (4.118b)

Also, if we wish to obtain an answer in a form that preserves the relation-
ship to operators written in symmetric order, we must order the differential
operators appearing in (4.118) in a corresponding fashion. Thus, we write

6P+q 9P 99
8(iz*)pa(iz)q = (a(iz*):v a(iz)Q>Sv (4.119)
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where the right-hand side is the average of the (p+ ¢)!/(plg!) orderings of the
p differential operators 8/9(iz*) and the ¢ differential operators 9/9(iz). Now
the answer to our question is accessible. To reach it, however, still requires a

little combinatorics. The final step is left as an exercise:

Exercise 4.7 Use (4.118a}, (4.118b), and (4.119) to show that

oprta = (s) . 1 ptaq p+a\ 20) .
a(iz*)pa(iz)q_Fp(t)(z’z )= opra Z( k )F(a“) o(t): aq)(k>( z2*),

k=0
(4.120)
with
‘ 1! . . .
(aTP p(t) aq)é ) = (pp+qq)! Z Op+¢Optq—1 Ok+1p(t)O - - - O1,
0;
(s} (4.121)

where the summation in (4.121) is taken over all different permutations
O - Op+q of p creation operators and ¢ annihilation operators — i.e. p(t)
is placed into each term of (a“’aq) k places from the extreme right.

Equation (4.120) now allows us to follow the steps that led to (4.97) to
obtain the corresponding result

1 2 +q) ) FO (0 a)a?
pta ;_(J( k )F(aw;p(o;aq)g)(a o) = Fp(aafaal.  (4.122)

The series of operators O; and Oj appearing in (4.117) must now be chosen
to connect with this result. The choice is fairly obvious from the associated
function that appears on the left-hand side of (4.122); we have

s 2 (7L W nsies )
k=0
pt+q 19!
B 2”1” kzo (p J’fr q) (pp+qq)!

xS (Opra(t) -+ Oxsa ()S(t + )0k (t) - - O (1)

{05}
_ ;”Z*"(pw)_@_!_
St =\ k) (ptg)
x > tr{(e"[Ok - O1p(t)Op1q - - - Ok11)) S},

{0;}
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where we have used (1.102). The order of the subscripts in the sum over
permutations of the operator product at?a? can be changed with no effect,
since operator sequences in every order are covered in the sum. Then

2—pl+—q }g <p -l’c- q) <(a“7(t): S'(t + T):aq(t))ék)>

1 I)ZJrq(p—f-q) plg!
~ ot (p+ o)
wra =\ k) (p+aq)
x > tr{(e“"[Optq - Opigoii1p(t)Opiqs - O1]) 8}
{05}
In the operator sequences on the right-hand side of this expression p(t) is
inserted k places from the extreme left, in contrast to its position k places
from the extreme right in the definition (4.121). This difference is removed,
however, by a change of summation index, with p + g — k — k; after making

this change we arrive at the desired explicit form for (4.117); using (4.84)
and (4.94):

s S (77 Wl )

k=0
AL pra) o a®]) s
= tr{(ec [2p+q kgzo <p k q> (a]L p(t):a )sk :,) S}

_1 Pa |l O(mar 52 )r 1 pi:q p+gq
T 2p+q k

F(a, ). (4.123)

F® (o, @) P

(atP:p(t):at) P

Equations (4.122) and (4.123) allow the two-time operator average on
the left-hand side of (4.123) to be calculated as a phase-space average with
respect to the two-time Wigner distribution. Following the steps leading from
(4.98) to (4.100) we obtain the corresponding result (7 > 0)

pt+q
2p1+q 3 (p . q) {(a(t):5(t +7):0%(1)) &) = (@Pa)D5T+ 7))y,
N (4.124a)

with

((a*Pa9)(t)S(t + T))W

= /dza /dzag agPad S(a, o)W (e, t + 75 a0, 0, ),
(4.124b)
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and
W(a7 a*v t+ 7; a0, a67 t) = W(a, Ol*, ’T'|Olo, 016, O)W(aOa 0‘8» t) (4125)

We have again managed to construct a relationship between ordered oper-
ator two-time averages and two-time averages in the corresponding “classi-
cal” statistical system. However, the sum of operator averages appearing on
the left-hand side of (4.124a) makes this a rather more formidable relation-
ship than the corresponding relationships for the P and () representations
[Egs. {4.100) and (4.113)].

To convince ourselves of the consistency of our result we should perhaps
show that (4.124) is able to reproduce the expression for calculating one-
time averages in the Wigner representation [Eq. (4.31)]. This is clear when
we specialize to one-time averages by either taking p = ¢ = 0, or S = 1; in
both cases we need only observe that

p+q +
Z(p k q) = (1+41)PHe = 2pHa,

k=0

It is less obvious, however, that the single-time result is recovered when 7 is
set to zero. Then (4.124) becomes

i 2 (T (rseraro) )

= /dza a*PalS (o, YW (o, ¥, t).
If this is to correspond to (4.31), the phase-space function

4 ’
a*PalS(a,o* E QPP qate

that appears with the Wigner distribution in the integrand on the right-hand
side must be the symmetric-ordered associated function for the operator that
appears on the left-hand side — i.e. for the operator

1 HEp+gq NG)
9pTa Z( k ><(aTP:S:aq)S >
Hp+q o (k)
Z {2p+q Z( k >(an: (a'a%)s:a%)5").
k=0

oy

We know that (a’”’“’,a“q/) g is the operator with the symmetric-ordered
associated function o*P*?' a4%4’; thus, we must show that
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1 pte + q ro (k) ’ ’
55Ta Z (P ; )(a’rp: (a‘rp al)s :aq)s = (an+p a9t )S' (4.126)
k=0

The proof is constructed by using the identity (4.28) to write

1 Hptq - *)
optq Z( k >(an: (' a? )s:a?)g

k=0
’ ’ +
_ op e 1 pzq (P + q> (aT;D. eiz*a*+iza ,aq)(k)
- . * ’ . ’ + . . S
O(iz* )P 0(iz)7 2rte =\ k o
Then, using
o - ) - . - .
6( )ezz at+iza — %(aezz aT+zza +ezz a*+zzaa), (4127&)
(74
8(?*)eiz*af+iza — %(aTeiz*aT+iza + eiz*af-t—izaa'f)’ (4127b)
z

a calculation parallel to the one leading from (4.118) to (4.120) gives

p+q

1 p+q tp. jiz*at+iza . q\(k) _ orta iz*al+iza
ﬁmZIA;Naf ”L?“mmwmwf '
k=0 (4.128)

Substituting this result and making a second use of (4.28), we have

L Fp+g ' (k)

2,,—+q2< k >(a’”’r<a’”’ a?)s:a%)g
k=0

ap+p’+q+q' iz*al tiza

T 0(izr )PP O(iz)are ©

z=2z*=0
— (aTP+p’aq+q’)S'

It is possible to derive more general expressions for two-time averages
in the Wigner representation — expressions that involve partial derivatives,
after the fashion of the results (4.112) and (4.115) for the P and Q repre-
sentations. We have no use, however, for these expressions later in the book
and therefore we will not bother with their derivation here. In general we
are interested only in the simple relationships (4.100), (4.113), and (4.124),
where two-time operator averages are given by moments of the two-time
phase-space distributions. It is important to realize, however, that within
each of the three representations we have discussed many two-time averages
simply cannot be calculated in terms of a simple “classical” integral; the
more complicated expressions such as (4.112) and (4.115) are needed when
the ordering is inappropriate for the chosen representation. When calculating
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single-time averages we always have the option of reordering the operators
to suit the representation. Thus, (a'a) can be calculated as (afa) = (0¥a),
in the P representation, (aa’) — 1 = (CFB)Q — 1 in the Q representation, or
as 3 ((a'a) + (aa')) — § = (@), — } in the Wigner representation. On the
other hand, while an average like (af(t + 7)a(t)) , or (a(t + T)a(t)), can be
calculated as a “classical” integral in the P representation [Eq. (4.100)], we
generally do not have commutation relations to tell us how to reorder the
operators so that the same result can be obtained as simply in either the @
or the Wigner representations. Applications in quantum optics are ultimately
concerned with the normal-ordered time-ordered averages that arise in the
theory of photodetection [4.11, 4.12]. Our phase-space results for two-time
(more generally multi-time) averages clearly distinguishes the P representa-
tion as the most suited to the treatment of problems in quantum optics —
results for multi-time averages show this even more clearly than do results
for one-time averages.

Note 4.7 The assertion that the P representation is the most suited to
problems in quantum optics perhaps requires some qualification. The P rep-
resentation gains its special status from the theory of photoelectric detection,
in which normal-ordered time-ordered averages appear. Therefore questions
that are related in an immediate way to the ultimate observation of pho-
tons through the photoelectric effect lead in a natural way to a phase-space
formulation in terms of the P representation. But there are questions of in-
terest which need not be stated in terms of the photoelectric emission that
ultimately completes a measurement process. Certainly then, there are situ-
ations in which, as a mathematical tool, the @) or the Wigner representation
might be preferred over the P representation. An important consideration
in this regard is the fact that the P distribution may be a generalized func-
tion. If this is so we do not gain much physical insight, and probably little
mathematical assistance, by using the P representation. On the other hand,
the @ and Wigner distributions are always well-behaved functions (although
the Wigner distribution may take on negative values). For this reason the Q
or Wigner representation is often the choice for studies of nonclassical states
of the electromagnetic field — for example, squeezed states, in one sense, are
related most directly to the Wigner representation.

Having said this, it is still important to reiterate the observation above
concerning multi-time averages. When we use a phase-space representation
to convert an operator master equation into a Fokker-Planck equation, we
do not merely set up a representation for some state of the electromagnetic
field; we set up a correspondence between quantum and classical processes
that evolve in time. When the P representation provides the basis for the
quantum-—classical correspondence a direct connection exists between all the
multi-time correlation functions of the classical process and the multi-time
correlation functions of the quantized field that are measured by photoelec-
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tric detection. We cannot make a similar general statement connecting the
classical multi-time correlation functions and measured multi-time statistics
of the quantized field when the @ or Wigner representations provide the basis
for the quantum-—classical correspondence.

Exercise 4.8 Reproduce the result
(a!(0)a’(T)a(r)a(0))ss = R*(1+e77)

from Sect. 1.5.3 using the P representation and the @ representation. From
the simple relationship between the Fokker—Planck equations for the damped
harmonic oscillator, it follows that (4.113) and (4.124) give

(a(0)a(r)a’ (1)a'(0))ss = (7 + 1)* (1 +e777)

and

P(1+e™).

N

% 22: (i) <(a*(0): (at(r)a(r))s:a(0)) ;k>>ss — (n+
k=0

Reproduce these results using the methods of Sect. 1.5.3.



5. Fokker—Planck Equations and Stochastic
Differential Equations

We have seen how the quantum-—classical correspondence is used to transform
a quantum-mechanical operator description of a dissipative system, such as a
damped harmonic oscillator, into the language of classical statistical physics.
The distribution that represents the density operator need not satisfy all of
the conditions required of a probability density; but in many cases it does,
and very often it obeys a Fokker—Planck equation which leads us directly to
a treatment using the language and methods of classical statistics. We will
shortly discuss the extension of these ideas to the representation of atomic
states. However, before moving to this subject, now is a good time to say
something about the general properties of Fokker—Planck equations and their
connection with stochastic differential equations.

The Fokker—Planck equation has a long history, going back to its use by
Fokker in 1915 [5.1], and Planck in 1917 [5.2], to describe Brownian motion.
In its traditional context it is an equation for a conditional probability density
P(z,t|zo,0) of the form

8P (z, t|zo, 0)
ot

= _2": iA(:t:) + 1 Zn: e D;;(z) | P(x,t|zo,0), (5.1)

= 2 ailil 7 2ij:l 830,8353 %] 3 0,Y)s .
where « is a vector of n random variables, z1,...,z,, and the A;(x) and
D;;(x) are general functions of these variables; the matrix D;;(x) is symmet-

ric and positive definite by definition. The conditional probability density is
the Green function solution to (5.1), which has initial condition

P(x,0]xo,0) = 6(x — xo) = 6(x1 — x10) -+ - 6(Tn — Tno)-

Of course, the unconditioned distribution
P(x,t) = /d:cg P(z,tlzo, 0)P(xg, 0)

also satisfies (5.1). The Fokker—Planck equation is an approximate form of
the Chapman-Kolmogorov equation,

H. J. Carmichael, Statistical Methods in Quantum Optics 1
© Springer-Verlag Berlin Heidelberg 1999
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P(x3,t3]e1,t1) = /dfb'z P(x3,t3]x2,t2) P(T2, t2]|T1, 1), (5.2)

for a Markov process. The essential content of the approximation leading
from (5.2) to (5.1) is the assumption that the stochastic evolution of the
state @ (t) proceeds via infinitely many infinitesimal jumps, in a diffusion
process; discontinuous jumps (jumps that are not infinitesimal) add deriva-
tives of all orders to (5.1) (the Kramers-Moyal expansion). Discussion of
the derivation and application of the Fokker-Planck equation in the theory
of classical stochastic processes can be found in many places, including the
books by Gardiner [5.3], van Kampen [5.4], and Risken [5.5]. These books will
provide useful references for an expanded coverage of the topics we discuss
in this chapter.

A Fokker—Planck equation is always linear in the distribution P. The
designation “linear” need not, therefore, be reserved to distinguish between
equations that are linear and nonlinear in P, which would be the usual math-
ematical usage. We will use it to refer to a Fokker—Planck equation in which
each A;(x) is a linear function

Az(m) = i:Aijxj, (5.3)
j=1

and the D;;(x) are all constants:

Dij(x) = Dy;. (5.4)
A linear Fokker—Planck equation can be written in the compact vector nota-
tion

%Itj = (—2'TAz + 32'"Dx’) P, (5.5)

where A and D are n X n matrices with matrix elements A;; and D;j, re-
spectively, £ and «’ are the column vectors

T 8/61‘1
= ( ), = , (5.6)
Tn 0/0xy,

and T denotes the transpose.

5.1 One-Dimensional Fokker—Planck Equations

To gain some insight into the physics described by the Fokker-Planck equa-
tion, without delving into the details of its derivation for classical stochastic
processes, let us spend a little time considering the one-dimensional equation
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oP 0 1 02
— =(-=A ~——D P. 5.7
ot < oz (z) + 2 Ox2 (:v)) (57)
We have already met the solution to the linear version of this equation in
Sect. 3.1.5. We will now attempt to develop some intuition for the temporal
evolution described by this solution, identifying the terms in the Fokker-
Planck equation that generate the different features in the evolution.

5.1.1 Drift and Diffusion

The mean and variance of the random variable z are defined, respectively, by

(z(t)) = /_00 dzx xP(z,t), (5.8)
and )
o?(t) = ([z(t) — (®))]") = (z(1)?) - (2(1))?, (5.9)
with
<:v(t)2> = / dx z?P(z,t). (5.10)

Equations of motion for these moments are obtained from (5.7) in the fol-
lowing way: For the mean of x, we have

() = %/_(:dm zP(z,t)

= / dx mapgf’ 2

—0o0

_ _/Oo dmm%A(ﬂf)P(m’t) + %/

— 00 —

oo 2

Ood:v m%D(m)P(x, t).

Integration by parts gives

() =— :vA(:v)P(m,t)l— +/_°° dz A(x)P(z,t)

1 0 1. 9
+ img—w-D(a:)P(m,t)’_oo— 5/_Ood:v aD(x)P(m,t),

and then if P and its derivatives vanish sufficiently fast at infinity,
(@) = (A(z)). (5.11)

The equation of motion for the variance of z is obtained in a similar manner.
We first derive the equation of motion for (z2):
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82
(x2) = / dx z2 ——A YP(z,t) / dx :c2 (z)P(z,t)
=— sz(x)P(x,t){ +/ dz 2z A(z)P(z,t)
— 00 —00

+ 12:23%D( )P (x,t)[ooo—/poodwx%D(w)P(w,t)

= 2(zA(z)) — xD(x)P(w,t)}_ + /_00 dx D(z)P(x,t)
= 2(zA(z)) + (D(x)). (5.12)
Using (5.9), (5.11) and (5.12), we obtain
= 2(zA(z)) — 2(x}(A(=)) + (D(2)). (5.13)

If the Fokker-Planck equation is linear — A(z) = Az, D(x) = D, where
A and D are constants — (5.11) and (5.13) become

() = Ax) (5.14)
and )
02 =2A0? + D. (5.15)
Then the mean and variance evolve independently, with
(a(t)) = (z(0))e™ (5.16)
and
o(t) = 02(0)e?At — (D/24) (1 — e*4). (5.17)

The motion of the mean is governed by A; it is generated by the first term
on the right-hand side of (5.7) alone. This term is called the drift term be-
cause it imparts a “drift” to the distribution — the peak of the distribution
follows the time-dependent mean [Eq. (5.16)]. The role of the second term
on the right-hand side of (5.7) is apparent from the solution for the time-
dependent variance. With D > 0 (A < 0), an initially sharp distribution
[(¢2(0)) = 0] broadens with time [Eq. (5.17)]; in (5.15) D acts as a source
of fluctuations. The second term on the right-hand side of (5.7) is therefore
called the diffusion term or fluctuation term.

The two pieces of the evolution, drift and diffusion, are seen quite clearly
in the solution for the conditional distribution P(z,¢|xo,0). This is given by
(3.64), or in the present notation,

1 . 1 (z — zoeh?)? ]
Ve (DA @A 1) T 2 (DA )|
(5.18)

P(x,t|z0,0) =
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For A # 0, the evolution of (z) corresponds to a drift of the Gaussian distri-
bution as a whole, while if D > 0, (5.17) describes the broadening (A < 0)
of this distribution (Fig. 5.1). If A = 0 and D > 0 there is no drift; the
conditional distribution keeps its initial mean for all times and its variance
grows linearly in time. This is the behavior known as Brownian motion:

P(z,t|x0,0) = ! ex —lw (5.19)
) 0 - \/m p 2 Dt . .

If D = 0 and A # 0 there is no diffusion; the conditional distribution reduces
to a “drifting” é-function,

P(x,t|z0,0) = 8(x — z0e?). (5.20)

(a) (b) ()
(@) ~o) (z(t))+o(t)
—VD/21A  V/DJ2IAl

| L 1 1
0 Zy 0 | Zo 0 Zo

(@(®)

Fig. 5.1 Time evolution of the Gaussian distribution (5.18): (a) initial é-function,
(b) evolution under the combined action of drift and diffusion, (c) steady state.

Of course, if the distribution has an initial width, the drift term does not
simply generate a displacement of the initial distribution. Let D = 0 and

P(z,0) = —27:0—(0)(3 p[ ;%J. (5.21)
Then
P(z,t) = /00 dz' P(xz,t|lz’,0)P(x’,0)
Y SeAty_ L 1@ —a)’
_/_oodx §(z — )\/_0(0) exp[ SR=I0) }
! 1 (z —zo(t))
where
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A simple displacement of the initial distribution to follow the displacement
zo(t) — zo of the mean would give P(z,t) = P(z — zo(t) + %0,0); Eq. (5.22)
does not give this result. The drift term shifts the mean; but it also damps
(A < 0) or amplifies (A > 0) any statistical uncertainty (fluctuations) that
is present in the initial state. When A < 0 and D > 0, the balance between
the production of fluctuations by the diffusion term, and their damping by
the drift term, produces the steady-state variance o%(co) = D/2|A| found in
(5.17) and (5.18).

When the full nonlinear form of the Fokker-Planck equation is retained,
the simple picture of drift and diffusion loses much of its content. To begin
with, the mean and variance no longer evolve independently; nor do they
even, in general, obey a coupled pair of equations — we can expect all of the
moments, (z"), n = 1,2,..., to be coupled in an infinite hierarchy of equa-
tions. We can still demonstrate the role of D(z) as a source of fluctuations,
since in its absence (5.7) reads

I

— = ——A(z)P .
o =~ AP, (5:24)
which, for an initial sharp distribution, has the solution
P(z, t|zo,0) = 6(x — zo(t)), (5.25)
with
{ijo(t) = A(ajg(t)), JZO(O) = Xyp. (526)

This is verified by direct substitution:

éé(m — zo(t))

ot
1o}
= A(mg(t))mé(l’ — JZQ(t))
0 17}
~ 8(wo(t)) [AGwol)e(a = ao(t)] ~8(z = ao(t) d(wo(1)) Alwol®)
0
= A(m)a(Ta(t))é(m — zo(t)) — §(z — z0(t)) %A(m)
= —A(x)z%é(m — zo(t)) — 6(z — zo(t)) (%A(m)

= ——(%A(x)&(m — zo(t)).

Thus, an initially sharp distribution remains a sharp distribution. In (5.26),
A(z) governs a deterministic motion that is again described by a “drifting”
d-function. On the other hand, if D(x) is nonzero at any point on the trajec-
tory generated by (5.26), the equation of motion for the variance [Eq. (5.13)]
shows that the distribution acquires a nonvanishing width. If D(z) remains
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appropriately small, linearization about the deterministic trajectory is possi-
ble, and the picture of a drifting Gaussian can be substituted for the drifting
6-function. However, if both terms are present in the nonlinear Fokker—Planck
equation and the diffusion is not small, the distinction between drift and dif-
fusion is rather ambiguous and artificial. We might write (5.7), alternatively,

as
1 1
%]; = {—% <A(m) — 5D’(1:)> + §%D($)%] P, (5.27)
where D'(z) = dD(z)/dz. Why not call —Z (A(z) — 1D'(z)) P the drift
term in (5.27)7 On its own it generates the drifting é-function (5.25), but
with a modified deterministic equation to replace (5.26). Then %B%D(m)—a%P
is the term adding fluctuations to this picture — the diffusion term. In the
full nonlinear case we do best to think in terms of a single, integrated, non-
linear diffusion process, rather than in terms of separate drift and diffusion
processes.

5.1.2 Steady-State Solution

We will see shortly that linear Fokker—Planck equations can be solved even
when they are multidimensional. Nonlinear Fokker—Planck equations are
quite a different story. In general even the steady-state solution is impos-
sible to find analytically. The one-dimensional case is rather special in this
respect, since it is possible to construct a closed form expression for its steady
state solution. There are situations — for example, when potential conditions
are satisfied [5.6] — in which the steady-state solution to a multidimensional
nonlinear Fokker-Planck equation can be found analytically; nevertheless,
these are the exception rather than the rule.
In one-dimension we are looking for a solution Pi(z) to the equation

d 1d

4 (—A(x)Pssm N %D(x)Pss(x)) —0. (5.28)

This gives the first-order differential equation

d
. (D(z)Pss(z)) = 2A(x)Pss(z) + constant. (5.29)
If A(z)Pss(z) and d(D(z)Pss(x))/de vanish at infinity, the constant is zero

and we obtain the equation

1 d
D(x) Po(z) da (D(x)

with the solution

oo 11 Az)\
Py(z) = ND(.CIJ) exp <2/dx D(x))’ (5.30)
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N is a constant set by the normalization condition [*_dx Ps(z) = 1.

This result can be used to further illustrate how ambiguous a distinction
between drift and diffusion is for a nonlinear diffusion process. Consider the
steady state obtained from (5.30) with

A(z) = —A(x® - bx), (5.31a)
D(z) = D, (5.31b)

where A, D, and b are constants. If we introduce
V(z) = A(3z* - Lba?), (5.32)

such that d

A(z) = —EQ;V(:B), (5.33)

we find . V()

x
Pys(z) = N &P (—2 o) > (5.34)

V(z) is the potential underlying the deterministic evolution generated by
A(z) when D = 0 — a double-well potential with minima at z = ++/b, for
b > 0; in terms of V, (5.26) can be written in the form

io = — -2V (z0) (5.35)

0 — dil?() 0/y .

and the speed of the é-function (5.25) is determined by the local slope of the
potential V(zg). Now, (5.34) is also the steady-state solution for an entirely
different Fokker—Planck equation, with linear drift, and an appropriately cho-
sen nonlinear diffusion. The proof of this is left as an exercise:

Exercise 5.1 Show that (5.34) is also the steady-state solution to the
Fokker—Planck equation defined by

A(z) = Az, (5.36a)
D(z) = e2V(@)/D / de 2 Aze2V @)/, (5.36b)

Of course, the Fokker-Planck equations defined by (5.31) and (5.36) are
not equivalent; they have the same steady state, but their time-dependent
solutions are different. Nevertheless, we do see that the same double-peaked
steady-state distribution can be established both by nonlinear drift and con-
stant diffusion, and linear drift and nonlinear diffusion. In a nonlinear dif-
fusion process the roles played by the terms designated as “drift” and “dif-
fusion” are in some sense interchangeable. This observation underlies the
subject of noise-induced “phase” transitions, treated at length in the book
by Horsthemke and Lefever [5.7].
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5.1.3 Linearization and the System Size Expansion

Little progress would be made with Fokker—Planck equation methods if we
relied solely on the good fortune of obtaining equations that can be exactly
solved. The harmonic oscillator is rather special in giving a linear, and there-
fore solvable, Fokker—Planck equation. Later in this book we will treat the
laser, and in Volume 2, the degenerate parametric oscillator and optical bista-
bility, by the methods of the quantum-—classical correspondence. These ex-
amples give multidimensional nonlinear equations; two of them do not give
Fokker-Planck equations at all — as we will see shortly, the treatment of
two-level atoms using the quantum-—classical correspondence produces par-
tial derivatives to all orders in the equation of motion for the phase-space
distribution. In such situations progress can only be made using approxima-
tions. To prepare ourselves for these difficulties, let us spend a little time
discussing the method of system size expansion applied to a one-dimensional
equation. In appropriate circumstances this method can be used to reduce
an equation of motion involving partial derivatives beyond second order to a
Fokker-Planck equation — usually to a linear Fokker—Planck equation.

The discussion which follows is based on the systematic treatment of
fluctuations in classical stochastic systems worked out by van Kampen [5.8].
We begin with the generalized Fokker—Planck equation, or what is known in
classical stochastic theory as the Kramers—-Moyal expansion [5.9, 5.10]:

vk k
58_1; -y ( kl!) ((%) (ax(z)P). (5.37)
k=1

This equation is formally equivalent to the master equation for a classical
jump process, which is itself equivalent to the Chapman-Kolmogorov equation
(5.2). Our derivation of such an equation in quantum optics is not grounded in
the Chapman-Kolmogorov equation, but proceeds formally from an operator
master equation via the methods described in the previous two chapters. Nev-
ertheless, (5.37) provides a general form (in one dimension) for the equation of
motion for the phase-space distribution obtained via the quantum-classical
correspondence. Two difficulties with this equation usually have to be ad-
dressed: First, the appearance of derivatives beyond second order. Second,
even if these higher-order derivatives are dropped, this will generally leave a
nonlinear Fokker-Planck equation; for a multidimensional problem, such an
equation will almost certainly be impossible to solve. Both of these difficulties
can often be removed on the basis of a “small-noise” approximation.

The central idea is that the picture of the drifting §-function provided
by (5.25) and (5.26) should come pretty close to the exact description if the
fluctuations are sufficiently small; all we should need to add is a small, finite
width for the drifting distribution. It seems reasonable that this distribution
be approximated by a narrow Gaussian, and we have seen that Gaussian dis-
tributions are obtained from linear Fokker-Planck equations. The system size




156 5. Fokker—Planck Equations and Stochastic Differential Equations

expansion follows a systematic path from (5.37) to such a description, basing
its development on an expansion in terms of a small parameter related to the
inverse of the system “size”. The systematic approach offered by the system
size expansion leads in a single step to a linear Fokker—Planck equation, si-
multaneously taking care of both of the difficulties mentioned above. This is
the consistent thing to do, rather than simply truncating derivatives beyond
second order and accepting the nonlinear Fokker—Planck equation that re-
sults. As will become clear below, retaining the nonlinearity after truncation
brings corrections to the linearized form of the Fokker—Planck that are of the
same order as terms that have already been dropped. It is therefore incon-
sistent not to linearize as well as truncate. There are special circumstances
where the lowest order treatment of fluctuations must be nonlinear; these
will be shown to us in a natural way by the system size expansion itself.

We must look for an expansion parameter that can take us to the limit
of zero fluctuations. What is the rationale for expecting such a limiting pro-
cedure to be possible? How can the limit be taken formally? Our interest
is with intrinsic fluctuations arising in the microscopic quantum processes
that govern the interaction of light with matter. The quantized, or discrete,
nature of this interaction is the fundamental source of the fluctuations: pho-
ton numbers change discretely, and material states follow suit as photons are
exchanged with the optical field. If the number of quanta in the field and the
number of interacting material states are large, we might expect the fluctu-
ations associated with individual transitions to be small on the scale of the
average behavior. Let us imagine we can scale the “size” of a given system
with some system size parameter (2, to obtain a family of systems, all with
the same average behavior, but whose fluctuations decrease relative to the
mean as {2 is increased. Let x specify a state in microscopic units (numbers
of photons, for example), which therefore scales with system size, and let T
specify the macroscopic state whose average does not change with (2. We
propose a scaling relationship

T = Pz (5.38)

This is a generalization of the relationship postulated for a classical jump
process {5.8]. In that relationship p = 1. We need the more general form,
specifically, to include the case p = 1/2, which is appropriate for optical field
amplitudes.

Consider the example of an optical field amplitude. Let x be the amplitude
of an optical cavity mode in units such that 2 measures the number of
photons in the cavity; thus,  corresponds to the variable a in (3.47), (4.14), or
(4.37) — forget for the moment the two-dimensional character of the field. The
cavity mode interacts with some intracavity medium. The relevant quantity
for describing this interaction at the macroscopic level is not the photon
number, but the energy density in the medium. We therefore choose Z to be
scaled so that 2 ~ 1 corresponds to energy densities in the range typical



5.1 One-Dimensional Fokker-Planck Equations 157

of the behavior to be studied (for example, the saturation of a two-level
atom, the turn on of a parametric oscillator). The size of the cavity can be
scaled up, increasing the photon number z? corresponding to any fixed energy
density 2. If ng is the photon number at each cavity size corresponding to
the reference energy density 2 = 1, we would write (5.38) as

T = né/ 2;%.
In this example (2 is a reference photon number and p = 1/2.

For a second example let x correspond to the inversion of a two-level
medium. The relevant quantity for describing the macroscopic properties of
the medium is the inversion density, giving the number of atoms per unit
volume available for absorption or emission. Define Z as the inversion density
divided by the atomic density N/V (for N atoms uniformly distributed in a
volume V). Systems of increasing size, with fixed atomic density and inversion
density Z, have

x = NZ.

In this case {2 is a number of atoms and p = 1.

The system size expansion now works as follows. We assume that as 2
increases, some mean motion Zy(t) is preserved, while fluctuations about this
mean decrease. We assume a scaling of the fluctuations such that

Z = To(t) + 279, (5.39a)
and introduce the change of variable
x = PTo(t) + PTIE. (5.39b)

The new variable £ is to be of the same order as Z(t), and ¢ must be deter-
mined self-consistently from the description of the fluctuations provided by
the generalized Fokker-Planck equation (5.37). Setting

P(&,t) = QP7IP(02PTo(t) + QPTIE L), (5.40)
the generalized Fokker-Planck equation becomes

a_P_m_ OP dzo(t) OP
ot 0Zo(t) dt ot

JOP dZo(t) | & o\
= 91— 86 P Z_—: ( 85) (akP).

Assuming P(z,t) is normalized with respect to the variable z, P(¢, t) has been
defined so that it is normalized with respect to the variable £. We now make
a Taylor expansion of the functions ax(x) about the mean motion 2Pz (t):
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QIE = Qqa_‘f)djo(t)
ot 9c  dt

- m—Pa% [al(ﬂpio(t)) + P (P Zo (1)) + %92@—4)

x€2al(PTo(t)) + - | P

R & _ _ _ 1 o
+ 592@ %F [ag(()”xg(t)) + QP79 (QPTo (1)) + 5920’ 9

x&2ay(QPzo(t)) + -+ | P
. |

(5.41)

where / denotes differentiation with respect to z.

To take things further we need to know how the functions ay(£2°Zo(t))
scale with f2. In the context of classical jump processes this scaling can be
argued from the dependence of the a; — the jump moments — on the transition
probability for a jump of given length from an initial state . Our derivation
of the Fokker—Planck equation, starting from an operator master equation,
cannot rely on the same argument; indeed, the scaling adopted for a jump
process [5.8] must be generalized to include variables corresponding to field
amplitudes, for which, as we have already noted, p = 1/2 rather than p = 1.
To cover both values of p we propose

ak(Qp.'fo(t)) = Qk(p_1)+lak(§30(t)). (542)

This fits all of the examples we will meet later on. Then the expansion (5.41)
becomes

oP dz oP
= | - mle)| 5
- -(%s[a’l(fo@)) + 3079 (w0(0) +O(@7)| P+

+ 50 S [aa(@ato) + 2 veai(an(0) + 0(2-)] P

+0(£2%472), (5.43)
where ' now denotes differentiation with respect to .

Note 5.1 With p =1/2 and {2 = ng, (5.42) gives the scaling

ar (ng*Zo(t)) = g~ an(zo(t))
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for variables corresponding to field amplitudes. It is a little difficult to justify
this scaling at this early stage, while we do not have explicit examples to refer
to. The ultimate justification is found by referring to the examples to which
we will apply the system size expansion (Chaps. 7, 8, 10 and 14). A general
indication of why the scaling works out this way can be given, however. First
note, that in the case of a jump process, the derivatives enter the generalized
Fokker-Planck equation from shift operators exp[+d/0z]. It is clear then
that the coefficients ay(z) all scale with the same power of §2, since each shift
operator produces derivatives of all orders; we will not find different functions
of  multiplying derivatives of different orders. Thus, when p =1 (5.42) has
ay (.Q:T;O(t)) scaling as {2 for all k. An example of a jump process is provided
by the inversion dynamics for a medium of two-level atoms [see Sects. (6.2.4),
(6.3.4), and (6.3.5)]. The scaling we have proposed for variables corresponding
to field amplitudes is different, with the power of £2 that scales ay (£2'/2%(t))
depending on k. The reason for this is found in the way derivatives enter
the generalized Fokker—Planck equation using the methods described in the
previous two chapters. The central point is that derivatives always enter, not
alone, but as powers of (0/0a + a*) and (0/0a* + @) — as, for example, in
(3.442)—(3.44e). In a one-dimensional version, consider the term y(d/dx +
z)*, which contributes a derivative of order k; the coefficient yj is some
parameter in the master equation which characterizes the strength of the
interaction that generates the term x(d/dz +z)* in the generalized Fokker—
Planck equation. We see that the scaling of the coefficient of the derivative of
order k is determined by xj. We determine the scaling of xx by noting that
whenever the term yd*/dz* enters the generalized Fokker—Planck equation,
it brings with it the first derivative term x(d/dz)z*~!. Assuming that the

coefficient of the first derivative scales as xxz*~! ~ n(l)/ 2

as n(l]—k/Q; this is the scaling given by (5.42).

, then xj must scale

We have now reached the point at which we impose self-consistency on
our expansion; we require that (5.43) produce fluctuations £ of the order Zo(t)
in the limit of large (2, as was assumed in the ansatz (5.39a). To avoid the
divergence of the first term on the right-hand side the factor in the square
bracket must vanish identically:

= a1(To(t)). (5.44)

This is the macroscopic law governing the mean motion of the system; it cor-
responds to our earlier equation (5.26) which governed the motion of the drift-
ing 6-function in the absence of noise. The self-consistency requirement also
sets the size of g. Assuming that a{(Zo(t)) and @x(Zo(t)) are both nonzero,
we must clearly choose ¢ = 1/2. Then the right-hand side of (5.43) becomes
an expansion in powers of 271/2 and in the limit of large §2, the dominant
terms give the linear Fokker—Planck equation
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oP , 0 1 0% 5

— = |=a1(Zo(t)) ==& + za2(Zo(t)) 55 | P- 4
at al(xO( )) 8££ + 2‘12(-7:0( )) 852 (5 5)
Given a trajectory Zo(t) satisfying (5.44), equation (5.45) can be solved for a
Gaussian distribution that drifts along this trajectory, accumulating a width
as it goes by integration over a time-dependent diffusion.

Exercise 5.2 Show that (5.45) has the Gaussian solution

T oo [ awai(eot)] o
" (t) = exp[2 [ auai(zow)]
01 [ dwess| -2 [ o) az(zow))}.(ww

Since the original construction puts the mean motion in Zo(t), this solution
is to be taken with (£(0)) = 0.

5.1.4 Limitations of the Linearized Treatment of Fluctuations

We will make extensive use of the truncation and linearization procedure
provided by the system size expansion. Much of the remainder of this chapter
is therefore devoted to linear Fokker—Planck equations. Linearization has its
limitations, however, and now is a good time to note some of these.

The most obvious limitation is that {2 may not be very large. Systems of
just a few interacting photons and atoms can be expected to exhibit relatively
large quantum fluctuations; for these systems the system size expansion is not
a good approximation. In fact, this may well be the most interesting situa-
tion, since we do not expect many manifestations of quantum fluctuations to
survive at a measurable level in a macroscopic system. In the smallest sys-
tems — problems such as single-atom resonance fluorescence — it may actually
be easier to deal directly with the operator master equation, and not attempt
to use phase-space distributions and Fokker—Planck equations at all. On the
other hand, when many atoms and photons are involved — in a laser for ex-
ample — the quantum—classical correspondence, used in conjunction with the
system size expansion, provides a powerful approach. For systems of inter-
mediate size, the phase-space method might be tried, but the system size
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expansion cannot be used. This is a no-man’s-land in which little work has
been done. We will have more to say about this subject in Volume 2.

Even when {2 is large there are limitations to what can be done with the
linear equation (5.45). Our main interest will be with the linearized treatment
of fluctuations about a steady state; therefore, let us focus on this case, setting
Zo(t) = Tss, with @1(Zss) = 0. From (5.46) and (5.47), the solution to the
Fokker—Planck equation is

S a
P(&,t) = \/_a() p( 20—2(7:))’ (5.48a)

with

a2 xss

7 (1) = 7*(0) exp 234 (7 )t] ~ 5

{1 —exp(2a) (Zss)t]}.  (5.48b)
Clearly, the procedure we have followed breaks down after some finite time
if Zs5 is not a stable steady state (a}(Zss) < 0). Even under conditions of
marginal stability (a}(Zss) = 0) the variance grows linearly in time, as in
(5.19), and eventually the fluctuations grow to be of the order /2, invali-
dating the system size expansion. Unstable states (@} (Zss) > 0) have expo-
nentially growing fluctuations which quickly invalidate the linearized treat-
ment. There are situations, then, for which even the lowest-order treatment
of fluctuations must include nonlinearities.

It is sometimes possible to simply include the next term in the system size
expansion to overcome a breakdown in the linear theory. The critical point in
the bistable system defined by the potential (5.32) provides a good example.
We write

a,(z) = —A(z> - bx).

Then, if b = 0, a;(0) = a/(0) = 0, and in the linear theory the critical
point Tss = 0 is unstable; fluctuations grow without limit in the manner
of Brownian motion [Eq. (5.19)]. But in reality the critical point is stable;
nonlinearities in the potential provide a restoring force to constrain the fluc-
tuations (assuming a{’(0) < 0). In such cases the system size expansion can
be extended to include this restoring force to lowest order. If we return to
(5.43), with Zo(t) = Zss = 0,

%—];-:—Q g&[ €2 //l( )+O(Q—(I):Ip
Q2q , 02 [_ (0) +O(Q_q)}15
ez |
+0(93q 2). (5.49)

The term proportional to a}’(0) will constrain the fluctuations. However, the
choice q¢ = 1 no longer glves a self-consistent treatment of these fluctuations.
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Instead, we require —2q = 2q — 1, or ¢ = %, which leads to the nonlinear
Fokker—Planck equation
oP 1

or __—/// 1 9% 5
or (0 )85

3
£+ 500) 553 (5.50)
with

=Y, (5.51)

The critical fluctuations described by (5.50) are much larger than fluctuations
around steady states that are stable under the linear requirement @} (Zss) < 0.
On the scale of # they are of order £271/4 rather than £2~'/2. This is because
of the very flat potential at the critical point, as shown in Fig 5.2(a). The
time scale on which things evolve is also much slower. This is observed at two
levels: First there is the scaling of time by the system size in (5.51). Then,
according to the macroscopic law (5.44), a small displacement 6Z¢ from the
critical point relaxes according to the equation

d(‘SZOT(T)) _ (13—/1//(0)(533 ( ))3. (5.52)

This nonlinear dynamic is contained in the drift term in the Fokker-Planck
equation. The solution to (5.52) is

620
V1 - 3l (0)(6z0)%r

1

The displacement 6Zg relaxes as 7~ 2, compared with the exponential decay
for a linear force law. This slowed response at a critical point is known as
critical slowing down. The classic example of critical behavior in quantum
optics is provided by the laser at threshold (Sect. 8.2).

65’0(7’) =

(5.53)

Exercise 5.3 Show that (5.50) has the steady state solution

_ 1 —///( )54
Pu®) = 3oy o oty ) (5.54)

Of course, there are many variations on this theme. If more derivatives
of @; vanish, a higher order nonlinearity must be retained to constrain the
fluctuations. There are also other circumstances in which it is not possible to
separate average behavior and fluctuations in the manner achieved above. An
extended version of our bistable potential illustrates two important problems
of this kind. We now write

a1 (z) = —A(@® — bz +¢), (5.55)

which corresponds to the potential
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Fig. 5.2 Variation of the potent_ial V(z) = Az 4/4 bz’ /2 + ¢z) with parameters:
(a) c=0and (i) b = (ii)b=0,(1)b (b)b—land()c——l()
¢=—2/3V3, (iii) ¢ = —1/5 (iv) v)e= /5 (vi) € = 2/3v/3, (vil) € =

V(z) = A(z* — Lb2® + ez). (5.56)

This is the canonical form for the so-called cusp catastrophe [5.11, 5.12].
Figure 5.2(b) shows a sequence of potentials that can be accessed with ¢ # 0.
For & = +2/3+/3, the equation ;(Z) = 0 that defines the macroscopic steady
states has a double root (a root for which @;(Zss) = @} (Zss) = 0). These states
are actually unstable to displacements in one direction, as shown by a stability
analysis up to second order. Fluctuations are not constrained around the
steady state; they lead to a decay of the unstable state so that in the long-time
limit the distribution will be localized about some other, stable, steady state.
This process amplifies the initial fluctuations up to the macroscopic scale,
making it impossible to disentangle a mean motion from the fluctuations. A
second example of the decay of an unstable state occurs for the steady state
at the top of the hump in the double-well potential. Here @} (Zss) is positive,
and Zs is unstable even in the linear treatment. Initial fluctuations will split
the long-time distribution between the two available stable steady states.
Another feature of the bistable system involving macroscopic fluctuations
is the process of communication between the sides of the double-well poten-
tial. When the depths of the wells are unequal, decay of the unstable state
at the top of the potential barrier will first split the distribution between
the two sides, producing localized peaks about the two stable macroscopic
states. But, in fact, for large (2, only the absolute minimum of the poten-
tial is stable in the presence of fluctuations [the proof of this is given as
an exercise (Exercise 5.4)]. Thus, except in the special case where the wells
have the same depth, one of the steady states is metastable and decays on
a long time scale — often an extremely long time scale — to the other steady
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state. Fluctuations taking the system from one macroscopic state to another
clearly cannot be treated by the system size expansion, with its picture of a
distribution localized about some mean motion. There are obviously many
generalizations of this idea. In a multidimensional system, these may involve
transitions between all sorts of deterministic attractors: steady states, limit
cycles, and even strange attractors.

5.1.5 The Truncated Kramers—Moyal Expansion

When the systematic system size expansion fails, we must either return to
the operator master equation for an exact treatment, or satisfy ourselves
with some other approximation. A common approximation is to introduce
the scaling (5.38) and (5.42), writing the generalized Fokker-Planck equation
(5.37) in the form

0P X (-1* (0N a4
55—22“5—91%39<%“”W

and then to truncate this equation at second order to give the nonlinear
Fokker—Planck equation
oP _ ( 0 , 02

YT 3_‘ (g‘;)—l— Q‘ aTaz(i))P (5.57)

This is not a systematic expansion in inverse powers of {2 because 27! con-
trols the sharpness of the peaks in P, and therefore further 2-dependence is
hidden in the derivatives of the distribution. If the change of variable (5.39a)
is now introduced, followed by a Taylor expansion about Zg(t), the equa-
tions obtained with the system size expansion will be recovered if we retain
terms to lowest order as before. Equation (5.57) is often used, however, with-
out taking this extra step. The nonlinear Fokker—-Planck equation is taken
as a starting point for addressing questions like those we have just raised.
It is worth noting that a number of important problems in quantum optics
actually produce a nonlinear Fokker—Planck equation in the form of (5.57)
without the need for a truncation of higher derivatives. The parametric oscil-
lator is an example of this type. We will discuss this example at some length
in Volume 2 (Chaps. 10 and 12).

The steady state solution to (5.57) can be written down for arbitrary
functions @;(Z) and @x() following the method of Sect. 5.1.2. Equation (5.30)

gives
- _ 1 ,a1 '
Py(z) = N exp(Z.Q / dz > (5.58)

The extrema of the dlstrlbutlon are given by
)> Py =0

dpss _ a2( ) (
iz _(aﬂ)+29 (@)

Kl

5]
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These extrema correspond exactly to the steady states given by the macro-
scopic equation of motion (5.44) if @, is a constant; otherwise, they are shifted
from these values; although, when {2 is large, the shift is of the order 2!, and
therefore much smaller than the fluctuations about the steady state obtained
with the system size expansion.

The bistable system defined by (5.55) and (5.56) is widely discussed in
the literature using either a nonlinear Fokker-Planck equation like (5.58) or
a master equation for a one-step jump process (one-step birth-death master
equation) [5.13]. We do not have time to review this subject here. The one
result concerning metastable states that we alluded to above is left as an
exercise:

Exercise 5.4 It is a little surprising to learn, that in the limit of very
small noise, the steady-state distribution for a double well potential with
unequal well depths is localized (almost) entirely at the absolute minimum
of the potential. Although a second locally stable macroscopic steady state
exists at the bottom of the other well, (almost) all of the probability for
the system to be found in this state decays over long times — this state is
metastable. Thus, in passing through the sequence of potentials illustrated in
Fig. 5.2(b), a discontinuous transition takes place at & = 0 between a steady
state distribution localized in the well on the left, and one localized in the well
on the right. For the potential (5.56), and a constant diffusion a@3(z) = D,
show that the large {2 limit of the steady state distribution with unequal well
depths is given by

_ A(322. — b A(372. — b
Py(z) = ngnoo %‘ngn—b) exp [_L‘%gq_b)(j _ jmin)2
= 8(Z — Zmin), (5.59)

where ZTni, is the position of the absolute minimum of the potential. Of
course, if ¢ is ramped forwards and backwards through the sequence shown
in Fig. 5.2(b) on a finite time scale, a dynamic hysteresis will be seen rather
than a discontinuous transition.

5.2 Linear Fokker—Planck Equations

We turn now to a detailed look at linear Fokker-Planck equations, equations
in the form (5.5). Our first task is to construct the general solution to a
multidimensional linear Fokker—Planck equation. From this solution we will
derive a number of useful relationships for calculating such things as the co-
variance matrix and the spectrum of fluctuations. Later we will see how these
same results can be obtained, perhaps rather more simply, using stochastic
differential equations.
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5.2.1 The Green Function

We wish to find the solution P(zx,t|xzo,0) to (5.5) for the initial condition
P(x,0|zo,0) = §(x — zo) = 6(x1 — x10) - 6(Tr — Tno)- (5.60)

It is helpful to first perform a similarity transformation to diagonalize the
drift matrix A. We write
y = Sz, (5.61)

where the rows (columns) of S (S™') are the left (right) eigenvectors of A
[5.14], such that

A=SAS™ =diag(\i, ..., ), (5.62)
where A1, ..., A, are the eigenvectors of A. We then define
P(y,t|Sxz0,0) = P(S 'y, t|x0,0); (5.63)
in terms of the new variables y, (5.5) reads
%—]: = (—y'TAy + 1y'TDy') P, (5.64)
with
9/0y1
y=|  |=6), (5.65a)
8/ 0yn
D =5SDs”. (5.65b)

The initial condition corresponding to (5.60) is
P(y,0|8zo,0) = detS 6(y — Sxo). (5.66)

Note that this distribution is normalized with respect to the variables
Z1,22,...,%n, not with respect to the variables y1,¥2,...,Yn.

Equation (5.64) is a linear Fokker-Planck equation with diagonal drift.
The Green function solution to equations of this form was derived by Wang
and Uhlenbeck [5.15]. A little work generalizing the method of Sect. 3.1.5
leads to their solution. We introduce the Fourier transform

0 (u, 1| S0, 0) = /

o0

dy, - - dyn P(y, 1Sz, 0) exp (iyTu). (5.67)

Then the Fourier transform of the Fokker—Planck equation (5.64) is
oU . N
5 = (uT A’ — 2u” Du)U, (5.68)

where



5.2 Linear Fokker-Planck Equations 167
Uy (9/(9u1
= : u = : . (5.69)
Un 0/0un,
This equation must be solved for the initial condition

U(u, 0|8z, 0) = detS exp [z’(S:co)Tu]. (5.70)

We use the method of characteristics [5.16]. Noting the diagonal form of A,
the subsidiary equations are

dt  duy duy, dU

== - — 5.71
1 —>\1’LL1 _>\nun —%’U,TDUU ( )
and have solutions A
eA*u = ¢ = constant. (5.72a)
Then,
dU R
£ = —1u"Dudt
U N
=—1c" (e 'De ) cdt
= —%CT(bije_()‘i+)‘j)t)cdt,
where (M;;) denotes the matrix with elements M,;, and we find
L1 Dy
InU = §cT<>\ +]/\ [e_()‘i“j)t - 1]) ¢ + constant
i J
1. Dy
= 5ﬂ<ﬁ/{_ - e(’\i+’\f)t]> u + constant.
7 J
It follows that A A
U exp (14Q(t)u) = constant, (5.72b)
where Q(t) is the n x n matrix with elements
. Dy Yy
Qut) = — =4 [1 - e(’\"“‘f)t} (5.73)
i T Aj

Thus, from (5.72a) and (5.72b), the solution for U takes the general form

U(u,t|Sxo,0) = d)(e“itu) exp (— 2aQ(t)u), (5.74)

where ¢ is an arbitrary function. Choosing ¢ to match the initial condition
(5.70), we find

U(u,t|Sxo,0) = detS exp [z (SeAtwo)Tu} exp (— %ﬂQ(t)u) (5.75)



168 5. Fokker—Planck Equations and Stochastic Differential Equations

In the argument of the first exponential on the right-hand side we have used
(5.62) to write

(Swo)T(e“itu) = (eAtSwo)Tu = (SeAtmo)Tu.

It remains to invert the transformation (5.67). To perform the inversion
it is useful to introduce the decomposition

Q(t) = R(t)TR(t). (5.76)

Then the Green function solution is

P(yvtlsmmo)
_ detS [ o At AT
= W _oodul -« duy exp [Z(Se mo) u}
x exp (— $uTQ(t)u) exp (- iy" u)
_ _detS exp[— sy - SeAt:ng)TQ_l (y - SeAta:o)]
(2m)"
1

/oo duy - - - du, exp { - % [R(t)u + i(R(t)T)—l

—00

ey
x (y — SeAtmg)]T [R(t)u + i(R(t)T)_l (y— SeAtwo)}}
__ detS exp[~ 1 (y — Settao)” Q1 (y — Se*'w)].

(2m)ndet Q(t)
(5.77)

The integrals leading to the last line are readily performed after transform-
ing to the variables v = R(t)u. Equations (5.63) and (5.77) now give the
general Green function (conditional distribution) for a linear Fokker—Planck
equation:

P(z,t|xo,0)

- m exp[— 1z — eAth)TQ—l(t)(m _ eAtmo)]’ (5.78)
with
QW =5"Qu(s™)" (5.79)

This is a multi-dimensional Gaussian, the natural generalization of (5.18). If
the eigenvalues Ay, ..., A, all have negative real parts, the distribution (5.78)
decays to the general steady-state distribution for a linear Fokker—Planck
equation:

1
Pu(a) = ———exp (- 127Q ' 2), 5.80
@)= g, P (3 ) (5:80)
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with

Q. =S5 Qu(s™)7, (5.81a)
. D..

(st)ij = _&Tw/\J (5'81b)
Note 5.2 The decomposition (5.76) is possible (with R a real matrix) be-
cause the symmetric matrix Q is positive definite, which follows because D is
positive definite. For a positive definite matrix M, the quadratic form z7Mz
is positive for all nontrivial z; the decomposition M = N ™~ expresses the
quadratic form as a sum of squares z’Mz = wTw, with w = Nz. The
requirement that Q be positive definite guarantees that the exponential in
(5.72b) does not diverge at infinity. This guarantees that the distribution
P(x,t|zo,0) does not diverge at infinity. It may happen that the quantum-
classical correspondence leads to a Fokker-Planck equation that does not
have positive definite diffusion. In this way, the incompatibility of classical
statistics with quantum mechanics is revealed in a particularly direct fash-
ion. There are sometimes technical ways around the problem, but ultimately
it arises from the fundamental differences between classical and quantum
physics. We will return to this subject as one of our main themes in Volume
2. (In some applications Q may be positive semidefinite. Then it is a sin-
gular matrix that generates quadratic forms that are nonnegative, but are
not always positive. This corresponds to situations in which there is no dif-
fusion in at least one dimension, and therefore the distribution “drifts” as a
6-function in at least one phase-space direction. To generalize the following
mathematics to this case, matrix inverses, which now do not strictly exist,
can be interpreted in the sense of a limit in which noise of order ¢ is added in
the offending dimensions and then e is taken to zero; in this way Gaussians
approach é-functions.)

5.2.2 Moments of Multi-Dimensional Gaussians

The calculation of averages for a system described by a linear Fokker—Planck
equation reduces to the problem of finding the moments of multi-dimensional
Gaussian distributions. Consider the normalized distribution

- ! ~L(z-20) M (z-20)],  (582)

)= V (2m)ndetM exp[ 2

where z is an n-dimensional vector and M is an n X n symmetric positive
definite matrix. We want to calculate the vector of means

(z) = /00 dz ---dz, zP(z), (5.83)

— 00

and the variances (i = j) and correlations (i # j)
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Cij = <(Zz - <ZZ>)(ZJ - (Z]>)> (584)

The n x n matrix C formed from the C;; is called the covariance matriz. It
can be expressed in vector notation as

C = <(z —(2))(z - (z))T>
= /_oo dzy -+ dzn(z — (2))(z — (z))TP(z). (5.85)

The integrals needed to evaluate (5.83) and (5.85) are performed using
the decomposition introduced in (5.76). For a symmetric, positive definite
matrix M, we write

M7= (NN (5.86)

Then in terms of the new variables w = N~!(z — zg), (5.83) becomes

(z) = detN/Do dwy - - - dwy, (2o + Nw)P(zo + Nw)
1
V (2m)"

1 o0
+N / dw; - - dw,wexp (— Sww)
(2m)™J —o0

= Z0-. (587)

o0
=2 / dw - - dwy exp (— JwTw)
— 00

Similarly, substituting (z) = 2o into (5.85), and using the same change of
variables,

C = detN/ dwy - - - dwy, NwaNTP(zo + Nw)

1 o0
=N ———/ dw - --dwnwaexp (— %wTw) NT
V(2m)" oo
= NNT
=M. (5.88)
Moments up to second order are generally all we will need in future ap-
plications. In fact, for Gaussian distributions, all higher-order moments can

be generated from these; the first two moments completely specify the dis-
tribution [5.17].
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5.2.3 Formal Solution for Time-Dependent Averages

Using the Green function solution we can construct the time evolution for
any initial distribution P(zx,0):

P(o,t) = / dzor - - - dzon P(x, t|z0, 0)P(2o, 0). (5.89)

— 00

Then, since the Green function P(x,t|xo,0) [Eq. (5.78)] has the same form
as (5.82), we can use (5.89) and (5.87) to obtain the time-dependent means:

(x(t)) = /00 dzy - -dr, TP(x,t)

— 00

=/ dry - -dz, a:/ dxo1 - - - dzxon Pz, t|zg, 0) P(xo, 0)

— 00 —00

=/ deI-.-denP(mo,O)/ dzy - dzy  P(z, |20, 0)

— 0 —o0
oo
:/ dzoy - - dxon P($0,0)6At.’130
—00
_ At
= e (x(0)). (5.90)
This is the natural generalization of the one-dimensional result (5.16).
The covariance matrix will generally show a dependence on two time

arguments. We define the autocorrelation matriz C(t',t) to be the n x n
matrix with matrix elements

Ot 0 = ([t) = @][e:(®) - & @)]), (5.9

or, in vector notation,

= /oo dl‘l d:cn Oodl'ol den [$_ <.’D(t/)>:|

x [zo — (z(t))]

here the two-time average is evaluated by integrating against the joint dis-
tribution P(x,t';xo,t) = P(x,t'[xg,t)P(xo,t). We first consider the depen-
dence on the time separation ' —t; how do the correlations between variables
evaluated at different times behave as the separation of the times increases?
For t’ > t, we have

P(z,t'|xo, t) P(x0, t); (5.92)
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(oo}
C(tl, t) = / d.’l?(n s d.’l?on P(w(), t)
—00

x [ | dondan fo- <m<t'>>]P<m,t'lmo,t>} [0 — (@(t)]"

— 00

= /Oo dzoy - - - dxon P(xo,t) [GA(t/_t)wo - <$(t,)>]

T
x [zo — (x(t))],
where we have used (5.87). Then, using (5.90) and the definition (5.85) of
the covariance matrix,

C(t',t) = A =D /_ " daor - dzon P(o,1) [0 — (2(8)] [0 — (a(t))]”
= A0 ([a(t) - (2()][2() - @(®)] )
=eA-NCt,t), >t (5.93a)

By interchanging ¢ and t', (5.93a) can be used to obtain a corresponding
result for ¢/ < ¢:

C(t',t) = < a(t) — (x(t)] [=(t) - <w(t’)>]T>
= [eA(t—t'>C(t’,t’)]T

T

=Ct,t)er =) ¢ <y (5.93b)

There is a second piece to the time dependence of the autocorrelation
matrix contained in its behavior for equal times; we must now look at the
time evolution of the covariance matrix C(t,t). We have

C(t,t) = / ~ dzy -+ dan [z — (@(t)][z — (2(t))]" P(=,1)

— 00

= [ oo o - G@O)]fz - (0]

—0o0

x/ dzoy - - - dzon, P(x, t]xo,0)P(x0,0)

= / d.’L‘Ol tee dl’on P(:B(), 0)

—0o0

x/oo dz - - dz,, [x — (@(t))][z — (2(2))]" P(=, t|xo,0).

—00

To carry out the integration over x, we write
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[z — (@(®)][z — (@®)]" = [ — eAz(0))][x — eA¥(z(0))]"
- {(:c —eftlzg) + ett[zy — (m(O))]}

x {(:c —eftag) + etz — (:c(O))]}T

The integrals of the four terms arising in this product are then evaluated
using

/ dzy - dzy, (x — etaxo)(z - eAtwo)TP(w,tjwo,O) = Q(t),

—00

/ dzy - - - dz,, (x — eAtao) P(z, t|2o,0) = 0;

these follow from the results of Sect. 5.2.2 and the explicit form for the Green
function P(x,t|xo,0) [Eq. (5.78)]. After carrying out the integrals, we find

C(t, t) = / d.’L‘Ol tee d(Egn P(mo, 0)

—0o0

x{Q(t) + e4* [wo — (@(0))][wo — (w(0))]"eA "}
= Q(t) + e*'C(0,0)eA ™. (5.94)

The matrix C(0,0) appearing on the right-hand side of (5.94) is the co-
variance matrix for the initial state; it specifies the initial variances and cor-
relations. If the eigenvalues of A all have negative real parts, the initial state
decays to the steady-state distribution (5.80). The contribution to (5.94) com-
ing from the initial covariance matrix decays to zero, and the variances and
correlations that survive in the steady state grow in the term Q(¢), ultimately
taking the form given by (5.81). The picture that unfolds in many dimen-
sions is a simple generalization of the behavior in one dimension following
from (5.17).

The solutions given by (5.90), (5.93), and (5.94) are really only useful for
formal purposes. For example, rather than calculating (x(t)) from (5.90), or
C(t',t) from (5.93a), we would normally work directly with the corresponding
equations of motion:

d(x(t))

!
d—Cé?l = AC(t,1), t' >t

The equation of motion corresponding to (5.94) is not so obvious. When we
look back at the definition of Q(t) [Egs. (5.79), (5.73), and (5.65b)], it is
apparent that a little untangling must be done before we can arrive at such
an equation.
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5.2.4 Equation of Motion for the Covariance Matrix
We first differentiate (5.94) with respect to ¢ to obtain

C=Q+et (AC(o, 0) + C(0, O)AT)eATt
=Q-(AQ+QAT)+ AC +CA”. (5.95)

We want to rewrite this equation so that it only involves the matrices C, A,
and D. From the definition of @ [Egs. (5.79), (5.73), and (5.65b)] we write

D..
ST — [ -4 |1 — e(Patj)t
SQ ( /\z + /\j [ € ] ’
or, equivalently,
ASQST + SQSTAT = — D + At DeA™t,

where the second form follows by recognizing that A is the diagonal ma-
trix whose nonzero elements are the eigenvalues A1, ..., A,. Using (5.62) and
(5.65b), the second equation gives

AQ + QAT = —D 4 eAtDeA™, (5.96)
while the first gives
O=8"1 (bije(ki-{—)\j)t)(s—l)’r
— S 1At ﬁeATt(S_l)T
=eAtDeA™t, (5.97)
From (5.96) and (5.97) we obtain the equation of motion for Q:
Q=AQ+QA"+D. (5.98)

Substituting this result into (5.95) gives the desired equation of motion for
the covariance matriz:

C=AC+CA"+D. (5.99)

Notice that Q and C obey the same equation of motion; however, they
have different initial conditions, since Q(0) = 0, while C(0,0) need not van-
ish. The difference C — Q obeys an equation similar to (5.98) and (5.99), but
without the diffusion matrix D acting as a source. When the eigenvalues of
A all have negative real parts, this difference decays to zero in the steady
state, as indicated by (5.94).

To solve (5.99) the source term D can be removed by making the trans-
formation



5.2 Linear Fokker-Planck Equations 175

C = AC + CA" + D; (5.100)

then .

C=AC+CA". (5.101)
Generally, this gives n? linear coupled equations for the matrix elements of C.
If steady-state variances and correlations are all that are required, these may
be found by solving the n? algebraic equations for the steady-state covariance
matriz C  obtained directly from (5.99):

ACy + C AT = —D, (5.102a)
where
Coo = lim C(t,1). (5.102b)

Exercise 5.5 Two harmonic oscillators, both with frequency wyg, are coupled
in the rotating-wave approximation and independently damped by coupling
to reservoirs at different temperatures. The Hamiltonian for the coupled os-
cillator system is

Hg = hwo(ata + b'b) + ihg(ab' — a'b). (5.103)

Show that the Fokker—Planck equation in the P representation is given by

?—P:[%<3&+ (?d*>+%<ﬁ5+ 9 B*)

ot |2 \oa ' oar 2 \a5" " 9p*
0 - d =, 0 . 0 ..
+9<5d“5+ 607*/3)—9(56:014— 85*0[ )
. 0? .
+7anam + %nbw} P, (5.104)

where ~ denotes quantities in a frame rotating at the frequency wg, v, and
v are damping constants for the two oscillators, and 7 5 = {w, Ty ). Solve
(5.102a) to obtain the steady-state expectation values

_ 49%/[¥a(Va + )]

(a'a)ss = M — (g — 7) T+ 462/ (7o) | (5.105a)
2

(b bYes = iy + (71 — m,)4i7 f};ﬁ};m’)ﬂ, (5.105b)

(ab)ss = (1 — M) 29/ (vt ) (5.105¢)

1+46%/(am)

Note that because the reservoirs have different temperatures the coupled
oscillator system is maintained away from thermal equilibrium; also that, for
g — 0, each oscillator comes to its own independent thermal equilibrium,
with (afa)ss = 7q and (bTb)ss = M.
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5.2.5 Steady-State Spectrum of Fluctuations

After a system has evolved to a steady state, it is useful to characterize the
fluctuations about the steady state in terms of their frequency content. We
return here to an earlier comment: a damped electromagnetic field mode is
really a quasimode; it possess a linewidth. More generally, if the field mode
interacts with some other system, it will not have the simple Lorentzian
spectrum obtained from the Fourier transform of (1.116). There will, how-
ever, be a broadband component to the spectrum, and a frequency-space
decomposition of the steady-state fluctuations determines what it is. When
the steady-state fluctuations are described by a linear Fokker—-Planck equa-
tion, it is straightforward to derive a formal result that accomplishes the
decomposition in frequency space.

In the steady state the autocorrelation matrix C(t',t) becomes a function
of the time difference 7 = t' — t alone. We define

lim;_, o, e47C(t,1) T>0
Cs = lim C(t +7,t) = -
to0 limy,oo C(t+ 7.t +7)e™4 7 7<0

eA7C o T>0
= (5.106)

- Cooe_ATT T7<0 ’
where we have used (5.93a) and (5.93b) (also C(0) = C). The spectrum

of fluctuations is defined by the Fourier transformation of this stationary
autocorrelation matrix:

1 [ :
Tss(w) = %/ dr Css(T)e ™7
1 [ .
=— | drexp[(A—iwl,)T|Cwx
2 0

+ i/ dr C o exp[(AT +iwl,)7]
2w 0

- ‘51} (A= iwl,) 'Coo + Coo (AT +iwI,) ™). (5.107)

I,, denotes the n x n identity matrix, and when evaluating the integrals we
have assumed that the eigenvalues of A all have negative real parts (the
steady state is stable), so that lim, .o, eA” = 0. We may cast (5.107) into
a simpler form, multiplying on the left by A — iwlI, and on the right by
AT 4 iwI,, to obtain
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(A — iwl )T (W) (AT + iwl,)
1

_ 1 T
= 5 (CocAT+ AC.)

1
T

The last step is made using (5.102a). The steady-state spectrum of fluctuations
is then given by

To(w) = %(A — iwI,) " D(AT 4 iwI,) . (5.108)

Equation (5.108) is a very useful result. If the matrices can be multiplied
out analytically, each element of Tss(w) is obtained as a ratio of polynomi-
als; and for high-dimensional systems, where analytic manipulation of the
matrices is impracticable, the matrix algebra can be implemented directly
on a computer. Spectra need not be calculated from (5.108), however. They
are often calculated by first deriving explicit expressions for the steady-state
autocorrelation functions, as a sum of exponentials. Taking the Fourier trans-
form then gives the spectrum as a sum of Lorentzians. This is the approach
we used to calculate the spectrum of the fluorescence from a two-level atom
(Sect. 2.3.4); although, in that case the analysis was not based on a Fokker—
Planck equation. It is useful to see how (5.108) can be rewritten to explicitly
display the Lorentzian structure. To do this we introduce the diagonalized
drift matrix A [Eq. (5.62)], writing

To(w) = % [S7'AS — iwI,| 'D[STAT(S ) +iwl,] "
— 2—17r-s-1(A —iwI) "L D(AT+ iwI,) " (ST

for the individual matrix element this gives
D
Ak — w) (N + iw)’

Tl = 3= (Sl g

kl

(5.109)

where the (S~1),; are the matrix elements of S ~'.

Exercise 5.6 Use (5.108) to show that the steady-state spectra for the
coupled oscillators of Exercise 5.5 are given by
1 [ -
e t WT
o) dr{a'(0)a(r))e
_1 (Yaa/2)[(1/2)? + (W = w0)?] + (W7s/2)g°
™ (W —wo)* + [(7a/2)* + (%/2)? = 20°](w — wo)? + [(Yae/4) + 917
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(5.110a)
2—17; /_ dr )b
1

_ (176 /2)[(7a/2)? + (w — w0)?] + (YaTla/2)g?
7 (W —wo)* + [(7a/2)? + (1/2)? — 292}(w — wo)? + [(VaV6/4) + 92
(5.110b)

Show that the denominator in these expressions factorizes in the form [(w —
wo)? + A% ][(w — wo)? + A%], where

2
Ay = I'Yb n (’ya - 7b) g (5.111)

are the eigenvalues of the drift matrix A of the Fokker-Planck equation
(5.104).

5.3 Stochastic Differential Equations

In classical statistical physics the Fokker—Planck equation provides a dy-
namical description in terms of an evolving probability distribution which
determines the average quantities that would be measured over an ensemble
of experiments. An alternative approach to calculating these averages is to
find a set of equations whose solutions generate trajectories in phase space,
representative of what would be observed in a single experiment. Such trajec-
tories must possess an irregular component modeling processes that are not
observed in microscopic detail, but which manifest themselves macroscopi-
cally as sources of noise and fluctuations. These stochastic trajectories can
be generated mathematically by stochastic differential equations — equations
of motion that introduce irregularity through fluctuating source terms whose
properties are defined in some probabilistic sense. For example, consider the
equation

i = A(z) + B(a)E(t), (5.112)

where, at each time t, £(t) is chosen from a distribution with zero mean, and
some defined variance and correlation properties with respect to its values
at earlier times. Assuming there is a sense in which solutions to this equa-
tion are defined, it is pretty clear that they are not uniquely determined by
an initial choice for z; for a fixed z(0), an infinity of different trajectories
must be possible corresponding to different realizations of £(¢). An ensemble
of these trajectories can be averaged at every instant ¢ to obtain the time-
dependent averages that might be calculated from a Fokker—Planck equation.
Such a mathematical description directly simulates processes as they are ob-
served in the laboratory. If, for a given Fokker—Planck equation, we can find a
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set of stochastic differential equations that produce the same averages as the
Fokker-Planck equation (of course, this must include all multi-time averages),
we can speak of an equivalence between descriptions in terms of the Fokker—
Planck equation and the stochastic differential equations. Such an equiva-
lence can be set up for every Fokker—Planck equation. Since the stochastic
differential equations are sometimes more manageable computationally, we
now spend a little time discussing this equivalence. For an in depth study
of stochastic differential equations there are many books available [5.3, 5.4,
5.18, 5.19]. The book by Gardiner [5.3] is very useful as a practical guide
through the labyrinth of more formal mathematical treatments.

5.3.1 A Comment on Notation

The choice and consistent use of notation in a discussion of stochastic pro-
cesses can be a bit of a headache. Generally, throughout this book we do not
bother to distinguish between random variables and the values they take.
Thus, the quantity inside the average (z) is a random variable; the condi-
tional distribution P(z,t|zo,0) is a function of the possible values taken by a
random variable. Time dependence leads us into further notational subtleties.
The solutions to Fokker—Planck equations are probability densities showing
an explicit dependence on time. Is the time dependence in (z(¢)) on the aver-
aged quantity, or on the quantity averaged? The former sense seems to be the
more natural expression of the explicit time dependence in the probability
density. However, now that we are speaking of ensemble averages of trajecto-
ries, we are surely averaging time-dependent quantities. While elsewhere we
can afford to be a bit sloppy, in this section on stochastic differential equa-
tions notational niceties affect the clarity of the presentation. It will perhaps
be helpful if we are a little pedantic about notation here.

First, we must distinguish between random variables and the values they
take. We use uppercase letters for random variables (or a caret ~ on Greek
characters) and lower case letters for the values they take. Second, when
describing a stochastic process we deal either with sequences of random vari-
ables in discrete time, or families of random variables in continuous time.

Thus, for a process that evolves over the discrete times ¢g,%1,.. ., separated
by time step At, we define the sequence of random variables Xg, X;,...,
and denote the values these random variables take by zg,z1,.... Note that

different random variables describe the statistics at different times. These
random variables may be independent or they may be correlated. For a pro-
cess evolving in continuous time we define the family of random variables X,
parameterized by the time ¢, and let z; denote the values taken by X;. Condi-
tional probability densities are now written P(zy,,tn|z0,t0) or P(z¢,t|z0,0),
where

Pz, tn|zo,to)de, = Prob(xn < Xp <z +dzy| X = xo), (5.113a)
Pz, t|xzo, to)dz: = Prob(a:t < Xi <y +day| Xo = xo). (5.113b)
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The probability density for realizing a particular sequence of outcomes
{zo,1,...,2,} in discrete time, given Xo = =zo, is written P(z1,t15...;
Zn, tnlTo,to), where

n
P(z1,t1;...; Zn, tn|xo,t0)H dz;

i=1

= Prob(z; < X; < z; +dz;,Vi=1,...,n|Xo = o). (5.114)

5.3.2 The Wiener Process

The Wiener process plays the important role of providing the elementary
fluctuating terms that go into the construction of stochastic differential equa-
tions. We will discuss the Wiener process in one dimension. Its generalization
to many dimensions is a simple extension to a collection of independent one-
dimensional processes.

The Wiener process is described by the Fokker-Planck equation with zero
drift and unit diffusion. In our new notation,

2
W = %a%? (w, tjwo, 0). (5.115)

The Green function solution to this equation provides the familiar description
of Brownian motion, or unconstrained diffusion. From (5.19) [or (5.78)], we
have

1 1 - 2
P(w, tlwo,0) = \/—ﬁexp {_§M}; (5.116)

the initial é6-function distribution evolves with constant mean
(Wy) = wo, (5.117a)
and a variance increasing linearly in time:
(Wi — wp)?) =t. (5.117b)
Correlations at unequal times are obtained from (5.93a) and (5.93b) with
A=0:
(We —wo)?) >t
Wy — wo)(Wy —w =
e e A
= min(t, t). (5.117¢)
Now, in what sense can we define irregular trajectories whose ensemble
averages reproduce (5.117a)—(5.117¢)? Let us begin in discrete time. We de-
fine a sequence of random variables {Wy, Wy, ..., W, } corresponding to the

times tg = 0,%1,...,tn, separated by the time-step At. The value the random
variable W; takes is denoted by w;, —00 < w; < oo. The initial condition in
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(5.116) requires that Wy = wp with unit probability. Then, a discrete tra-

jectory, at resolution At, is defined by a sequence {wg,w,...,w,}, where
each random variable W; adopts a value w; chosen from some distribution
P(w;, t;). We obtain the Wiener process when the w;, i = 1,...,n, are chosen

from a series of Gaussian distributions, P(w;,t;}w;_1,t;—1), each conditioned
on the value taken by the random variable one step earlier in time. Specifi-
cally, we write

1 l(wi — wi_l)z:l
P(wi, tilwiy, tio1) = ————exp |- W1 ] (5118
(i tifwio,ti-1) 21 (t; — tizy) p[ 2 ti—tia ( )
Then the probability density for a prescribed sequence {wp,ws,...,w,} is
given by
(wi — w;—1)?
P 7t 3T 7t ) A I
(i, 15+ 5wn, Enfu, 0) = WH [ v }

(5.119)

Note 5.3 The process we construct in this way is Markovian. Fokker-Planck
equations describe Markov processes, and the Wiener process is an example
of a Markov process. A discrete Markov process is completely defined by the
conditional probability connecting the values taken by the random variables
at successive times. The probability density for a complete sequence is then
constructed as a product of conditional distributions as in (5.119) [5.20].

In order to compare ensemble averages of the trajectories defined in this
way with (5.117a)—(5.117c), we first write the distribution (5.119) in standard
form. Replacing w; — w;—1 by (w; — wp) — (w;—1 — wp), and summing the
exponents in the product of exponentials, we rewrite (5.119) as

P(wi,t1;+ -5 Wy, talwo, 0)
1 [ 1 Tag—1
=—— exp|—s5(w—-wyl)' M w—wl],
ORI p|— 5( 0l) ( ol)
(5.120)
where w is the column vector constructed from wy,...,w,, and 1 is the
column vector with every entry equal to unity; M ~1 is the n x n matrix
2 -1 0 o --- 0 0 0
-1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0
) 1 0 o -1 2 ... 0 0 0
M = — . . . . . . . . .
At s e (5-121)
0 0 0 0 2 -1 0
0 0 0 0 -1 2 -1
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with det M ™! = (det M )~ = 1/(At)™. It can be seen by direct multiplica-
tion that (5.121) has the inverse

1111 - 1
1 2 2 2 . 2
1 2 3 3 - 3
M=At|1 2 3 4 . 4 (5.122)
1 2 3 4 .-+ n

Note 5.4 The matrix M ! can be reduced by row operations to the matrix
with plus unity everywhere along the diagonal, minus unity in the element of
every row to the left of the diagonal, and zeros elsewhere: add row n to row
n —1, then add row n — 1 to row n — 2, and so on. Using the reduced matrix,
det M~ = 1/(At)" follows immediately.

Equation (5.120) now has the form of (5.82) and we can use the results
of Sect. 5.2.2 to obtain moments. From (5.87) and (5.88) we obtain

(Ws) = wo, (5.123a)

<(Wz - ’w(])2> =iAt = ti, (5123b)

(W — wo)(W; — wp)) = min(j,4) At = min(t;, ;). (5.123c¢)

These results reproduce the continuous time results (5.117) at the discrete

times 0, At, 2At, ..., nAt.

Exercise 5.7 The probability that a trajectory wanders a distance w; —
wop in the first ¢ steps is calculated by integrating (5.119) over all possible

intermediate values wy, ..., w;_1. Show that
1 1 (wi - wo)z
P(w;, t;|lwg,0) = — — . 5.124
(w |w0 ) 27l'ti exp[ 2 tl ( )

This is the discrete-time version of (5.116).

To recover the results for the Wiener process in continuous time we must
take the limit of infinitely many infinitesimal steps, where the sequence of
random variables Wy, W1, ... is replaced by the family W;. In the limit At —
0,7 — 00, j — oo, with t; = 1At =t and t; = jAt = ' finite, (5.123a)-
(5.123c) reproduce (5.117a)—(5.117¢c), and (5.124) reproduces (5.116).

Note that with At finite, (5.123a)-(5.123¢) and (5.124) correspond ez-
actly to (5.117a)—(5.117c) and (5.116) at the discrete times t = 0, At, 2At,
..., nAt. The discrete trajectories generated by (5.118) describe the Wiener
process at reduced resolution, not reduced accuracy; finite steps do not give
an approximation that only approaches the Wiener process in the limit of in-
finitely many infinitesimal steps. This is in contrast to discrete valued (jump)
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processes, which do only approach the Wiener process in this limit — for ex-
ample, the random walk, which replaces the conditional distribution (5.118)
with an equal probability for fixed jumps, + Aw or —Aw, at each time step
[5.21]. In Volume 2 we will discuss the numerical simulation of stochastic
differential equations as an approach to solving nonlinear problems where
direct solution of the Fokker-Planck equation is not possible (Chap. 12). In
such simulations the Wiener process is implemented in the discrete version
described above.

5.3.3 Stochastic Differential Equations

Actually, in the simulation of stochastic differential equations we do not work
with the Wiener process itself, but with the differential process, or Wiener
increment, dW; = Wy 4 — W;. We have seen how irregular trajectories can
be generated by W;. We must now define the sense in which these trajectories
are solutions to some differential equation. First, however, we should perhaps
consider whether or not we can even define the time derivative of W,.

Consider the probability that the absolute slope of a trajectory calculated
over a short interval At is greater than some constant k. Using (5.116), this
probability is given by

[Wt+At - Wt[
v >k
= PI‘Ob(Wt+At — Wt > kAt) + PrOb(WtJ,_At — Wt < —kAt)

Prob (

[eS)
= / dwt+At P(wt+At,t+At|U)t,t)
wi+kAt

wi—kAt
+/ dwiy at P(wey ag, t + At|wy, t)

— 00

_ 2 /oo dwi s At exp ___1_<wt+At“wt)2
\/27TAt we+ kAL trat 2 At

_ 2 V2r At — O(kAt)
VomAt 2

In the limit At — 0, this tends to unity for any k. Therefore, for At short
enough, |wya¢ —w;|/At is almost certain to be greater than any number we

care to choose. For almost all trajectories the time derivative of w; must be
infinite; the Wiener process is therefore not differentiable.

: (5.125)

Note 5.5 A series expansion for the integral in (5.125) can be given. The
result of the integration is readily appreciated, however, from the following
consideration. The required integral is the area under a normalized Gaussian
whose width is v/At, with a central slice of width kAt omitted (Fig. 5.3).
Since, as At — 0, kAt becomes much smaller than vAt, no matter how
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large k is chosen to be, the result claimed below (5.125) follows; the integral
approaches the entire area under the Gaussian.

A similar calculation shows that for any k, no matter how small,

Al%mOProb(IWHAt — Wy > k) =0. (5.126)

Trajectories w; are therefore continuous, but everywhere nondifferentiable.
In what sense can they be generated as solutions to a differential equation?
Let us again begin by considering discrete time. Consider the sequence of
random variables Zg, Z1, . .., with

i—1
7y = Zg + At Z =, (5.127&)
k=0
or
AZi = Zi — Zi—l = Atfi_l. (5127b)
Here Zy and =g, =1, . .., are independent random variables, and the =; are

Gaussian distributed with zero mean and variance 1/At:

At
P(&) =/ o &P (— 34t€7), (5.128)
with
(5) =0, (5.129a)

z.5y=10 i #J
<“J‘~z> - { l/At i = ] . (5129b)

(Z; is a random variable; &; denotes the value taken by the random variable.)
From (5.127) and (5.129), we find

(Zi) = (Zo), (5.130a)
i—1 i—1
((Zi — (20))*) = (At)? (ZkZw)
k=0k'=0
= 1At
=t;, (5.130b)
and
-1 i-1
((Z; = (20))(Zs — (2Z0))) = (A1) D (Su. 5w,
k=0k’'=0
= min(j, i) At

= min(¢;, ;). 5.130c)
j
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— - ~ VAt
Fig. 5.3 Probability distribution inte-
grated to obtain (5.125). The shaded re-
' gion which is omitted from the range of
— kAt - integration contributes a term O(kAt).

Equations (5.130) reproduce the results (5.117) for the Wiener process in
discrete time. We may now make the identification Z; = W; and AZ; = AW,.
Thus, in the limit At — 0, the Wiener process can be generated as the integral
of the Gaussian white noise =;. We write

t
Wt = WO ‘I‘/ dt/Etl, (5131&)
0
where the moments (5.129) become

(5) =0, (5.132a)
(Ep =) = 6(H —t). (5.132b)

We cannot write down a distribution for =} as an ordinary function in the
continuous time limit because the variance of (5.128) becomes infinite as
At — 0. This infinite variance is carried by the §-function correlations. The
sense of the infinity is well defined, however, by the limiting procedure that
led us to (5.131) and (5.132).

Exercise 5.8 Use (5.131a) and (5.132) to arrive directly at (5.117a)-
(5.117¢).

Equations (5.131a) and (5.131b) define the way in which realizations of
the Wiener process are generated as solutions to a differential equation. In
the usual notation of differential calculus we would write

However, although this notation is sometimes met in the literature, it is not
strictly correct, because, as we have seen, W; is not differentiable. It is only
in the sense of the integral (5.131a) that the equation of motion for the
trajectories w; is defined. We now extend these ideas beyond the Wiener
process itself to write an equation of motion for a random variable X; driven
by both deterministic forces and a fluctuating force derived from =;. This
gives the general stochastic differential equation in one dimension:
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= A(X;)dt + B(X;)dW;. (5.133)

The interpretation of this equation is to be taken from the integral form
t t
X: = X +/ dt/A(Xt) +/ B(Xt)th (5134)
0 0

In numerical simulations the discrete process AW, = At=; (AtZ; is Gaus-
sian distributed with variance At) of Wiener increments between t; and ¢;_1
provides the source of fluctuations.

We have overlooked something here, however. There is a problem of in-
terpretation due to the appearance of the random variable X, inside the
second integral on the right-hand side. The problem is not apparent when we
simply write down the standard integral notation in (5.134). But it quickly
appears if we think carefully about how the integral is defined as the limit
of a sum. We need to know how to interpret the integral in (5.134) when
the random variable X; appears in the integrand. In many applications this
dependence is absent, and then the stochastic differential equation is said to
involve additive noise. When the strength of the fluctuating force depends
on the random variable X; we speak of multiplicative noise. Typically, the
examples of stochastic differential equations met in quantum optics have mul-
tiplicative noise. Often, however, a linearized analysis is performed using the
system size expansion discussed in Sect. (5.1.3). In this case the multiplica-
tive noise is approximated by an additive noise, with X; replaced by z(t) (the
solution to the macroscopic law) to determine the noise strength B.

5.3.4 Ito and Stratonovich Integrals

To uncover the ambiguity of the stochastic differential equation (5.134) we
consider the integral ,
I= / FydWy, (5.135)
to
where F; describes some arbitrary stochastic quantity. Let us seek a definition
for this integral starting with an approximation for discrete time. We divide
the interval [to,t] into ¢ subintervals with time-step At = (¢ — to)/4, and
ty = to+kAt, k=0,...,4, as illustrated in Fig. 5.4. Within each subinterval,
the time
Tk =ty + @At (5.136)

lies a fraction a, 0 < a < 1, of a time-step from the lower limit of the
subinterval. Now set

L= F, (W, —W). (5.137)
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One possible choice for F; is W;. With this choice we are able to calculate
the average value of the integral using (5.117c). We obtain

<Ii> = (<WTkWtk+1> - <WTkWtk>)

k=0
i—1
= Z {[wd + min(ry, tht1)] — [wg + min(7k, t)] }
k=0
= a(iAt)
= Oé(t — to). (5138)

The answer can take any value between 0 and (t—tg) depending on our choice
of a.

to t1 ts Fig. 5.4 Subdivision of the range of integra-
Ty 7 tion in the stochastic integral (5.135).

Different choices for a define different stochastic integrals. Two choices
have received wide use. The first sets a = 0 and evaluates F} at the beginning
of each interval. This choice gives the definition of the Ito stochastic integral
[5.22] as the mean square limit of the sequence of approximations

i—1
I =3 "F, (Wi, — W) (5.139)
k=0

The second choice sets o = %, evaluating F; at the midpoint of each interval.
This gives the definition of the Stratonovich stochastic integral [5.23] as the
mean square limit of the approximations

i—1

IiStrat = Z F%(tk+1+tk)(Wtk+l — Wtk) (5140)
k=0

For given functions A(X;) and B(X;), (5.134) defines two quite different
equations depending on the interpretation given to the stochastic integral.
The stochastic calculus derived on the basis of the Ito integral is quite differ-
ent from that based on the Stratonovich integral. The Stratonovich integral
leads to conventional rules of calculus; the Ito integral defines a new calculus.
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From the point of view of analysis it might seem preferable to always work
with Stratonovich integrals and conventional calculus. However, calculations
that are quite straightforward using Ito calculus can be quite difficult in the
Stratonovich form. The details of this comparison are beyond the scope of
this book, however, we get a taste for the differences from the discrete time
implementation of (5.134). Let us look briefly at this. A deeper discussion is
given in the book by Gardiner [5.24].

The numerical simulations discussed in Volume 2 use the Cauchy-Fuler
procedure to generate approximate realizations of (5.134) interpreted as an
Ito equation:

i—1 1—1
Xi=Xo+AtY> A(Xp)+Y B(Xx)(Atéy); (5.141)

k=0 k=0

the solution to (5.141) advances with
Xit1 = Xi + AtA(X;) + B(X;)(ALs)). (5.142)

From (5.141), X; depends on Xy and Eg, k =0,...,i—1. Since the Gaussian
random variable Z; is a statistically independent quantity, in (5.142) B(X;)
and Z; are statistically independent. In continuous time, when (5.134) is an
Ito equation, B(X;) and dW; are statistically independent. This makes it
rather easy to obtain an evolution equation for (X;) from (5.134):

(X,) = (Xo) + /0 dt' (A(Xp)) + / dt! (B( X)) (W)

0

= (Xo) +/Ot dt' (A(Xy)), (5.143a)

where we have set (dW,) = 0 [Egs. (5.131b) and (5.132a)]. In differential
form,

d
Z{X) = (A(X0)). (5.143b)

Using the more general statement that B(X;) and dWy are statistically in-

dependent for ¢ > t, we can derive an evolution equation for (X?). From
(5.134), we have

(X7) = (X3) +2 /0 t'(XoA(Xy)) + /0 dt’ /0 A" (A(Xy) A(X )
12 /0 dt /0 (A(X)B(Xer)dWir)

+/0/0 <B(Xt’)B(Xt")th’th”>+2'/0 (XoB(Xy)dWy).

The statistical independence of B(Xy) and dWy allows us to set the last term
on the right-hand side to zero. Also, in the second-to-last term dWip,axs 17
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is independent of the other three quantities in the average. The average is
therefore zero for ¢’ # t”. But when the time arguments are equal the prod-
uct B(Xy)B(Xy) is independent of dWydWy». We can therefore factorize
<B(Xt/)B(Xt//)th/thH> as <B(Xt/)B(Xt//)><thlth//>. We now have

<Xf>=<X§>+2/O dt’<XoA(th)>+/0 dt’/o dt" (A(X ) A( X))
42 /0 dt /0 (A(X) B(Xor)dWyr)

+ [ [ BB @), (5.1440)

Differentiating with respect to time, we obtain

d

Et-(Xf) = 2<[X0 +/Ot dt' A(Xy) +/Ot B(th)dWyJ A(Xt)>

+ z/t dt'(B(X;)B(X¢))6(t —t)
0

= 2X: A(X)) + (B(X1)%), (5.144b)

where we have used (5.131b) and (5.132b) to write (dW;dW )/dt = dt'§(t' —
t).

Now consider the discrete-time version of (5.134) in the Stratonovich in-
terpretation. In place of (5.142), we have

Xiy1 = X¢+AtA(Xi+%) +B(Xi+%)(ﬂt5i), (5145)

where X, +1 denotes the random variable X; with ¢t = %(tH-l +t;). We cal-
culate (X;41) — (X;), from which results equivalent to (5.143a) and (5.143b)
will follow. Since B(XH%) is evaluated at a slightly later time than =;, we
should not assume that these two quantities are statistically independent.
Instead we must calculate both B(X; +%) and A(X, +%) in some approximate
way in terms of =, and A(X;) and B(X;). The calculation only needs to be
correct to lowest order in At. We first use linear interpolation to write

Xivy = Xi + 5(Xop1 — Xo), (5.146)
and then expand A(X, 1) and B(X;,1) to first order about X;. Equation
(5.145) becomes
X1 = X + A[ACX:) + 1(Xipr — X0)A/(X))]
+ [B(Xy) + 3(Xip1 — Xi)B'(X))](At=).

Here X1 appears on both sides of the equation. Solving for X, to lowest
order in At, we have
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Xi+1 - Xi = AtA(Xz) + B(Xz)(AtE,) (5147&)
Substituting this result back into the original equation, we obtain

Xip1 = Xi + AtA(X;)[1 + B/ (X)) (AtE;) + 1 A'(X))]
+ B(X)(AtZ3) [1+ 3B'(X3)(AtS;) + $A'(X;)At]. (5.147b)

It appears that (5.147b) includes four corrections of order At? when it is
compared with (5.147a). But this is not so. After taking the average we see
that the term 3 B(X;)B'(X;)(At=;)? is really of order At, since (52) = 1/At
[Eq. (5.129b)}; we should view (At=;) as a term of order v/At, so that (5.147b)
is an expansion in powers of v/At. Then to lowest order we arrive at the result

(Xip1) = (Xi) = At[A(X;) + 5 B(X:)B' (X)) (5.148)

This equation of motion for the mean is not the same as the equation of
motion obtained from the Ito interpretation of the integral [Eq. (5.143b)];
it includes the additional term %B(Xt)B’ (X:) on the right-hand side. The
additional term reflects the fact that in (5.145), B(XH%) and =, are not
statistically independent. In continuous time, when (5.134) is a Stratonovich
equation, B(X;) and dW; are not statistically independent.

We must remember then, that for given functions A(X;) and B(Xy),
(5.134) describes different stochastic processes depending on the interpre-
tation of the stochastic integral. This has given rise to extensive debate
about the “correct” interpretation [5.25, 5.26]. The debate has content when
a stochastic differential equation, formulated in a phenomenological manner,
provides the fundamental basis for a stochastic model. The physical argu-
ment (for external noise) is then that the Stratonovich interpretation holds,
because “real” noise is never exactly white; the unconventional Ito calculus
stems from the extreme irregularity of truly white noise. For our purposes,
however, this debate is of no importance. We always obtain our stochas-
tic differential equations from a previously derived Fokker—Planck equation.
The Fokker-Planck equation unambiguously defines the stochastic process.
Stochastic differential equations equivalent to the Fokker—Planck equation
can be written in either Ito or Stratonovich form. The equations will look
different, but each is to be solved using its own calculus, and a consistent
application of the correct calculus to each equation will produce the same
result.

5.3.5 Fokker—Planck Equations and Equivalent Stochastic
Differential Equations

If we compare the moment equations (5.143b) and (5.144b), with (5.11) and
(5.12), a relationship between the Ito stochastic differential equation (5.133)
[or (5.134)] and the one-dimensional Fokker—Planck equation (5.7) suggests
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itself. It seems these may be equivalent if we identify the functions D(x)
and B(z)?2. This is indeed so. With a little imagination we might even guess
the form of the Ito stochastic differential equation equivalent to the multi-
dimensional Fokker—Planck equation (5.1). We state the result, which cer-
tainly seems eminently reasonable, without proof; the proof is not difficult,
but it requires further excursion into the Ito calculus [5.27]: The Ito stochastic
differential equation equivalent to the multidimensional Fokker-Planck equa-
tion (5.1) is given by

dX, = A(X,)dt + B(X,)dW,, (5.149)

where X, is the column vector formed from the families of random variables
X1ty -+ Xnt, A(x) is the column vector of the drifts A;(x),..., An(x), the
matrix B(x) is defined by the factorization

D(z) = B(x)B(x)” (5.150)

of the positive definite diffusion matrix, and W, is a column vector of n
independent Wiener processes.

For the same Fokker-Planck equation an equivalent Stratonovich stochas-
tic differential equation exists. An educated guess as to its form can be made
on the basis of a comparison between (5.148) and (5.143b). The Stratonovich
interpretation of the Stochastic integral adds the term }B(X;)B'(X:) to
the evolution equation for (X;). If the same stochastic process is to be de-
scribed by both Ito and Stratonovich stochastic differential equations, the
Stratonovich equation must have a different function A(X;), so that the ad-
dition of this term gives the same evolution equation for (X;). This suggests
that

AT (X)) = A(Xy) — AB(X,)B'(Xy).

This is indeed the correct relationship defining the Stratonovich stochas-
tic differential equation equivalent to the one-dimensional Fokker-Planck
equation (5.7); the functions B(X;) are the same in the equivalent Ito and
Stratonovich equations - BSt24(X,) = B(X;) = +/D(X;). More gener-
ally, the Stratonovich stochastic differential equation equivalent to the multi-
dimensional Fokker—Planck equation (5.1) is

dX, = A" (X, )dt + B(X;)dW,, (5.151a)
with
. 1 & 0
Az'St t(w) = A,(:l:) — 5 Z Bkj(a:)at—kBU(m) (5151b)
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5.3.6 Multi-Dimensional Ornstein—Uhlenbeck Process

To close this section let us see how the results of Sect. 5.2 are obtained in
the language of stochastic differential equations. Specifically, we will rederive
the results for means, variances, and correlations (Sect. 5.2.3). From these all
other moments follow.

The stochastic differential equation corresponding to the linear Fokker—
Planck equation (5.5) is

with
D = BB, (5.152b)

where A and B are constant matrices. The stochastic process described by
(5.152) is known as the multi-dimensional Ornstein—-Uhlenbeck process. This
process involves only additive noise, and therefore the issue concerning the
difference between Ito and Stratonovich integrals does not arise. The formal
solution to (5.152a) is

t ¢

thA/ dsX3+B/ dW
0 0
¢
—A / dsX, + B(W, — Wo). (5.153)
0

The equation of motion for the means, and hence its formal solution
(5.90), follows trivially on averaging (5.153):

(X)) = A /0 ds(X.). (5.154)

The autocorrelation matrix is then calculated as

Ot 1) = (Xe — (Xe))(Xe — (X0)")
= < [A/O ds'(Xy — (Xo))+ B(Wy — WO)]
x [A /0 ds(X, — (X)) + B(W, - Wo)} >
= ‘ s t s P = (X - har
—a / dl / ds((Xo — (X))(X. — (X)) )A
+ A/0 d8,<(Xs/ — <Xs’>)(Wmin(s’,t) - WO)T>BT

+ B/O d3<(Wmin(t’,s) - WO)(XS - <X5>)T>AT

+ BB min(t', t). (5.155)
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We have used the statistical independence of X, and W; — Wy for t >
s’, and of X, and Wy — W, for t’ > s. Also, the last term in (5.155) is
obtained using ((Wy - WO)(Wt - WO)T> = I, min(¢, t); this follows from
(5.117c) [generalized as in (5.130c) to allow for a distribution over wg] and
the independence of the components of W;. Now, differentiating (5.155) with
respect to t’, for t' > t,

4o
O0 = A((Xe - (X))

>{AE#X,4XQFAT+Um—u@fBﬂ>

= A{(Xy — (X)) (X - <Xt>)T>
= AC(t,t), t' >t (5.156a)

where the term in the square bracket is set equal to (X; — (X;))T using
(5.153) and (5.154). Similarly, differentiation with respect to ¢, for t' < t,
gives

%C(t’,t) =Cci, AT, <t (5.156b)

These differential equations give the formal solutions (5.93a) and (5.93Db).
Finally, setting t’ = ¢ in (5.155) and differentiating with respect to ¢, we have

d
%C(t, t)

= A<(Xt — (X)) UO ds(X, — (X)) AT + (W, — WO)TBT]>
+<[A/O ds'(Xs — (Xs))+ B(W; — WO)}(Xt —(Xy)) >AT
+ BB”
= A((X: — (X0))(Xe — (X)) + (X = (X0)(X: — (X2) ") AT
+BBT.
From (5.152b) and the definition of C(t,¢), this gives
%C@w=A0@0+C@ﬁAT+D, (5.157)

which reproduces the equation of motion (5.99) for the covariance matrix.



6. Quantum—Classical Correspondence
for Two-Level Atoms

After our brief diversion we now return to the theme of Chaps. 3 and 4,
namely, the transformation of an operator description for a quantum-optical
system into the language of classical statistics. So far we have met methods
that accomplish this task for systems described entirely in terms of harmonic
oscillator creation and annihilation operators. At least we have seen that
a Fokker-Planck equation description is possible for the damped harmonic
oscillator, in a variety of versions defined by representations based on dif-
ferent operator orderings. We noted also that there is no guarantee that a
system of interacting bosons can be described using a Fokker-Planck equa-
tion; although, as attested to by the example of the laser (Chap. 8), there are
certainly nontrivial examples that can. The methods used to derive phase-
space equations for systems of bosons can be generalized to the treatment
of two-level atoms, or more generally, multi-level atomic systems. We now
develop the representation for atomic states that is needed for our treatment
of the laser.

6.1 Haken’s Representation and the Damped
Two-Level Atom

A variety of phase-space distributions are available for representing atomic
states. We will briefly mention some of this variety later on. In general, how-
ever, our attention will focus on the representation introduced by Haken and
co-workers as a direct extension of the Glauber-Sudarshan P representation.
Like the P representation, this is a representation based on a characteristic
function in normal order. We must define here what we mean by normal or-
der. The two-level atom is described by pseudo-spin operators o_, o, and o,
(Sect. 2.1). By normal order we mean an ordered operator product obolol,
with every o to the left, every o_ to the right, and ¢, sandwiched in be-
tween. Averages for such ordered operators can be calculated from a normal-
ordered characteristic function and corresponding distribution defined in the
manner of (3.70)—(3.74). This representation for atomic states was introduced
by Haken, Risken, and Weidlich in their theory of the laser [6.1]. It is dis-
cussed in this context in Haken’s book on laser theory [6.2]. A treatment of
H. J. Carmichael, Statistical Methods in Quantum Optics 1
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atomic damping using this representation, developed for three-level, rather
than two-level atoms, can be found in the book by Louisell [6.3]. Both of
these authors consider a collection of many atoms which, of course, is what
must be done to develop a theory of the laser. We begin by considering a
single atom and then extend our results to many atoms. Our first objective is
to derive a phase-space equation of motion equivalent to the master equation
for the damped two-level atom.

6.1.1 The Characteristic Function and Associated Distribution

We introduce the normal-ordered characteristic function

X (6:€5m) = tr(pe’® 7+ eox et ), (6.1)

where £ is a complex variable, £* is its complex conjugate, and 7 is real. From
this characteristic function we can calculate the normal-ordered operator av-
erages

(R olol) = tr(pofola?)
grtr+a ’
B(ie")Pa(in) 0(E) TN | e, o

The distribution P(v,v* m) is defined as the three-dimensional Fourier trans-
form of x, (§,£*m):

(6.2)

P(v,v*,m) /d2£/dnx e TV gk gmim
= 271_3 dw/ ds/ dn Xy (w +is,w — is,n)
x e—2z(w19-s<p)e—mm7 (6.3)

with the inverse relationship

Xy (&%) =/d2v/dm P(v,v*,m)e V" eveinm

o oo oo
:/ dﬂ/ dcp/ dm P(Y +ip, ¥ — i@, m)
—00 —OoQ — 00

e2i(w19—s<p)einm. (64)

Then, from (6.2) and (6.4),

r g P+r+q d2 4 P
(7Lo20%) = B oty ) / e ptwm)
x ei{*v*ez{veinm
£=£*=n=0

= (o), (6.5)
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with
(v*Pmrvq)P E/dzv/dm P(v,v*, m)v*Pm"ve. (6.5b)

6.1.2 Some Operator Algebra

The derivation of a phase-space equation of motion for the damped two-
level atom is carried out in essentially the same way as the derivation of
the Fokker-Planck equation for the damped harmonic oscillator [Sect. 3.2.2].
Because, however, of the different operator algebra obeyed by o_, o, and
0., the strategy for obtaining the equation of motion for the characteristic
function x,, (&, n) is slightly different. Actually, the algebraic form of the
equation of motion we are going to derive is not unique. This is because of
the relationship that exists between products of the Pauli spin operators and
linear combinations of these operators. Use of this relationship will be a nec-
essary part of the calculation when we consider many atoms, and we therefore
pattern the single-atom calculation after the approach that is required in the
many-atom case, even though a closer parallel with the harmonic oscillator
example could be maintained for one atom. Our strategy will be to arrange
all terms in the master equation involving products of o_, o4, and o, — for
example o_po — so that the operator products can be replaced by a sum of
operators taken from the set o_, o4, 0., and 1. This is obviously possible,
because a two-state basis |1), |2) has only four outer products, |2)(2|, |1)(1],
|2)(1], and [1)(2]; clearly, any operator can be expanded in terms of these.
Specifically, collecting results together from (2.25), (2.45), and (2.132), we
have

o% = [2)(12)(1] =0, (6.62)
o2 =1)(2]1)(2| = 0, (6.6b)
o2 = (I12)(2] — [1)(1)) (12)(2 = 11)(1]) = [2)(2| +]1)(1] =1, (6.6c)
oroz = [2)(1](12)(2] — [1)(1]) = —[2)(1] = o, (6.6d)
o_o. = |1)(2|(|12)(2 — [1)(1]) = [1){2] = o_, (6.6¢)
oro_ = [2)(11)(2] = [2)(2] = 3(1 + 02), (6.6f)
o oy = [1)(22)(1] = [1)(2] = 3(1 - 02). (6.68)

In addition to these relations we will need the following three identities:

Proposition 6.1 , .
e%7- 0,67 = o, + 2ifo_. (6.7)
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Proof. The left-hand side of (6.7) may be viewed as the formal solution to
an operator equation of motion with i€ as the independent variable [ifo_
replaces (—iH/h)t in the formal solution of a Heisenberg equation of motion].

Define

0,(i€) = e, e -

with 0,(0) = o,. Then, differentiating with respect to (i£), we obtain

do,(i€)

— plbo— —
a(i6) =e"% (o_0, —0,0_)e

= %990 _e 70

—iéo_

=20_,
where the commutator is taken from (2.11). Thus,

0,(i€) = 0,(0) + 2io_ = 0, + 2ifo_.

Proposition 6.2
einoz o__e—znaz — 6_2"70'_.

Proof. Following the same approach, we define

o_(in) = 7= o_e Moz

with o_(0) = o_. Differentiating with respect to (in), we have

do_(in)

— U =M% (g,0_ —0_0,)e 0
d(in)
= o= (—20_)6_"7"‘
= —20_(in).

Integration of this equation gives

o_(in) = e ?Mg_(0) = e % _.

Proposition 6.3

—ifo_

e%7-g e =0, —ifo, — (i€)%0_.

Proof. Define

o4 (i€) = €7~ g e -
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with o4 (0) = 0. Differentiating with respect to (i£), we obtain

doy (i) _ ieo —ito
— > =% (o_oL —0r0_)e -
d(lé) A ( +A + )
= —e"%%-g,e 7~
=—0, —2i€o_.

The commutator is taken from (2.11) and the last line follows from (6.7).
Integrating this equation gives

04 (i€) = 04 (0) — ifo, — (i€)%0
=0, —ifa, — (i€)%0_.

O

We now have all the pieces we need to derive a phase-space equation of
motion for the damped two-level atom.

6.1.3 Phase-Space Equation of Motion
for the Damped Two-Level Atom

The master equation for a radiatively damped two-level atom is given by
(2.26):

p=—itwaloe,pl + 2 (A + 1)20_poy —0po_p—poro)

2

+ %ﬁ(ZJ_,.pU_ —0_04p—po_oy). (6.10)

Our first task is to derive an equation of motion for the characteristic function
X - Using (6.1) and (6.10), we have

OX y

ot
2 [tI‘( i€ 0oy pinoy, Li€o— )]
57 Ltr(pe e'%=¢
=tr (peif;“*u £ino= eiErL)

= r{

X
2

—itwa(0up— po.) + L+ 1)(20_poy ~ 040_p — poio-)

2

l_"|

+ =n(204po_ —o_orp—po_o )] eié*‘”em”‘ei&’“}. (6.11)
Now, as in Sect. 3.2.2, our aim is to express each term on the right-hand
side of (6.11) in terms of x, and its derivatives. As mentioned above, the
strategy here will be a little different from the one followed in Sect. 3.2.2. We
wish to eliminate all quadratic terms in the operators o_, 0., and o, using
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(6.6a)-(6.6g). All but two of these can be removed immediately; using (6.6f)
and (6.6g), (6.11) becomes

Xy
at
= tr{[—i%wA(Uzp — pos) + %(ﬁ +1)(0_poy — 30.p— $po. — p)
+Zﬁ 201po_ + 2o.p+ Lpo, — p)|e Tzt 6.12
2 2 2

To reexpress (6.12) in terms of x  and its derivatives we proceed as follows.

Consider first the terms involving o,p and po,. These are treated in
a straightforward fashion, using (6.7) to pass o, through the exponentials
€77+ and e%7- so that it is positioned next to €=, It may then be brought
down from the exponential by differentiating with respect to (in). We obtain

tr(azpeif*” 6ina, ei&a_) — tr(peig*a+ einoz eifa_ Uz)

=tr [peif*a'+ 6inaz (eiﬁo’__o_ e—-i{a'_ )62'50'_]

tr[pe16 "+e"’”z(a +2i€o_)e ’f”‘]

a +22§ 5))XNv (6.13)

and
tr (po_zeiﬁ"tu, einaz ei{o-) = tr [pei§*0+ (e—if*a+ o_zeif*a+)einaz ei{a_]

= tr[peig*mr (0. +2i€ 01 )e7= 7]

0 0
= —,+2i£*,—>x . 6.14
(a6 ¢ 317 o (014
The treatment of the term involving o_ po, is no more complicated; but
in accordance with our general strategy, it must begin with some method for

replacing the quadratic dependence on atomic operators by a linear depen-
dence. This is not the only way to proceed. We could write

tr(a_pcr+e"5*"+ !9z o167 - )= tr(poureiﬁ*a+ eMo=e%7-g_)
52
= oA Xa
o(i€*)0(i€)

which is completely analogous to the treatment of the corresponding term
for the damped harmonic oscillator [Eq. (3.77)]. We will see shortly, however,
that while (6.15) works for a single atom, it does not work for many atoms.
For the single atom case we therefore have a choice: we can use (6.15) or the
approach that generalizes to many atoms. Because of choices like this the
equation of motion we derive for a single atom is not unique.

(6.15)
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The procedure that generalizes to many atoms first uses (6.8) to pass o_
through the exponential €*"?=. This sets o_ and o4 next to one another so
that we may replace their product by o o_ = (1 + o). Thus,

tI‘(O’_pU+ ei5*0+ eiTIUz eiEU_ ) — tr(peig*g_,_ 0_+ez'770,0,_ eiga_ )
= tr [,0615*0‘*0'.4, (eimfz o._e——inaz)einaz eiEg‘_]
=tr [pei£*0+ o4 (6_2i770_ ) e'iTIUz eiEU_]

= (3_21"7t1r[,06i5*‘7+ %(1 + 0,)e: eif"—]

- inl __?___
=2 2<1+ a@m)XN' (6.16)

The philosophy is the same for the final term — o, po_ — but the algebra is
now a little more complicated. We first use (6.9) and its Hermitian conjugate
(taken with £ — —¢&) to write

tr(oypo_e T+einTzeito-)
= tr(po_ei 7+ e )
= tr [peif*‘” (e—iﬁ*u U_ei5*6+)einoz (eiﬁo— a+e"i'5”* )6150—]
= tr[pe’ 7+ (o- — i€ 0, — (i€") 204 )€ (04 — i€, — (i€)%0_)e 7],
We now pass (04 —iéo, — (i€)%0_) through the exponential e+ using (6.8):
tr(og po_et o+ i o)
= tr{pe’ 7+ (o —i€* 0, — (i€*)%0y)
x [(€M7: 04 e770) — ifo, — (i€)? (€77 g_eTMx ) |7 ié7 }
= tr[pe’ 7+ (0= — €0, — (i€")"04)
x (€M) — ifo, — (i6)%e o) ez e
= tr{pe® 7+ [ 5(1 — 02) + (i€)(i€") + (i€)*(i€") e 5(1 + 02)
— (i) (1 + (i€) (i€ )e ™) o — (i€") (€™ + (i€)(i€")) o4 ]
x M9z o180~ }7

where in the last step all operator products are reexpressed as sums using
(6.6a)—(6.6g). In this form the operators o, and o appear in the appropriate
places with respect to the exponentials so that they may be brought down
from the exponents by differentiation. On the other hand, the operator o_ is
not in the appropriate place. It must be passed back through the exponential
€19 using (6.8) (taken with 7 — —n) to set it beside e®°~. After taking this
final step, we obtain
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tr(oypo_e o eIzt -)

= (%7 + (1€)*(i€")Pe ™" + 2(i€) (i€"))

- 2( 2 — (i ‘f) (Z‘f*)Qe_Qm) a((?n)
— e & (GEYG __6__._2 2in 4 GGeV(ie* L
E(e + E)€") grzgy — €€ + ()0E) gy Dy - (617)

We may now use (6.13), (6.14), (6.16), and (6.17) to substitute for the
various terms in (6.12). After a little algebra the equation of motion for x

reads 9 5 9 o
XN _ s, 9 9 O
= = D<£,§ = an>XN’ (6.18)

where D <§ €5, a%’ %, a%) is the differential operator

g 0 0
D6 77)

(2~ 2¢)
zwA €6€ 65*

+g‘(n+1)[(e—2i"—l)<1——z%> 2o l]
+gn [(62"" - 1) (1 + if—n) +(6€7)Pe <1 ~ z'%)
(M - ——)(aa6 65)—255*]. (6.19)

The equation of motion for the distribution P now follows from a calcu-
lation analogous to that in Sect. 3.2.2. We first substitute x ,, as the Fourier
transform of P [Eq. (6.4)] to obtain

/d%/dm __{*)P(v,v ™) i€V gikv ginm
ot
o 9 0 o
— 2 * il i€v inm
/d ’l)/de(U,U,m) ({f 17,85 56 3 )e “evel™ - (6.20)

The action of the differential operators on the exponentials in (6.20) allows
the replacement

— v, — — v, —i— — m.

9
o€ on

Then the terms in &, £*, and e*?™ in (6.19), may be passed to the right of
the terms in v, v*, and m, which have replaced the differential operators,
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and to the left of the exponentials; with this rearrangement we can make the
substitution

0 o} :
E_» —i%, 5* N —i57}—*7 e:I:.?m — e:|:273m—.
Now, in (6.20), D(§,§*,n, a%’ a%*’ -(%) has been replaced by the differential
operator

L*(v,v* 0 0 8)

m 2 2 9
7 Ov’ v’ Om

N L
- A\ ov Ov*

7‘1[(1 - m)(ez?% 1)+ (1+ m)TU—e"Q_m
0 * 8 2.9 62 1 82
2 (”% +v EF) (e "t Svow '2‘) * 281}81}*}'

Finally, we integrate each term by parts the required number of times to pass
all of the differential operators from the product of exponentials onto P. Each
derivative changes sign in the process and (6.20) becomes

ek ) oP
d2 €r v iév inm
/ v / dme ee o

o o o0 9
— 2 i€ v Jt€v inm * - =
/d v/dme e%ve L<U’U’m’8v’8v*’8m>P’

(6.22)

where L is the adjoint of the differential operator L*:

L(U,v*’m, 9. 9 _‘9_>

7 2 _ 9+ 2y

+2(n+1)[(63 1)(1+m)+a U+8U*U}

+2nl(e 2@ —1)(1-m) + o €25 (1 +m)
2 Ov?ov*?
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Equation (6.22) is the Fourier transform of the desired equation of motion.
Inverting the Fourier transform, we arrive at the phase-space equation of
motion for a radiatively damped two-level atom:

aP , 8 9
E —L(U,U ,m,%,—aﬁ,m)P, (624)

with L(v,v*, m, 2, 5%, 5) given by (6.23).

The first lesson to be learned from this calculation is fairly clear. Equation
(6.24) has the form of (5.37); it has the form of a generalized Fokker—Planck
equation, with derivatives beyond second order — up to infinite order in the
inversion variable m. The quantum—classical correspondence provides a rep-
resentation for quantum-mechanical states in terms of phase-space variables,
but there is no guarantee that the phase-space dynamics will be described
by a Fokker-Planck equation. In fact, as we will see shortly, (6.24) is not
strictly even a generalized Fokker—Planck equation, since its solution does
not have the properties of a classical probability density. It is certainly a
much more complicated equation than the Fokker—Planck equation obtained
for the damped harmonic oscillator. The difference has arisen, of course, from
the different algebras obeyed by a and af, and o_, o, and o,. Techniques
for analyzing Fokker—Planck equations have nothing to offer with respect to
an equation like (6.24), and, indeed, we appear to have made the problem of
the damped two-level atom more complicated by using the quantum-—classical
correspondence.

We saw in Chap. 2 that the damped two-level atom is readily analyzed
using the optical Bloch equations and the quantum regression formula. The
practical use for the representation defined in Sect. 6.1.1 comes from its ap-
plication to collections of many atoms, where we will find a way around the
higher derivatives and again recover a Fokker—Planck equation. The single-
atom calculation is useful, however, first because it dispenses with some of
the algebraic manipulations required to treat the many-atom case; but, more
importantly, because we already have an exact solution to the single-atom
master equation. Equations (6.1) and (6.3) may be used directly to construct
the distribution P{v,v* m,t) corresponding to the density matrix given by
solutions to the optical Bloch equations. This distribution must satisfy (6.24),
and its form should teach us something about the significance of the higher-
order derivatives in (6.24). In the many-atom calculation we will only be
able to remove these derivatives by making an approximation, and an un-
derstanding of their significance is important to an understanding of that
approximation. Thus, before tackling the extension to many-atoms, let us
see what can be learned from the direct construction of P(v,v*, m,t).

Exercise 6.1 The differential operator (6.23) does not include terms de-
scribing nonradiative dephasing processes, such as elastic collisions. When
these processes are included the master equation has the additional term
(¥p/2)(02p0, — p) [Eq. (2.66)]. Show that this adds the term
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a 2 L8
Ldephase =% [5;71 + 51)—;1} + G e 25% (1 + m) (625)

to the operator appearing on the right-hand side of (6.24).

6.1.4 A Singular Solution to the Phase-Space Equation of Motion

We will construct the distribution P(v, v*, m,t) for a damped two-level atom
explicitly using the solution for p(t) obtained in Chap. 2. We will then show
that this distribution satisfies the phase-space equation of motion (6.24).

We begin by evaluating x (&,€*m) in terms of the operator averages
(o_}, {(o4+), and {o,). Using (6.6a)-(6.6c), we write

%o - 7{* " n - ok
et +:Zo(n!) o =140y, (6.26a)
o0 .
o (ZE " n .
e = ZO —n—!)—a_ =1+io_, (6.26b)
ino. _ N ()"
e = Zo n!
o -1 k..2k ) o -1 ko 2k+1
=3 2)k'n o ((212 11)1
k=0 ) k=0 ’
= cosn + i0, sin7. (6.26¢)
Then, from the definition of x  (§,£* 1) [Eq. (6.1)], we have
Xy (6, €5n) = tr[p(1 + i€ 0 )(cos n + io, sinn)(1 + i€o_)]
= 3(1+ (o))" — &™) + 3 (1 — (02))e™™
+ (o_)ike ™™ + (o4 )i e, (6.27)

We should still be able to calculate all operator averages by taking derivatives
of x5 (& €% ) [Eq. (6.2)]. All we have done is simplify the form of x (&, &%, 7)
by using the relationships (6.6) a priori. Thus, (6.27) shows once again that
all operator averages for the two-level atom can be expressed in terms of
expectation values of o_, o4, 0., and 1 alone.

Exercise 6.2 Verify that (6.2) and (6.27) produce the correct operator
averages up to second order; show that

_9_ o —0=(2)
D) N |y T BGE N |y +
0 2
X =\0-), . =0= 02_ ’
BGE N | g T BN |, 0T
o o2
X = <Uz>7 YRG) =1= 0'3 s
i) N e o AN |y~ L
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62
A€ N | _e_yo —(o}) = (0402),
82
WXN £*=£=n=0 - —<0'_> - <020—>7
_i_ = 1(1+(0,)) = (040-)
BEENIGE) N |, o~ 2T (2D = (o).

Clearly, this agreement extends to operator products of arbitrary powers.
For example, from (6.27), 0"x,, /0(i£*)" = 9"x,, /0(i§)" = 0 for n > 1; all
averages evaluated using (6.2) with p > 1 or ¢ > 1 are therefore zero, as
required by (6.6a) and (6.6b).

We now construct the distribution P(v,v*,m,t) by taking the Fourier
transform of (6.27). The transform with respect to the variable 7 is straight-
forward; we have

P(v,v*,m) /d2§/dnx e WV g kv —inm
= ot [ [ {30+ @) e
+5(1—(o2))e™™

+ (o_)ife ™ + <U+>i£*e_"7}e_’f*”* e EveTinm

= 5 [ {30+ @) (sm — 1)~ £"¢5(m+ 1)
+3(1- (Uz>)6(m+ 1)

+ (o_)i€O(m +1) + (04)ig"6(m +1) pe " e,
(6.28)

The remaining two-dimensional Fourier transform presents a difficulty, since
it does not exist in the usual sense. We face a similar situation here to the one
we encountered when deriving the Glauber—Sudarshan P representation for a
Fock state [see the discussion below (3.28)]. The resolution of the difficulty is
to allow P(v,v* m) to be a generalized function. Specifically, we can evaluate
the Fourier transform in (6.28) if we introduce derivatives of the §-function,
writing

—1—/d2£ eV T8y = (D) (y), (6.29a)
_/d2 Z§ —i€ v* —z.fv _ 8 1 d2£e—i§*v*e—i£v

8
= &2 _
U(S (v), (6.29b)
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1 2 (aex) ,—iE v —ifv _ 0 1 2y —il*v*  —ifvu
—7r—2/d§(z£)e’ e = oAl d°€e e
0
= ———6@(v), (6.29¢)

ov*
1 Y —i&*v* —ifv 9? 1 —i€Tv* —i&v
F/dzf(zf )(i€)e 8V e Y = ~ 50 00 n2 A T
___? o
= _61;*81)6 (v). (6.29d)
Then, for the general time-dependent density operator
p(t) = 5 (14 (@(t))12)(2 + (1 = (0=(1))) [1)(1]
+ (o (O)2) (1] + (o4 ()1)(2, (6.30)

the corresponding distribution P(v,v*,m,t) for a (radiatively damped) two-
level atom is given by

P(v,v*,m,t)
= 3(1+ (0=0))8(m = 16D () + 3 (1 = (0:(£))8(m + D6 (v)

(o ()80m + 1) 5w) — (o (D) + 1) 5 80)

5@ (v). (6.31)

2

+ 5 (14 (o:(2)))(m + Uavaav*

This is a highly singular distribution. The singular character in the polar-
ization variable v can be traced to the requirement that 62 = ¢% = 0. It is
the vanishing of these operator products that gives x (£, &%, 1) its truncated,
polynomial form in the variables £ and £*, and this then requires derivatives
of the é-function to appear in the Fourier transform. The singular character
enables the distribution to reproduce the manifestly nonclassical moments
required in the variables v and v*: while (o_) = (@)P and (o) = (v*),
are generally nonzero, all higher-order moments (¢?) = (v%),, ¢ > 1, and
(oh) = (v*P) p» P > 1, must vanish; such behavior cannot be reproduced if
P(v,v* m) is an ordinary probability density.

Exercise 6.3 The phenomenon of photon antibunching in resonance fluo-
rescence (Sects. 2.3.5 and 2.3.6) provides a good example of a situation that
calls for nonclassical behavior in moments of the polarization. Show that (6.5)
and (6.31) give

(or0-) = (vFv)p = (1 + (02)), (6.32a)
—0. (6.32b)

From these equations the result g(2)(0) = 0 follows. Show also that (6.5) and
(6.31) reproduce all of the moments given in Exercise 6.2.
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The distribution (6.31) is also singular in the inversion variable m; al-
though, the é-function singularity does not signify a nonclassical character
as do derivatives of the é-function. What we have here is consistent with
a classical process that involves only discrete states, with the inversion re-
stricted to the values m = pag — p11 = +1, for the atom in its upper state,
and m = pgy — p11 = —1, for the atom in its lower state. Indeed, if we inte-
grate P(v, v*, m) over the polarization variable v, we are left with the reduced
distribution

=31+ (o:=(1)))6(m = 1) + 3 (1 — (0= (t)))6(m + 1)
= p22(t)6(m — 1) + p11(£)6(m + 1), (6.33)

where pos and p1; give the probabilities for finding the atom in its upper
(m = +1) and lower (m = —1) states, respectively. In classical statistical
physics the dynamics for such a discrete state system would be given by a
jump process describing transitions between the two states. A closer look
at the phase-space equation of motion (6. 24) confirms the relationship to a
jump process. The differential operators et2em appearing in (6.23) describe
transitions between discrete inversion states. These are displacement, or shift
operators, which generate steps of &2 units in m, just what is required for
transitions between atomic states with m = 1. To show this we write e*25%
as a power series; then it acts on a function g(m) to give the Taylor series
expansion for the shifted function g(m =+ 2):

k
R S (C X MR
k=0

Armed with these observations let us now return to the phase-space equa-
tion of motion (6.24) and show that the distribution (6.31) does, indeed, sat-
isfy this equation. We will approach the demonstration in steps which bring
out something of the structure of the dynamics. First, we explicitly display
the confinement to discrete inversion states, writing

P(v,v*,m,t) = Pjgy(v,v"t)6(m — 1) + Pj1y(v,v", t)6(m + 1), (6.35)
with
/d2v Pigy (v, v", t) = paa(t), (6.36a)

/ v Py (0, 6%, 8) = pua (1). (6.36b)

This form is consistent with the explicitly constructed distributions (6.31) and
(6.33), and with the observation that the operators e*2%% are shift operators.
The action of L(v,v*, m, %, a;fj*, %) on the variable m in (6.35) follows from
the relationships
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(625% - 1)1 +m)é(m —1)

=B +m)é(m+1)—(1+m)b(m—1)

= 26(m + 1) — 26(m — 1), (6.37a)

(e7?z% — 1)(1 —m)6(m +1)

=B-m)d(m—1)— (1 —m)b(m+1)

=26(m — 1) — 26(m + 1), (6.37b)
(e23m — 1) (1 +m)8(m + 1)

=@B+m)§(m+3)— (1+m)é(m+1)=0,

(6.37¢)
(e 2% —1)(1 — m)§(m — 1)
=B-m)§(m—-3)—(1-m)é(m—-1)=0,
(6.37d)
and
e~28m5(m — 1) = 8(m — 3), (6.37¢)
e~ 25 6(m + 1) = 8(m — 1). (6.37f)

Each of these relationships preserves the restriction to inversion states m =
+1, except for (6.37¢). This equation permits the shift operator et23% that
appears in the last line of (6.23), without an accompanying multiplicative
factor (1 — m), to couple to the states m = 3,5,.... This coupling must be
suppressed by the v-dependence of Pz. Now, substituting (6.35) into (6.24),
and using (6.37a)—(6.37f), we equate coefficients of the é-functions to obtain
the equations

T =[G ) gy (3 a) e + g
+7ﬁ%;}* (%v + gi—*-v*) —y(A+ 1)] Py
+ [77"1 (%v + 62* v*) + 77‘1] Py, (6.38a)
i) (3 ) e+ 95

+ T‘La—z £v+ N B P
T ovov \ow' T Bur’ ) T T
_ o _

and
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o 4 .
<5;v + Y )P|2) =0, (6.38¢)

Equation (6.38¢c) suppresses coupling to inversion states other than m = 1.

The connection between the inversion dynamics and a classical jump pro-
cess can now be made more explicit. If we integrate (6.38a) and (6.38b) over
v, and require Py, Plg), and their derivatives to vanish sufficiently fast at
infinity, we obtain the equations

p22 = —y(7t + 1)p22 + ¥Ap11, (6.39a)
P11 = —Ynp11 + ’)/(T_l + 1)p22. (639b)

These are the equations of a random telegraph process [6.4]. They are often
referred to as the Finstein equations in recognition of their use by Einstein
in his phenomenological theory of spontaneous and stimulated emission [6.5,
6.6]. We derived these equations directly from the operator master equation
in Sect. 2.2.3.

Instead of averaging over v we might average over the inversion to obtain
an equation for the polarization dynamics. We do this by adding (6.38a) and
(6.38b):

& (P + B =[(F i) o+ (3 o) g + s

o (0 o .
g5 (e + )| B0 + i)

4

_(0 0 9
-l-*yn(%v o >P|1 +’Yna 250 = P2). (6.40)

The most important thing to observe here is the way in which this equation
differs from the Fokker—Planck equation for the damped harmonic oscillator.
The first line on the right-hand side describes a damped harmonic oscillator;
however, there are two deviations from this simple form. First, we have not
obtained a closed equation for the polarization dynamics; the last two terms
on the right-hand side of (6.40) couple to the individual inversion states.
Second, there are third-order derivatives added to the differential operator
in the square bracket. Under certain conditions these complications can be
removed — for example, by setting n to zero. However, this still does not
recover the simple classical picture we reached in our treatment of the damped
harmonic oscillator. It is still necessary to consider solutions in the highly
singular form given by (6.31). The equation of motion might reduce to a
simple form, but it must be solved for an initial state that is represented by
a generalized function.

With the phase-space equation of motion written as the coupled equations
(6.38a) and (6.38b), it is now just a short step to show that the distribution
(6.31) solves these equations. We first note that (6.38c) requires



6.2 Normal-Ordered Representation for a Collection of Two-Level Atoms 211

Plgy(v,v"t) = pa2 ()6 (v), (6.41)

consistent with (6.31), where the time-dependent function that multiplies
the é-function has been determined using (6.36a). The fact that (6.41) solves
(6.38c) follows trivially from v6® (v) = v*6() (v) = 0. Equation (6.38¢) also
has solutions as ordinary functions — for example, in the form f(¢)/vv* —
these, however, are not normalizable, and are not therefore consistent with
(6.36a). Together with (6.41) we take Pj1y(v,v* t) in the form [Eq. (6.31)]

0 0
Pyy(v,v",t) = p11(£)6P (v) — le(t)%(S(z)(U) - Plz(t)av* 5@ (v)
82
7 52
+ p2alt) 5 5=80(w). (6.42)

Then, substituting Py and Pj;y into (6.38a) and (6.38b), and using the rela-
tionships v8(v) = v*6(v) = 0 and V6P (v)/Ov = v*d6P (v) /dv* = =6 (v),
we arrive at the equations

[f22 + (71 + 1)p2a — ¥2] 6@ (v) = 0, (6.43a)
and
[p11 +Ap11 — (A + 1)p2] 6P (v)

0
= [p21 + (R + 3) 21 + iwapa] 8_1)6(2) (v)

. _ . 0
— [p12 + (A + §)p12 — iwapia) g 5@ (v)
. _ 62
+ [,022 + 7+ 1)p22 — ’anu] Sodor 5@ (v) = 0. (6.43b)

By requiring the coefficients of §)(v), 96@) (v)/dv, 96 (v)/dv*, and
9263 (v) /OvOV* to vanish, we reproduce the matrix element equations (2.36)
derived directly from the operator master equation. Thus, the distribution
(6.31) satisfies the equation of motion (6.24), so long as the expectations
(0-(t)) = p21(t), (04(t)) = p12(t), and (0:(t)) = paz(t) — p11(t) obey the
optical Bloch equations.

6.2 Normal-Ordered Representation for a Collection
of Two-Level Atoms

We have now seen that although the quantum-—classical correspondence is eas-
ily extended formally to the description of atomic states, it does not lead to a
classical statistical picture for the damped two-level atom in any useful sense.
Difficulties arise both with the representation of states, and with their dynam-
ical evolution. First, the distribution is always a generalized function, more
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singular than a d-function in the polarization variable, and with a é-function
singularity restricting the inversion to discrete states. Second, the phase-space
equation of motion is not a Fokker—Planck equation. The inversion dynamics
are described by a jump process, which introduces partial derivatives up to
infinite order, as in the Kramers-Moyal expansion; the phase-space equation
of motion is therefore really a pair of coupled partial differential equations.
Even after averaging over inversion states, partial derivatives beyond second
order remain in the polarization variable.

Despite the poor prognosis, the representation discussed in Sect. 6.1 is
actually very useful. We will use it later in this book to analyze quantum
fluctuations in the laser, and again in Volume 2 to treat certain problems
in cavity QED. The difficulties we have observed can be removed in the
treatment of a macroscopic medium, a collection of N > 1 two-level atoms.

6.2.1 Collective Atomic Operators

We consider a collection of N two-level atoms with spatial positions r;, j =
1,...,N. A complete microscopic description for this system requires the
specification of the state of each atom. For many purposes, however, such
detail is not needed, a description of collective properties defined by the sum
over all atoms is adequate. If the atoms can be considered as identical, then
individual atomic properties can even be deduced from such course-grained
information. We will consider a description in terms of the collective atomic

operators
N
> 0y (6.44)
j=1

where o;_, 04, and 0;, are pseudo-spin operators for atom j, and ¢; is an
arbitrary phase. We will see shortly (Sect. 6.3.2), that when the atoms are
identical, a closed dynamical description in terms of collective operators alone
can be formulated. The representation we develop in the following sections
presupposes such conditions.

N
Jr=Y oy, U,
j=1

Note 6.1 When two-level atoms interact with optical fields, generally the
field distribution will be spatially dependent. Then different atoms find
themselves in different local environments and the atoms are not identi-
cal. If the interaction is with a single plane, traveling-wave mode, with
wavevector kg, the only difference between atoms is the phase of the field,
exp[—i(wot —ko-7;)], at the site of each atom. This difference can be removed
by setting ¢; = ko - T; in (6.44); atomic states described by the phased op-
erators exp(—ikg - 7;)0;—, exp(iko - T;)0,4, and o0, are then identical. For
this reason quantum-statistical theories for intracavity interactions have a
preference for ring cavities over standing-wave cavities [6.7, 6.8].
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From the single-atom commutators (2.11), it is straightforward to show
that collective atomic operators obey the same commutation relations:

T, J)=J,,  [Je, o) = F2Js. (6.45)

This is expected, as both are formally angular momentum operators. The
algebraic properties of collective operators are quite different, however, when
we consider the relationships that allowed products of single-atom operators
to be written as sums [Egs. (6.6)]. There does exist a generalization of these
relationships. However, now the set of operators needed to express all higher-
order operator products is larger than just J_, J,, J,, and 1. Some of the
generalized relationships are easily deduced. When N > 1 it is clearly possible
for two or more quanta to be absorbed or emitted simultaneously; they can
be absorbed or emitted by different atoms. We expect, however, no more than
a maximum of N simultaneous absorptions or emissions. Thus, we expect to
replace (6.6a) and (6.6b) by

YT = g+, (6.46)

Formally, this follows by applying 07, = ¢2_ = 0 for each atom. The only
nonvanishing terms in J f and JV are products of N operators for different
atoms:

N N
Iy =N e%0, I =N]]e 0, (6.47)
Jj=1 Jj=1
These operators raise and lower the entire collection of atoms between the
ground state, with all atoms in their lower state, and the fully excited state,
with all atoms in their upper state. Every term in Jiv 1 and JY* must
contain a second or higher power of at least one single atom operator; from

this (6.46) follows.
It is also straightforward to deduce the generalization of (6.6c). We first
write this equation in the form

(02 +1)(0.—1) =0, (6.48)
or, multiplying by (3hwa)?,
(Ha+ 3hwa)(Ha — 2hwa) = 0. (6.49)

The left-hand side of (6.49) is the polynomial (H4 + E;)(H4 + E5) formed
from the energy eigenvalues in such a way that the action of the polynomial
on each energy eigenstate, and therefore on an arbitrary state, is zero. The
energy eigenvalues for a collection of N identical two-level atoms are given
by

(N|2> — N|1>)%th = Mhwa, (6.50)

where Njgy and N|;y are the numbers of atoms in states [2) and [1), respec-
tively, with
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Njgy + Njpy = N, (6.51)

and M = —N/2,-N/2+1,...,N/2; 2M runs in steps of two units over all
possible inversion states. Now,

Hy = hwal., (6.52)
and the generalization of (6.48) is
(J: +N)(J,+N—-2)---(J,—N)=0. (6.53)

This is a polynomial in J, of order N + 1, allowing powers of J, greater than
N to be expressed as a sum over the operators 1,J,,J2,...,JN.

Our interest is with normal-ordered products of collective atomic opera-
tors, products of the form JYJJJ?. Equations (6.46) and (6.53) state that
all such products can be expressed in terms of those with p,¢q,r < N, i.e.
in terms of (N + 1)% operators. In fact the number of operators needed to
construct arbitrary normal-ordered operator products is somewhat smaller.
Further relationships between collective operator products exist. We will not
attempt to construct a general algorithm giving them all, but can easily see
that more exist. Consider the operator (¢ < N)

JE= % [exp(=igs )05 -] [exp(—ig;,)o5,-], (6.54)

{1,dq}

where the sum covers all sets of nonrepeating atomic labels jq, .. ., j;. Clearly,
the action of J% on any state |¢) of the N-atom system gives a state with at
least ¢ atoms in their lower states, and at most N — g atoms in their upper
states. The state J? |¢)) must be a superposition of energy eigenstates having
energies — N 2hwa, —(N —2)3hwy, ..., (N —2g) $hwa. The possible inversion
states in J?|¢) are correspondingly 2M = Njgy—Njjy = —N,—N+2,...,N—
2q. Thus,

(J,+N)YJ,+N—=2)---(J, — N +2q)J% =0; (6.55a)

from the conjugate relation,
JY(J: 4+ N)(J: +N—=2)---(J. = N +2p) =0. (6.55b)

Equation (6.55a) allows us to construct J% J2, for r > N —g, in terms of J7J%,
r=0,...,N —g; Eq. (6.55b) allows us to construct J% J7, for r > N —p, in
terms of JYJ., r=0,...,N —p.

In fact, all operator products J J7 JZ with p+7+¢ > N can be expressed
as sums of the operators JiJ;’JE, p+ 1+ q < N. The total number of
independent normal-ordered collective operator products is then
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N N—gq
=ZZ(N—q—r+1)
q=0 r=0
N N
=Y (N—g+1)(N—gqg+1)=> (N -q)(N—q+1)
q=0 =0
N q
= (k+1)° - k(k+1)
k=0
= (N +1)(N +2)(N +3). (6.56)

The proof that operator products with p + r + ¢ < N determine all others
follows from two observations:

1. Collective operator products can be expressed as sums of products be-
tween single-atom operators for different atoms, since products of single-
atom operators for the same atom can be replaced by sums using (6.6).
Products between single-atom operators for different atoms can appear,
at most, up to order V.

2. In any collective operator product, single-atom operator products appear
in a symmetric fashion with respect to permutations between atoms.

From these observations all products of collective atomic operators can
be expanded as sums over the operators

2n,k,m = —];—— Z €xp [l (¢J1 +ee ¢Jn):|

~ nlklm! -
J1s-sIntk+m

X eXP[ = 1 (Djnynss T F Pjnyrrm)]

X (Uj1+ T an+)(gjn+lz e an+kz)(gjn+k+l— T 0jn+k+m_)7

(6.57)

where n + k +m < N; the summation is over all permutations of n + k+m
nonrepeating atomic labels. To generate all of these operators in a collective
operator product expansion we must consider J} J7J?, p+r+g < N. These
expansions give $(N + 1)(N + 2)(N + 3) linear relationships expressing the
operators J} J7J2, p+r+q < N, in terms of the operators X, . m, n+k+m <
N. Inverting these relationships gives the operators Z:’n,k,m, n+k+m<N,
in terms of the operators JY JIJ2, p+r+g < N. The operators Z:’n,k,m then
determine all remaining collective operator products, p +r +¢q > N.

Exercise 6.4 For N =2, (N +1)(N + 2)(N + 3) = 10. There are twenty-
seven collective operator products with p, g, < N. Show that the following
seventeen relationships hold:
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JiJ, = —2J3%, JJ2 = —2J2,
J2J- = Jp(J, +2), JoJ? = (J,+2)J_, 658

JLJ? = 20,0, J2I_ = —2J,J_, (6.58a)

JpJoJo = —=2J4J- + 1(J. +2)J.,

J2J2 =4J2, J2J2 =4J2,
J2TJ- = —2J4(J; +2), JipJ 2 = —=2(J, +2)J_, (6.58b)

J2J? = (J, +2)J., '
JyJ2J_ =4J J- — (J, +2)J.,
J2J2J_ =474 (J, +2), JyJ2J2 =4(J, +2)J_, (6.550)
Ralel®
JiJzJE = _Q(Jz + 2)Jz7

J2J2J2 = A(J, +2)J.. (6.58d)

The ten operator products with p + r + ¢ < N are the unit operator, plus
Jy = 6i¢10'1+ + ei¢202+,
J, =01, + 02z, (6593.)

J_=eg_ +e %20y,

J_?_ = 26i(¢1+¢2)0'1+0'2+,
JZ =2(1+ 01,02.), (6.59b)

J? = 26—2'(471-!'472)01_0-2_7

Jyd, = —Jy + ei¢101+02z + ei¢202+012,
J+J.. = %(Jz + 2) + ei(¢l_¢2)0'1+0'2_ + ei(¢2"¢1)02+01_, (659C)
J.J_=—J_+e o_oy, + e 20,5 01,.

6.2.2 Direct Product States, Dicke States,
and Atomic Coherent States

The master equation for a single damped two-level atom was readily analyzed
using matrix element equations (Sects. 2.2.3 and 2.3.3). We have seen that a
phase-space approach to this problem leads to a rather complicated picture.
For many-atom systems the situation tends to be reversed. The large set of
basis states needed for a many-atom system yields a large number of matrix
element equations. These are generally not solvable analytically. There are
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special cases where analytical solutions are possible [6.9, 6.10], and for mod-
erate numbers of atoms the numerical solutions of matrix element equations
can be useful [6.11, 6.12] — indeed, with rapid advances in supercomputing
the potential for numerical solutions is only beginning to be explored. For
studying the true large N limit, however, phase-space methods like the one
we describe shortly provide the most manageable and insightful approach.
We will make little use, then, of matrix element equations when treating the
laser, for example. Nevertheless, we should say something about the different
basis states that are commonly used to derive such equations.

An obvious basis for a collection of two-level atoms is provided by the
states

lpa)ilp2)2 - |ps)s - lun) vy

where for the jth atom p; can take the values 1 or 2 to denote the lower state
|1); or upper state |2);, respectively. There are 2V such states. We adopt a
more compact notation, defining the direct product states by

jus ) = [T (512)e) TT (7 11)x), (6.60)

k€u kéu

where u = {j1,...,jn/24m} denotes a vector of N/2 + M nonrepeating
atomic labels, and N/2 + M is the number of atoms in their upper states
(2M = Njgy — Ny is the inversion); the phases are simply introduced for
convenience in view of the arbitrary phases included in (6.44). These states
are energy eigenstates, or eigenstates of the inversion operator J,:

JoJu; M) = 2M|u; M). (6.61)

The labels v distinguish between states that are [N!/(N/2 + M)!(N/2 —
M)!]-fold degenerate with respect to the inversion eigenvalue (summing this
degeneracy over M = —N/2,..., N/2 gives back 2V states).

Direct product states do not behave in a very convenient way under the
action of the collective operators Jy and J_. We have

Sieu Uik M +1)  —N/2< M < N/2
s M) = Fu .
sifu iy = {3 v (6.622)
Siew Uk M —1)  —N/2< M < N/2
_|lu; M) = cu .
J_|u; M) {0 M= NP2, (6.62b)
where uyr = {j1,...,in/24m41} and w_x = {j1,...,JN/24M~1}, respec-

tively, add and delete one atomic label in the vector u labeling atoms in
their upper states. Thus, J; and J_ generate transitions up and down the
ladder of inversion states; however, they generally connect one initial prod-
uct state to many final states. In his treatment of superradiance, Dicke [6.13]
introduced alternative basis states chosen for their simple behavior under the
action of Jy and J_. These states are often referred to as Dicke states; al-
though, as Dicke noted himself, they are formally the eigenstates of the total
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spin constructed from the sum of N spin-— operators, and therefore familiar
from the theory of angular momentum.

The Dicke states are simultaneous eigenstates of the commuting operators
J, and

P = (35) + (34)° + (32.)°
=1(JpJ-+J_J) + 32 (6.63)

We denote these states by |\, J, M). From the theory of angular momentum
[6.14, 6.15], we have

J2\, J, M
T\ J, M

J(J + 1)\, J, M), (6.642)

) =
Yy =2M|A, J, M), (6.64b)
with allowed values J = (0, %), (1, 2) yN/2and M =—-J,—J+1,...,J.
The total number of allowed (J, M) values is (N/2 +1)2 for N even, and
[(N+1)/2+1](N+1)/2 for N odd. For N > 2 this is less than 2/V. Therefore,
states labeled by J and M alone must still be degenerate, and A distinguishes
amongst the degenerate states. The action of J and J_ now connects a single
state to a single state:

YVIT-"MT+M+ DN M+1) —J<M<J
J+|A7J7M>_{0 M=1J,
(6.65a)
- - - <
J_|A,J,M>:{\/(J+M)(J M+D)NLM-1) —J<M<J
0 M=-J
(6.65b)

What is the degeneracy for a given J and M? First note that the degen-
eracy must be the same for all states with the same J. This follows because
any state | X, J, M’) produces a set of states with the same A = X, covering
all possible M values, under the action of J, and J_ — the states |\, J, M),

M=—-J,—-J+1,...,J. We may now use an iterative argument to deduce

the degeneracy dp(J) of the Dicke states for a given J, from the degeneracy
N!

dp(M) = (6.66)

(N/2+ M)(N/2 - M)!
of the direct product states for a given M:

1. There is one product state with M = —N/2; corresponding to this state
there is one Dicke state with M = —N/2 and J = N/2; thus

dp(N/2) = 1.

2. There are dp(—N/2+ 1) = N product states with M = —N/2 4 1; there
are dp(N/2) = 1 Dicke states with M = —N/2+ 1 and J = —N/2; the
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only other value of J allowing M = —N/2+1is J = N/2 — 1, so there

are dp(N/2 — 1) = dp(=N/2 + 1) — dp(N/2)

=N-1
Dicke states with M = —N/2+ 1 and J = N/2 — 1.

3. There are d,(—N/242) = 1 N(N —1) product states with M = —N/2+2;
there are dp(IN/2) = 1 Dicke states with M = —N/2+2 and J = N/2, and
dp(N/2—1) = N —1 Dicke states with M = —N/2+2 and J = N/2—1;
the only other value of J allowing M = —N/2+2is J = N/2 — 2, so
there are

dp(N/2 = 2) = dp(=N/2+2) = [dp(N/2 = 1) + dp(N/2)]
=dp(-N/2+2) —dp(-N/2+1)

= 3N(N - 3)

Dicke states with M = —N/2+2 and J = N/2 — 2.
4. Tterating this argument gives

dp(N/2—k) =d,(—N/2+ k) — [dp(N/2 -k +1)
+dD(N/2—k+2) +"'+dD(N/2)}
= Ay (—~N/2+ k) — dy(—=N/2+ k — 1)

N! N!
TN (N—k+Dlk—1)
_ NYN —2k+1)
T (N—k+ D)

Setting J = N/2 — k, we finally obtain

NI(2J + 1)
(N/2+J +DI(N/2= )

dp(J) = (6.67)

Of course, summing (6.67) over all states with the same value of M gives

N/2
> dp(J) = dy(M); (6.68)
J=M

with degeneracies accounted for, the direct product and Dicke bases both
contain 2%V states.

Dicke states may be expressed as superpositions of direct product states,
and an explicit Dicke basis may be constructed in an iterative fashion follow-
ing closely the steps of the argument giving dp(J):
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Construct states with J = N/2:
set

z

11,N/2,—~N/2) = [{ };~N/2)= H( 1¢a|1) (6.69)

apply Jy, N/2+ M times to |1, N/2,—N/2), to construct states

11, N/2, M) (6.70)

= i S

for M = —N/2,—N/2 +1,...,N/2, where the summation extends over
the d,(M) labels u differentiating between product states with inversion
2M.

Construct states with J = N/2 —1:

There is only dp(N/2) = 1 state with M = —N/2+ 1 included in (6.70);
the state |1, N/2, —N/2+ 1)

construct dp(N/2 — 1) = dp(—N/2 + 1) — dp(N/2) = N — 1 mutually
orthogonal states, orthogonal to |1, N/2, —N/2+41), as linear combinations
of the d,(—N/2 + 1) = N product states |u; —N/2 + 1), to obtain states
IMN/2—1,-N/2+41), A=1,...,N - 1;

apply Jy, N/2+ M — 1 times to each of these states to construct states
IMN/2—1,M), M =—N/2+1,-N/2+2,...,N/2—=1,A=1,...,N-1.
Construct states with J = N/2 —2

We now have dp(N/2) +dp(N/2 — 1) = N states with M = —N/2 +2;
the states [1, N/2,—N/2+2) and |\, N/2—1,-N/2+2),A=1,...,N-1
construct dp(N/2 — 2) = dp(—N/2+ 2) — [dp(N/2) +dp(N/2 - 1)] =
1N (N — 3) mutually orthogonal states, orthogonal to |1, N/2,—-N/2+2)
and |\, N/2—1,—-N/2+2), A=1,...,N — 1, as linear combinations of
the d,(—N/2 +2) = $N(N — 1) product states |u; —N/2 + 2) to obtain
states |\, N/2—2,-N/2+2), \=1,...,2N(N — 3);

apply J;, N/2 + M — 2 times to each of these states to construct states
\MN/2 = 2,—-N/2+2), M = =N/2+2,-N/2+3,...,N/2 -2, X =
1,...,iN(N -3).

Construct states with J < N/2 —2

iterate the procedure.

Exercise 6.5 For N = 2 define

1

L) = 1{ 1) = e 2542 |1) 1),
171) = [{2};0) = 2@ =2)[2)4 1),
11) = [{1};0) = e 701 792)|1),|2),,
111) = [{1,2}:1) = e2¥1792)|2),]2),.

(6.71)

Use the above procedure to construct the Dicke basis
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|1’ 1, 1> = |TT>a }
(6.72)

LL=1)=[11), [1,1,00= (111 +]11),
11,0,0) = Z5(111) = [11)).
For N = 3 define
[LLL) = [{ }5-3/2) = e7 2@ 02t0a) 1) 1), 1),
|LLT) = [{8};—1/2) = e™ (@ +o2=2a)1), 1), )2),,
[1T1) = {2} -1/2) = e™#¥(@1=22%99) 1)1 2),[1);,
1110 = {1} =1/2) = 2@ =¢299) ), 1), ]1)s,
e |{2,3};1/2>—e—"<¢1 #2793)11)1(2)2)s
[ T11) = 1{1,3};1/2) = e2* (18299 |9y, 1), ]2)s,
[T10) = 1{1,2};1/2) = e2¥(@1¢2799)|9), 29, ]1),,
[T17) = 1{1,2,3};3/2) = e2i(@1¢2+a)j9),|1),]2).

Show that a valid Dicke basis is given by

I1,3/2,-3/2) =
11,3/2,-1/2) =
11,3/2,1/2) =
11,3/2,3/2) =
11,1/2,-1/2) =
12,1/2,-1/2) =
11,1/2,1/2) =

12,1/2,1/2) =

| LL1),
Z L+ 1) +1110),

UMD+ +1111),
1),

7

Z (LD =1111)
Ze (LD =2 110 +17140)),
ST = 111n),
Z (1111 =2 1) +1111)). )
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(6.73)

(6.74)

Dicke states find their main use in the treatment of problems such as
superradiance, superfluorescence, and cooperative resonance fluorescence,
where J?2 is conserved and the dynamics in subspaces with different J (and
A) are not coupled. This is not the case for the applications we discuss later
in the book. For the problems we will be interested in the Dicke states do not
provide a very convenient basis. For J 2_conserving situations a further set of
states has been introduced. These are variously called atomic coherent states,
Bloch states, and coherent spin states [6.14, 6.15]. In the limit N — oo they
may be connected formally to the coherent states of the harmonic oscillator.
Within each subspace with fixed J and A they are defined by rotating the
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Dicke state |\, J, J) through an angle (#,) in angular momentum space. We
denote them by |A, J;6,4). Their expansion in terms of Dicke states takes
the form

A, J56,9)

J 1
= Z <,] iJM>QcosJ_M (10) sin” M (19)e ="MV |\ T, M).
M==J (6.75)

An alternative parameterization |\, J;z) with z = tan(36)e™ is also used.
A geometrical relationship between the two parameterizations is obtained by
representing (6,%) by a point on the unit sphere and z by a point in the
complex plane drawn tangent to this sphere. Since we make no use of these
states we will not investigate them further. Formal properties are discussed
by Radcliffe [6.14] and Arecchi et al. [6.15]. Applications to superradiance,
superfluorescence, and cooperative resonance fluorescence can be found in
Refs. [6.11, 6.16-6.18]. (Arecchi et al. [6.15] also provide a nice discussion of
Dicke states and their relationship to direct product states in group-theoretic
language.)

6.2.3 The Characteristic Function and Associated Distribution

The normal-ordered representation for N two-level atoms is formally defined
in an analogous fashion to the single-atom representation. Restricting our
attention to collective operator averages, corresponding to (6.1) we define
the characteristic function

XN (6, é-*, 77) = tr(peig* Jy einJZ eiEJ_ )7 (676)
from which normal-ordered averages are calculated:

(JRILJLY = tr(pJY JL J2)
optrta

= 3Gigr)Palin) ai)T N ng*z,,zo‘

The distribution P(v, v*,m) is defined as in (6.3), with the inverse relationship
(6.4). Then (6.5) becomes

(6.77)

(JYJLJL) = /dzv/dm P(v,v*, m)v*Pm"v?
= (v"Pmmv) . (6.78)

Now, the central question! Can we expect P(v,v*,m) to be a well-behaved
nonsingular function, recognizing that the single-atom distribution takes a
highly singular form?
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6.2.4 Nonsingular Approximation for the P Distribution

Following the approach of Sect. 6.1.4 we can evaluate the characteristic func-
tion formally in terms of matrix elements of the density operator. Either
direct product states or Dicke states may be used to evaluate the trace. The
important features for our discussion are contained in (6.46) and (6.61) [al-
ternatively (6.64b)]. From these equations it follows that x, (&,€%,n) takes
the form

N/2

(é) 2zM
N(EE ) = ZZ > Cogm R n, (6.79)

p=0q¢=0 M=-N/2

where the Cp 4 1 are constants determined by the matrix elements of p. If
the trace is evaluated using direct product states,

Cpagnr = 3 _(u; M|JLpJ? |u; M). (6.80)

The Fourier transform of (6.79) gives the distribution

N N pta )
Sy Y D s, a9 sy, (6.81)

plq! Ov*Pove

where we have evaluated the Fourier transform over the complex variable &
in the manner leading to (6.29):

1 N
= [ yigree e
T +
= (_1)P+qﬂq_ —1-/d2§ e~V i
Ov*POvd 7
+
— (e
Ov*Pove
The distribution (6.81) is still strictly singular, regardless of the state of
the system (for any C, 4 ar). If N is very large, however, there is a sense in
which the singular behavior in both the inversion and polarization variables
can be approximated by a well-behaved function. Consider first the depen-
dence on m. We again have a distribution confined to discrete inversion states,
with M taking the values 2M = —N,—N +2,..., N; integrating (6.81) over
v gives

5@ (v). (6.82)

P(m) = /dgv P(v,v*,m)

N/2

= Y pumb(m-—2M), (6.83)
M=—-N/2
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where
pm = Coom = Y (s Mlplu; M) (6.84)

is the probability for the system to be found in any of the d,(M) config-
urations with inversion 2M. Thus, strictly, the distribution over inversion
states takes the singular form illustrated by Fig. 6.1(a). But if N is very
large, and the width of the pas distribution is large compared with the sep-
aration, AM = 2, between neighboring states, and small compared to the
range —N < 2M < N of allowable states, we might approximate the sin-
gular distribution by a smooth envelope function [Fig. 6.1(b)], fitted with
P(2M) = pp/AM = par/2 to preserve the normalization [dm P(m) = 1.

(a) (b)
Py P(m)

: 1|” . _ .

-N N -N N

m m

Fig. 6.1 (a) Discrete distribution over inversion states illustrating the singular form
of the exact phase-space distribution. (b) Smooth approximation to the singular
distribution in the limit of large N.

In practice this approximation is imposed at the level of the phase-
space equation of motion. Shortly we will see that, just as for one atom,
the inversion dynamics evolve as a jump process over the discrete states
m=—N,—N +2,...,N, with transitions generated by the shift operators
e*27% . Reduction of the phase-space equation of motion to Fokker—Planck
form will then be made using the system size expansion [Sect. 5.1.3], which
truncates the exponential derivatives at second order (truncates the Kramers—
Moyal expansion). A slightly different view of this truncation can be given
in the following way: The inversion dynamics obey the birth-death equation
(Sect. 6.3.4)

Py = f(om,PM+1,PM—1), (6.85)

where f is a linear function of the probabilities for occupying each of three
neighboring states. We want to replace the right-hand side by a differential
operator acting on a smooth interpolation function P(m) that fits the discrete
distribution at m = 2M, 2M + 2, and 2M — 2, and also allows P{m + 2) and
P(m — 2) to be calculated in terms of P(m) and its derivatives (Fig. 6.2).
The simplest such function is the parabola
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2P(m) = py + 2(pm4+1 — pr—1)(m — 2M)
+ 2(pm41 — 2pm +Pr—1)(m — 2M)?, (6.86)

where the factor two on the left-hand side is for normalization. The action of
e2t3% on (6.86) truncates at the second-order derivative. This is the trunca-
tion used to reduce the phase-space equation of motion to a Fokker—Planck
equation. The truncation is self-consistent with a polynomial interpolation
between the three inversion states that appear on the right-hand side of
(6.85).

/Z%pAHJ = P(m+2) = (1 + 26?n + 23?”2)13(7”)

1 o)
—— 4pya=Pm-2) = (1- 2.2 + 255 ) Py

m—-2 m m+2

Fig. 6.2 Parabolic interpolation between discrete inversion states with par+1 and
prm—1 determined by pyr = 2P(m) and the first two derivatives of P(m).

The distribution (6.81) is also singular in the polarization variable v. In-
deed, it appears to be highly singular when written in this exact form, which
involves high-order derivatives of the d-function. Derivatives of é-functions
can be misleading, however. The singular form is required by the truncation
of the p and ¢ summations in (6.79); x,, (& €%, n) diverges for { — oo and
its Fourier transform therefore only exists as a generalized function. But as
N — oo the sum of derivatives of the §-function can approach a well-behaved
function. An example illustrating this possibility was given in Note 4.2. Us-
ing the definition of the §-function as the limit of a sequence of Gaussians
[Eq. (3.33)] we have

82 > 62k n 2
_ — Y { 1im Ze—nlvl
P (81;*(%) 6(0) ];) Ov*k vk <nll>ngo T € >

— lim LT nlv2/(n)

CnSeoml4n
1 2
— Ze Il
= —e . 6.87
T (6.87)
If an infinite sum of singular functions can give a nonsingular function, we

might expect that a sum truncated at some large N will closely approximate
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a nonsingular function. Thus, we might write

Y1 g%

=aaiaso)
P k! Qv*k vk

_ 2
e~ 117,

1
~ - 6.88
- (6.88)
The approximate equality must hold in the sense of moment calculations.

From the distribution on the left-hand side moments can be calculated using

(3.37):
o plépq p,g <N
yd), = :
(v707), {O p,q> N. (6.89)

Moments for the Gaussian distribution on the right-hand side are given by

. o] 2m ] 1 R
(v*qu)P :/0 dr/o do Tp+q+162(q—1ﬂ);e—r
= pldp q, (6.90)

where we have set v = re*®. For this example, the moments agree exactly for
p,q < N; only very high-order moments are sensitive to the approximation
that replaces the singular distribution by a well-behaved function. In this
sense, for large N, we can hope to find a distribution that is well-behaved
in v and gives a good approximation for moments of low order compared
with V. Again, the selection of a nonsingular approximation to the exact
distribution will be made at the level of the phase-space equation of motion
by truncating derivatives in v and v* to obtain a Fokker—Planck equation.

6.2.5 Two-Time Averages

Phase-space expressions for calculating two-time averages for collective atomic
operators are derived following methods similar to those used in Sect. 4.3.
We first generalize the notion of the phase-space distribution to set up a
correspondence between an arbitrary system operator O and an associated
function Fis(v,v*,m), writing

Fy(é,6%m) = tr(Oe’f*‘Lr el e7-), (6.91)
and
b

FA * =
o, v*,m) 5.3

dzé/dn Fy(€, € me e ®vemmm  (6.92)
The inverse of the Fourier transform (6.92) gives
Fo(€&,€%m) = /d2v/dm Fp(v,v*,m)e’ v etvetnm, (6.93)

These expressions generalize (6.76), (6.3), and (6.4), respectively; in the new
notation, we have
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Xy (6 €7m) = F,(€,67,m), (6.94a)
FP

P(v,v*,m) = F,(v,v*,m). (6.94b)

In place of the results (6.77) and (6.78) for calculating normal-ordered aver-
ages, we now have

tr(OJiJ;Jz) = /d%/dm Fg(v,v*, m)v*Pm v, (6.95)

The phase-space equation of motion for the master equation (3.1) is written
formally as

0 . «
an(t)(v,v ym) = Frpw (v, 0%, m), (6.96a)
with

9 9 9
T Ov’ Ov*’ Om

Then we can show that (see Sect. 4.3.2)

Froy(v,v",m) =L (v, v, m > Foy(v,v™,m). (6.96b)

Fopenov,vym) = eL(”’”*’m’%’B%’B_Bﬁ)TFO(U, v, m). (6.97)
For a single damped two-level atom L (v, v*, m, a%’ %, 5%) is given by (6.23).
Shortly, we will see explicitly how the approximations we have just dis-
cussed lead to a Fokker—Planck equation for a (many-atom) damped two-level
medium. In this case L(v, v, m, a%’ 5‘2-*, a—‘?ﬁ) will only involve up to second-

order derivatives.

Note 6.2 The relationship between phase-space functions and operator
power series expansions described in Sect. 4.3.1 is not directly transferable
to atomic systems.

We consider averages in the form (O;(t)Oq(t + 7)), 7 > 0, where O; and
0 may each be any one of the operators J_, J;, and J,. We seek phase-space
expressions for calculating these averages analogous to those of Sects. 4.3.3
and 4.3.4. From (1.97), (6.95), and (6.97), we may write

(O1(t)O0a(t + 7))
= (5" [p()01]) O}

= /d2UJ/dm Fexp(ﬁT)p(t)Ol (U, U*a m)ﬁQ

v m, 2, =% 2, *
= /dQU/dm [eL( F5 557 m) F,e, (v,v ,m)] Y2, (6.98)

where ¢ is the phase-space variable replacing 0, through the correspondence
(J4,Jz,J=) < (v*,m,v). We introduce the Green function solution to the
phase-space equation of motion by writing
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Fowo, (0,0, m)
= /d2v0/dmo F, 6, (o, v5, mp)6® (v — v)6(m — my),
(6.99)

so that (6.98) takes the form

(O1(t)0a(t + 7)) = /d2v/dm/d2v0/dmo V2F 46, (vo, v, mo)
x P(v,v*, m,t + 7o, vg, Mo, ), (6.100)

where P(v,v*,m,t + T|vg, v§, mo,t) is the Green function solution to the
phase-space equation of motion (6.96). It remains for us to find the explicit
form for Fp(t)ol(vg, vg, mo). The objective is to express F, e, (vo,v§, mo) in
terms of a differential operator acting on the distribution F),)(vo, vy, mo) =
P(vg,v(’)‘,r[zo,t). Whether or not any derivatives appear will depend on the
operator O;. From (6.91) and (6.92) we have

F, 6, (vo,v5,mo) = 2 53 [ 4% /d”ltf (£)01e™" T e xett)- ]
x e~ Vg v g —inmo (6.101)

We now consider the three possible choices for O, separately.

First, we take O; = J; in (6.101). This is the simplest case. We differenti-
ate tr[- - -] with respect to (i€*) to bring O; = J; down from the exponential.
Then

Foy7, (vo,vg, mo) = 213/ 25/ { Ok Fo)(&,€%m)
x e~ %7 v6 g 1Ev0 o= inmo
= v5 Fp(t) (vo, vg, Mo)
= v5 P(vo, v, Mo, 1), (6.102)

where the second line follows from (6.92) after a single integration by parts.
Second, we take O = J, in (6.101). We write

Fp(w). (vU’Vo , o)
/d2§/d77 tr zg*J+(e—i£*J+ Jzeig*JJr)ez’nJ,eigJ_]
% e —ig* voe l‘fUDe—l’flmo. (6,103)

Now J_, J4, and J, obey the same commutation relations as the single-atom
operators o_, o4, and o,. Therefore the identities (6.7)—(6.9) also hold for
collective atomic operators. In particular, corresponding to (6.7), we have

e eI = J, 4 2ig* T, (6.104)
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[we have actually taken the Hermitian conjugate of (6.7) with £ — —¢]. Using
(6.104), (6.103) gives

Foy.g, (vo, v5,mo)
1 - ) .
=53 d%¢ / dntr[p(t)e’ 7+ (J, + 2i€* T, )e' = -]
Y8
% e—if*vae—iivoe—inmo

- 2§/dn K 2i¢* (86*)> Fp(t)({faﬁ*,ﬂ)]

X e—z{ vOe—zgvoe—mmo

8 * *
= <m0 - 2—81)6 ’U0> Fp(t)(’l)g,vo,mo)
6 * *
={moy — 2—;’1}0 P(Uo,vo,mo,t). (6105)
ovg

Here we have first integrated by parts, and then written i¢*e~% % =
—0e~%7Y% .

Finally, we take O; = J_ in (6.101). This last case is more complicated
algebraically, but follows the same principles as above. The operator J_ must
be passed through the exponentials inside the trace in (6.101) so that it can
be brought down from the exponent by a partial derivative. We first write

Fp(t)J (UO> UOa mO
dzf/dntr 25*J+(e—i§*.]+J_‘ei&*J_;_)eingei&J_]
x e~ %76 g €vo g—inmo (6.106)
Corresponding to the identity (6.9) for single-atom operators, we have
e el = g —igr g, — (ie*)2 T4, (6.107)

[taking the Hermitian conjugate of (6.9) with & — —¢]. Also, corresponding
to the identity (6.8) (with n — —n),

e~ Mlx g ez = gn g _ (6.108)
Now, (6.106) becomes
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Fowys_ (v07v07m0
- dzg/dntr )els T (J_ —igr T, — (i€%)2J4)
% emJz eng_] 6—15 vy e-zﬁvo e-i'r]mo
_ 2 J Jo (21
_2 - d&/dntr{p )e’ + [ (e2 )

_ (’LE*Jz + (i&-*)2j+)eing]ei§J- }e—iﬁ vg e—iﬁvoe—inmo

_ 2_7113 dzé/d’fl Kemé% _ ié*a—(?_n) — (ig*)za_(i%>

X Fp(t)(ﬁ, 5*, 77)] e—igwge—igvo e"i"]mo.

Integrating by parts and replacing €, i¢*, and (i¢*)? by partial derivatives
acting on the product of exponentials, we have

. o8 b5} o? . .
Fuy5_(vo,v5,mo) = <€ 27w v + 6—037710 - 61)_32%) Fy)(vo, v5, mo)

9.0 0 b2
= (e 2omo vy + mo — —*51)3> P(vg, v, mo,t).
o

o
(6.109)
Equations (6.100) and (6.102) give three two-time averages that can be

calculated by integrating against a two-time, or joint, distribution as in clas-
sical statistics (7 > 0):

(T ()Tt + 7)) = (VB E+ 7)) (6.110a)
(T4 (O I(t+ 7)) = (*OmE+ 7)) p, (6.110b)
(T4 ()Tt + 7)) = (v (Ot + 7)) p, (6.110c)
where we define (9, and ¥, are either v*, m, or v)
(B (®)02(t+ 7))

= /dzv/dm/dzvo/dmo YoV P(v, v, m, t + 7500, v5, mo, t), (6.111)
and

P(v,v*, m,t+ 709, v, Mg, t)
= P(U,’U*,m,t+TI’UO,’US,m[],t)P(’UO,’US,mO,t)
(6.112)

is the two-time distribution. The complex conjugates of (6.110a)—(6.110c)
give three more averages calculated in a similar manner (7 > 0):
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(J_(t+7)J-(t)) = (v{t+ 7)o(D))p, (6.113a)
(Lot +7) (1)) = (m(t + T)v(t)),,, (6.113b)
(Je(t +7)J_(t)) = (v*(t + T)u(t) Ju(t)) p- (6.113c)
There are six more averages obtained from (6.100) using (6.105) and

(6.109). These involve derivatives of the distribution P(vg,v%, mq,t). Using
(6.105) we find (7 > 0)

<J ( 02 t+7‘
/d2 /dm/dQUo/dmo ’&2 l:(mo 88 U0> P(Uo,US,'fTLmt)J
X P(v,v*,m,t + 7|vg, v§, mo, t), (6.114)

and, using (6.109) (T > 0),

< ( )02 t‘|‘ 7'
/d2/dm/d2v0/dmﬁ amovg-i— 8m—6—2v*
0r2 g 0 o2 0
X P(vo,vg,mo,t)} P(v,v*, m,t + T|vg, v§, mo, t), (6.115)

where 02 and ¥ are, respectively, J,, J,, or J_, and v*, m, or v. The complex
conjugates of these equations give a further six averages (7 > 0):

<02(t+7'
/d2 /dm/d Uo/dmg 192 |:< mo — 2;7}0)P(7}0,’U0,m0,t):l
X P{v,v",m,t + T|vg, v, Mo, t), (6.116)
and
<02(t+7' J+
/dz/dm/d%/dmﬂg 3m0v+am—a—2v
0 0 ET 0 802 0
X P(vo,vg,mo,t)J P(v,v*,m,t + T|vg, v§, mo, ), (6.117)

It is important to stress again here, as we did in Sect. 4.3 [below (4.128)],
that it is not possible to calculate every two-time average in terms of a “clas-
sical” integral. For example, the above results show that J, must be evaluated
at the later time ¢ + 7 if an average involving J, is to be calculated by direct
integration against the joint distribution. It is also necessary that J, and J_
appear in normal order, to the left and the right of J;, respectively. Clearly,
more general results than those given above can be derived using the same
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methods. In particular, a general expression for normal-ordered time-ordered
averages similar to (4.100a) can be obtained:

Exercise 6.6 Beginning from (1.102), show that (r > 0)

(LNt +T7)JL() = ((v*Pv?) (E)N(t + ™)) pr (6.118a)

with

((vPv) ()Nt +7))p = /d2v/dm/d2vo/dmo v vd N (v, v*, m)
x P(v,v*,m,t+ 7;v9,v3, mo, t), (6.118b)

where N is the normal-ordered power series

N=Y CporbJrJe, (6.119)
p,q,7
and
N(v,v*,m) = Z Cp,q,rv"Pm v (6.120)
p,q,7

6.2.6 Other Representations

Equations (6.76) and (6.3) defining the normal-ordered representation for N
two-level atoms can be generalized in the manner described in Sect. 4.1;
by starting from different characteristic functions, representations giving
antinormal-ordered and symmetric-ordered averages can be defined. In prac-
tice, only the Wigner representation (symmetric-ordered averages) has been
used for applications in quantum optics.

The Wigner representation is rather awkward to use for two-level atoms,
in comparison with what we learned about it as a representation for the
electromagnetic field. This is because disentangling the operators that ap-
pear in the exponent in the characteristic function is more complicated when
these operators are J_, J,, and J,, rather than a and a'; the commutator
of a and a'! is a constant, whereas the commutators of angular momentum
operators are other angular momentum operators. Nevertheless, the Wigner
representation has been used successfully; in particular, for the laser and
optical bistability [6.19, 6.20]. Actually, if the Fokker-Planck form for the
phase-space equation of motion is imposed a priori, it is quite straightfor-
ward to construct the appropriate drift and diffusion terms in the Wigner
representation [6.20]. Of course, the resulting Fokker-Planck equation is an
approximate equation of motion. The algebraic difficulty is met when we at-
tempt to derive an exact phase-space equation of motion along the lines of
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Sect. 6.1.3 (Sect. 6.3.4 for the N-atom system). Since we will not make ex-
plicit use of the Wigner representation for atoms we will not spend any time
on the details.

One further representation deserves mention. In Sect. 6.2.2 we noted that
a convenient set of basis states for J2-conserving systems is provided by
the atomic coherent states. A diagonal representation for states within the
subspace spanned by Dicke states of fixed J and A can be defined, in close
analogy to the Glauber-Sudarshan representation for the electromagnetic
field [Eq. (3.15)]. In this atomic coherent state representation,

p= /d2zp(z,z*)|,\, J;z)(\, J; 2], (6.121)
where normal-ordered operator averages are given by
(JPJTIY)
orte o\ N
_ 2 * 2\—N ¥ 2
_/d 2 P(z,2") (1 + ()N 5 (N/Q 2 8z*> (1+1]212)".

(6.122)

Alternatively, this representation can be expressed in terms of the param-
eterization |\, J;6,1) for atomic coherent states, where P(6,1) is then a
distribution over the unit sphere. In (6.122) we do not have a simple clas-
sical relationship between operator averages and corresponding moments of
the distribution P(z, z*); however, the atomic coherent state representation
does led to equations of motion in the Fokker—Planck form for a number of
interesting problems. More details about this representation and its use can
be found in Refs. [6.14-6.18].

6.3 Fokker—Planck Equation for a Radiatively Damped
Two-Level Medium

6.3.1 Master Equation
for Independently Damped Two-Level Atoms

We will illustrate the use of the normal-ordered representation for a collec-
tion of two-level atoms by considering spontaneous emission in a two-level
medium.

In this system identical two-level atoms each couple to the modes of the
electromagnetic field in the manner described in Sect. 2.2.1. Within our gen-
eral formulation for a system S coupled to a reservoir R (Sect. 1.3) we have
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N
Hgs =Y HI, (6.123a)
N .
Hsp =Y Hip, (6.123b)
j=1

where Hfg and HéR are defined as in (2.15a) and (2.15¢), with o_, o4, and
o, replaced by o;_, 0;4, and 0;,, and the dipole coupling constants
replaced by

k- 7‘j wk
2h60V

The reservoir Hamiltonian Hpg is given by (2.15b); thus, each atom couples to
the same electromagnetic field (the same reservoir), but at different spatial
positions; the different spatial positions produce the different phases that
appear in the coupling constants (6.124). In the notation of (1.32) and (1.33),
we have

Iik A = —ie ék,k . dQl. (6.124)

S15 = 05—, 825 = Oj4, (6.125&)
j=If= an Mia D =T =Y Kl Tea. (6.125b)
A

In the interaction picture
§1;(t) = oj_e At (6.126a)
82;(t) = ojpe™at, (6.126b)

and
ny=I7= Z KL\ TE A€, (6.127a)
Iy =T = Z K] ATEAEFE (6.127b)
kA

The master equation in the Born approximation [Eq. (1.34)] for the reduced
density operator of the N-atom system reads [compare (1.42)]

f?= Z/dt 03—01 p(t') —ou-p(t )UJ ] _WA(H”<FT( )FT( t)r

7,l=1
+ (054010 p(t)) — o1y p(t)o 54 ] €A N D () T (t))r

+ [oj-014p(t) — 14 B(t) o |e~ oAl )( IIL(E )R

+ogrorpt) — o p(t)oy4 e U OTH(E)r ) + hic.
(6.128)
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Equation (6.128) will be greatly simplified if we can set all reservoir cor-
relation functions to zero for j # [, and retain only the nonvanishing cor-
relations given by (1.45) and (1.46) for j = [. Effectively, this amounts to
coupling the individual atoms to N statistically independent reservoirs. Can
this be justified in view of the fact that all atoms interact with the same
electromagnetic field? Yes it can. Since the atoms are located at different
positions 7, the question is one of spatial correlations in the electromagnetic
field. The factor determining these correlations is the spatially-dependent
phase appearing in the coupling constant (6.124). The atoms interact most
strongly with a narrow band of frequencies centered about the resonant fre-
quency wy. The scale for measuring the spatial variation of the phases in
the coupling constants nk , is then set by the wavelength Ay = 27mc/wa. If
the atoms are separated by large distances compared to this wavelength cor-
relations between the reservoir operators I’ F and I7, Fl , for j # [, can
be shown to vanish; then atoms see statlstlcally independent reservoirs. We
can then pass immediately (see Sect. 2.2.1) to the master equation for N
independent radiatively damped two-level atoms:

= —igwa Z[sz, pl+s(+1 Z 20;_pOjt — 0j40;-p — pOj10j_)
=1 j=1
.
ton 2(20j+/30j— —0j_0j1p— pOj—0Oj4). (6.129)
=1

Equation (6.129) is a rather obvious generalization of the master equation
(2.26) for a single radiatively damped atom. It has the solution

N
t)=[Tn. (6.130)

where p;(t) is the density operator for the jth independent atom. Since the
atoms are identical, each p;(t) obeys the matrix element equations (2.36).
We therefore already know the exact solution to this problem. Nevertheless,
(6.129) will form an important constituent in the master equations for the
laser and optical bistability. In these systems additional interactions generate
correlations between the atoms, and the master equation cannot be solved
by such a simple matrix element approach; we will need to use phase-space
methods. The solvable problem defined by (6.129) provides us with a good
illustration of how these methods work for atomic variables.

Note 6.3 If the assumption of statistical independence between the reser-
voirs seen by the different atoms is not justified, the problem of spontaneous
emission in a collective atomic sample becomes much more complicated. Most
generally, the detailed spatial distribution of the atoms is important; we must
deal with the complicated spatial interference of radiation from the atoms,
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plus the communication between atoms by way of this radiation. The modi-
fication to (6.129) required under these conditions can be found in the work
of Lehmberg [6.21] and Agarwal [6.22]. There is one other set of conditions,
however, that lead to an essentially simple description. If all atoms reside
in a volume that is small compared to A3, the phases in (6.124) differ very
little for field modes with frequencies ~ w4 and we may drop the subscripts
j and [ from the reservoir operators in (6.128). The summations then replace
single-atom operators o;_, 04, and g;, by collective operators J_, J;, and
J. The resulting master equation reads

p=—idwaldespl + TR+ D(@I_pJs = J1_p—pJyJ-)

+ %ﬁ(?.h.p.]_ — T Jep—pJ_Jy). (6.131)

This equation describes Dicke superradiance and superfluorescence [6.13,
6.16-6.18]. Actually, we are being a little glib here, since, as the atoms are
brought closer together, an interaction energy between the atomic dipoles
becomes important which adds level shift terms that depend on the spatial
arrangement of the atoms to (6.131) [6.21, 6.22].

6.3.2 Closed Dynamics for Normally-Ordered Averages
of Collective Operators

We propose to use a phase-space representation for p defined in terms of
collective atomic operators (Sect. 6.2.3). It is clear that a master equation
like (6.131) can be converted to a phase-space equation of motion using such
a representation. However, the right-hand side of (6.129) cannot be expressed
solely in terms of collective atomic operators. Using (6.6f) and (6.6g), we are
able to write (6.129) in the form

N
p=—itwalle gl + 2{2 05-pos4 — L0up— LpJ. — Np

N N
+n| > oj_pojp + > ojepoi- — Np). (6.132)
j=1 j=1

The terms involving o;_po;+ and ;4 po;_ cannot be rewritten in terms of
collective atomic operators. But the phase-space representation we propose
to use only generates collective operator averages. It might seem that there is
an inconsistency here. It is useful therefore, before deriving the phase-space
equation of motion corresponding to (6.132), to see explicitly that, in spite
of the presence of single-atom operators in (6.132), a closed set of equations
involving only the normal-ordered collective operator averages does exist.
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Exercise 6.7 Show that (6.131) conserves the magnitude of the total
pseudo-spin [Eq. (6.63)] while (6.132) does not. It follows that matrix ele-
ment equations derived from (6.131) using a Dicke state basis are only cou-
pled within each subspace defined by a fixed J and A; there is no coupling
between subspaces. Matrix element equations for (6.132) couple subspaces
with different J and A.

We will derive a coupled set of equations for the averages of all normal-
ordered operator products. Consider the average (J} J7 J%). From the master
equation (6.132) we obtain

d T : T T
d—t<J_’;Jsz> = —itwa((JRILJLT,) — (J.JL TS J2))

N
el r r
+5 § (050 Jb TL 0 )y — $(JRJLJLT,)

— Y JPJIJT) — N(JRJTJY)

N N
+yn| Y (o5 JRITLT205 ) + Y (o5 JhT7I054)
j=1 j=1
— N(JR T I (6.133)

Our task is to write each term on the right-hand side in terms of normal-
ordered averages of collective operators. We first use the commutation rela-
tions (6.45) to write

JUJT = J NI, +2)J_Jr !
= JU(J, + 4)J2 g
= (J, +2¢)J2Jr1
= (J: +2¢)"JI, (6.134a)
and, from the Hermitian conjugate,
JLJE = J0(J. +2p)". (6.134b)
Using these identities, we obtain
(JRJLJLT,) = (JE T, (J2 + 2¢)J2), (6.135a)
(JLJRTJ2) = (JR(J, + 2p)J, J2), (6.135b)
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where the right-hand sides are now in normal order. The terms in (6.133)
involving sums over single-atom operators involve a little more effort.

The algebraic manipulations required here are very similar to those used
to convert the master equation for a single damped two-level atom into phase-
space form (Sect. 6.1.3). The sums remaining in (6.133) are on terms that are
quadratic in single-atom operators. The two single-atom operators in each
product are, however, separated by collective operators; consequently, we
are unable to use (6.6a)—(6.6g) directly to reduce the quadratic dependence
to a linear dependence which is summable. We must first use commutation
relations to pass the single-atom operators through the collective operators,
then use (6.6a)—(6.6g). After this the sums will replace linear combinations of
single-atom operators by the corresponding linear combinations of collective
operators, and a final reordering into normal order gives the desired result.
We will perform the simpler of the two remaining calculations in detail and
leave the second as an exercise.

Consider the average (0. JY J J20;_) = (J 0,4 Jl0o;—J). We first pass
o;— to the left through J7. Using single-atom commutation relations, we have

Jioj-=J; o (], ~2)

=0;_(J, —2)". (6.136)
Then
N N
> o LTI 0 ) =Y (Jhajioi (T, — 2)7T%)
7j=1 j=1

I
M=

(JPL(1+05)(J. = 2)7J7)

<.
th

= 3(JA(V + J)(J. = 2)7T9), (6.137)

where the second line follows from (6.6f). The last term in (6.133) —
(0;-JYJIJ%0;4) — is evaluated in a similar way, but requires rather more
algebra:

Exercise 6.8 Show that

N
S oy I 0y)
j=1
= (JR[AN - 1) —p—q|(J. +2)"J%) + pa(3 — p — (S5 LI
+pg(p — 1)(q — D(JE2(N + ) (J. = 2)7J72). (6.138)

We now use (6.135), (6.137), and (6.138) to write the moment equations
(6.133) in the form
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%WJZJE) = —[iwata —p) + N @0+ 1)) (7212
+ IR + 1) - 27
— (2 (T +p+q)JrJ9)]
+ (TN + T)(J. - 2)7T%)
+ (R (5N = ) =p—q)(J: +2)7J2)

+pg(3 —p—g)(JE I
+pg(p = D(g = LT3N + ) (= = 27727)].
(6.139)

Equation (6.139) defines a coupled hierarchy of linear equations for
normal-ordered collective operator averages. We have been able to obtain
a closed set of equations because the atoms are all identical. A variation in
resonant frequencies, replacing wa by wa; inside the sum in (6.129), would
not change this situation; we can transform to the interaction picture and
define Jy4 as in (6.44) with ¢; = wa,t. However, if, for example, each atom
had a different decay rate 7;, we would not obtain a closed set of equations
for the collective operator averages. As stated in Note 6.1, a common situa-
tion in which members of an atomic population are not identical arises when
the atoms interact with a spatially varying field mode — a Gaussian beam or
standing wave for example. Actually, it is not necessary that the distinction
between atoms enter the equations of motion explicitly. The atoms may be
distinguished by selecting a non-permutationally-symmetric initial condition.
For such initial conditions collective operators alone will not be adequate to
completely describe the subsequent evolution.

We observed from the permutational symmetry of the collective operators
that there are actually only }(N + 1)(N + 2)(N + 3) independent normal-
ordered collective operator products [Eq. (6.56)]. Thus, if this symmetry is
used, (6.139) defines a closed set of (N +1)(N +2)(N +3) equations. Sarkar
and Satchell [6.12] have used the permutational symmetry to numerically
solve matrix element equations for absorptive optical bistability in the bad-
cavity limit. They were able to reduce the 22V matrix element equations
obtained from a naive use of the direct product state basis to a set of %(N +
1)(N + 2)(N + 3) equations for independent matrix elements.

Note 6.4 There is a trap for the unwary in the consideration of permuta-
tional symmetry and identical atoms. It is easy to be confused by what we
have learned from quantum mechanics courses about indistinguishable par-
ticles [6.23]. From this background we might expect that we only have to
deal with symmetric superpositions. (There are no antisymmetric superposi-
tions — except when N = 2 — since in our system the eigenvalue that distin-
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Fig. 6.3 Permutational symmetry of the matrix elements of the density operator
for a three-atom system. For the pure state (6.140) the matrix elements within each
block are equal to the value shown in the upper left-hand corner. For a mixed state
the matrix elements within each of the four central squares are equal along the
diagonal, and off the diagonal, but the matrix elements along the diagonal are not
equal to those off the diagonal.

guishes between single-particle states only takes two values.) For N two-level
atoms the symmetric superpositions are the N + 1 Dicke states |1, N/2, M),
M = —N/2,—-N/2+1,...,N/2. If these where the only states considered the
density operator would have (N + 1)? independent matrix elements rather
than (N + 1)(N 4 2)(N + 3) as claimed. The resolution of this apparent
inconsistency lies in the fact that a dissipative quantum system evolves into a
mized state, rather than a pure state. The permutational symmetry require-
ments on a pure state |i) impose a larger number of relationships between
matrix elements of the density operator than are demanded for permutational
symmetry of the density operator matrix elements themselves; extra relation-
ships are needed for the density operator to factorize in the form |¢)(|. A
system of three atoms illustrates this point. The symmetric superpositions
appear as the first four states listed in (6.74). The most general pure state
constructed from these is

) = alLL1) + b= (L) + 1111 +[11L))
+egz (110 + [101) +1411)) + dl117). (6.140)

Figure 6.3 displays the relationships between matrix elements of the den-
sity operator. Matrix elements within each block are equal and given by
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the value shown in the upper left-hand corner of that block. The num-
ber of independent relationships represented by each block is one less than
the number of elements in the block. Thus, there are 48 relationships and
22N 48 = 64 — 48 = 16 = (N + 1)? independent density matrix elements.
However, if the permutational symmetry is only applied to density matrix
elements (not to the wavefunction [1)), the nine elements in each of the four
squares at the center of Fig. 6.3 need not all be equal; instead, the three
elements along each diagonal are equal and the six off the diagonal are equal;
the three need not equal the six. Take the square labeled by |b|2 for example.
Down the diagonal we require

(LTIl LUT) = (LTLIpl LTL) = (TLLIpl TLL), (6.141a)

and off the diagonal we require

(LTlpl LT = (LT el TLD) = (UL el LLT)
= (ITLIpI TLL) = (TLLpl LIT) = (TLLIplLT1)-
(6.141b)

All of these relationships follow by interchanging a pair of single atom labels.
It is not possible, however, to establish equality between the matrix elements
of (6.141a) and those of (6.141b) by such an exchange. Now each of the
squares in Fig. 6.3 represents 7, rather than 8, relationships between matrix
elements, and the number of independent density matrix elements demanded
by permutational symmetry is 64 — 44 = 20 = (N + 1)(N + 2)(N +3).

6.3.3 Operator Averages Without Quantum Fluctuations

We can use the moment equations (6.139) to illustrate the sense in which
quantum fluctuations become a small perturbation on deterministic dynamics
in the limit of large V. We will first develop a treatment to lowest order, not
including quantum fluctuations, and compare it with exact results based on
the factorized density operator (6.130). After this we will derive a phase-space
equation of motion that includes quantum fluctuations to first order in 1/N.
Let us define variables scaled by the system size, as in (5.38). We write

J_=NJ_, Jy =NJ,, J,=NJ,. (6.142)

Equation (6.139) defines a coupled hierarchy for the normal-ordered averages
of J_, J4, and J,:

(7 + 1)] (JPJTJ9)

N2

= —[iwA(q—p)+(p+Q)
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+ B+ )N [(J. —2/N)" = J;]J2)

+yn{ (T 31+ LIN[(J. — 2/N)" = J7}J2)

+(J2[3(1 = ) = (p+ q)/N)N[(J. + 2/N)" = JI]J2)

+ N“2pg(3 —p— q)(J5 'L

+ N73pg(p — 1)(q — (2211 + Jo)(J. — 2/N)"JE7%) ). (6.143)
We have

N[(J, F2/N) — J7] = F2rJ. "' + O(1/N), (6.144)
and for p,q < N, to lowest order we find
d 3 7r 7a
dt <J+ ZJ—>
=- [(p +q+ 27’)%(277 +1) +i(qg — p)wA] (JRTTTLY — ry(JR ;71 TE).

(6.145)

_ Equation (6.145) defines a coupled hierarchy for the operator averages
(JPJrJe), k=0,1,...,7. The p and ¢ dependence on the right-hand side is
easily removed and the resulting equations solved by induction:

Exercise 6.9 Show by induction (or otherwise) that

r !
7P Fr 74 — () (/2 @A) yila—P)wat N )k
<(J+‘]z J—)(t)> € € ;}( ) (,’,, _ k)'k'

oo k
—(r—k)y (2R 1)t M JPJT 7k J1)(0
X e 2’FL—|—]_ <( +Y2 —)( )>

(6.146)

In (6.146) we easily recognize the solution that preserves the initial fac-
torization

((JET7T2)(0)) = (J+(0))P(J=(0))"(J-(0))*
= (%04 (0)){0j=(0)) (70 (0)7:  (6.147)
For this initial state, (6.146) gives
(JLTTE))) = (T O (T (D) (J- (1))
— (905, ()5 (O e o (1)7,  (6.148)

where
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(eFi®s o;+(t)) = e‘(7/2)(2ﬁ+1)te¢i“’*‘t<eii¢j 0;+(0)), (6.149a)
(052(1)) = e 5,.(0))
—(2n+1)7 1 — e @D (6.149b)

are the solutions for a single radiatively damped two-level atom [solutions to
(2.37)]. The index j on single-atom operators denotes any atom; all atoms
are identical.

This lowest-order treatment neglects quantum fluctuations, and even
though there are no correlations between different atoms in the simple exam-
ple we are discussing — no unlike-atom correlations — quantum fluctuations
are present due to correlations between operators for the same atom — like-
atom correlations. To illustrate that these like-atom correlations exist, and to
show the form they take, let us derive exact results for the quadratic operator
averages.

In each of the following we use the independence stated by (6.130) to
factorize averages involving operator products for different atoms, and the
relations (6.6) to reduce products between operators for the same atom to
linear functions of single-atom operators. We have

N N
(J2) = (J4)? = N_2< Zei¢j0j+ Z€i¢k0k+ >— (J4)?
j=1 k=1

N
=N N (o) (e ony) — (J4)?
=1 ks

= N2 [N(N = 1){e0;4)°] = (J1)?

= -N"1Jy)?, (6.150a)
and, similarly,
(J2) = (J-)? = =N"N(J_)?, (6.150Db)
(J2) = (1) = N7 (1 - (J.)%), (6.150¢)
(Jedo) = (II) = N7 B+ (7)) — (T ()], (6.150d)
(T o) = (Je)( o) = =N"H(T4) + (J3)(J2), (6.150e)
(Tod) = (T = =N () + (L)) (6.150f)

We see that corrections due to quantum fluctuations are of order N=1. The
same approach can be taken to calculate normal-ordered collective operator
moments of all orders; although, in the general case the bookkeeping becomes
rather complicated:
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(2T

— N~ (ptr+a) < Z [eXp(i¢j1)aj1+] T [exp(i¢jp)ajp+]

{j17"'7j17}

X Z Oky1z" " " Okyz

{k1,-+,kr}

xS fexp(—idy,Jor,-] -+ [exp(~igr, o, ) >

{llﬁ"'vlq}
— N—(p+r+a) {[N(N —1)---
(N === g+ Do) o) (e o))
terms with two terms with three
+ atomic labels equal + atomic labels equal +--
=[1-N"Yp+r+qp+r+q-1)+ON"?)+ ]
X (T )P(T)" ()"
—(p4r+ terms with two terms with three
+N (ptr+a) |:<atomic labels equal) + (atomic labels equal) + - ] '
(6.151)

The first term on the right-hand side comes from the factorization of single-
atom averages in terms with all atomic labels different. When we restrict our
attention to low-order moments, 3 (p+r+¢)(p+7r+g—1) < N, corrections due
to quantum fluctuations enter in powers of N —1. First-order corrections will
be given by —N 11 (p+r+q)(p+r-+q—1)(J4)P(J.)"(J-)? plus a contribution
from the terms with the atomic labels equal. (There are fewer of these, by a
factor of order N, than there are terms with all atomic labels different.) We
will now see how the normal-ordered phase-space representation is used to
derive a Fokker—Planck equation including the first-order corrections to the
factorized dynamics.

Note 6.5 Of course, it is not always the case that the atoms in an atomic
population are statistically independent. This is not so, for example, when the
atoms interact with a common field mode, as in a laser or a passive bistable
system. Here, the interaction of the atoms with the field mode introduces
correlations between different atoms. Then unlike-atom correlations do not
vanish, and (6.150a)-(6.150f) no longer hold. We can still use the phase-
space approach, though, to find the expressions that replace these results.
In Volume 2 we will go through the calculation explicitly for the case of
absorptive optical bistability (Sect. 15.2.4).
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6.3.4 Phase-Space Equation of Motion for Independently Damped
Two-Level Atoms

We wish to derive the phase-space equation of motion equivalent to the master
equation (6.132) using the representation defined in Sect. 6.2.3. The calcu-
lation follows essentially the same steps as the single-atom calculation. Our
first task is to derive an equation of motion for the characteristic function.
Corresponding to (6.12) we obtain

ox .
8_tN =tr —z%wA(sz —pJ;)
” N
+ *2-(73 +1) QZgj—pUj+ - %sz - %sz — Np
j=1
N . .
+%’ﬁ 220j+p0j_ + %sz + %p]z — Np| | e T+ein/z¢it /-
i=1

(6.152)

Since collective atomic operators obey the same commutation relations as
single-atom operators, most terms on the right-hand side can be evaluated
as in Sect. 6.1.3; from (6.13) and (6.14),

tr(J,pe’ Treinzet-) = (6(?7]) + 2i§5(?,—§5> Xns (6.153a)

0 ) 0

) + 2i&* (9(2'5*)) Xy;  (6.153b)
we only need to give special consideration to the two terms that have not
been expressed directly in terms of collective atomic operators.

The treatment of these terms follows the principles used in (6.137) and
(6.138) to obtain closed equations for the collective operator normal-ordered
moments. If single-atom operators can be placed next to each other, their
product can be reduced to a summable form using (6.6a)-(6.6g). We saw
how this is done in Sect. 6.1.3. In that section the method used to derive the
phase-space equation of motion for a single damped two-level atom was not
actually unique; and therefore the form of the resulting equation of motion
was not unique. We chose the method that preserves a close correspondence
between the single-atom phase-space equation of motion and the many-atom
equation of motion. In the many-atom calculation we do not have a choice
about how to proceed. We must reduce all quadratic dependence on single-
atom operators to a linear dependence if we are to perform the sums and
obtain a description in terms of collective operator averages alone.

tr(szeiE* T+ gt eiEJ‘) = (8
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Note 6.6 In the single-atom limit there is no difference between the master
equations (6.129) and (6.131). For many atoms these equations are quite dif-
ferent and their corresponding phase-space equatlons of motion must reflect
this difference. It is in the treatment of the terms Z 1 055p0;+ and JxpJy
that the difference arises. The later may be treated after the fashion of (6.15);
the former requires the method leading to (6.16) and (6.17), the method we
now use to reduce the remaining sums in (6.152) to their phase space form.

Following the derivation of (6.16), we use (6.8) and (6.6f) to obtain

N
tr Z 05 posy € T+ eIz it

Jj=1
N
=tr E pelé Ji o—j+ez7]0-jz O-j—- H ez"lo'kz 6745']—

ki

N
_ 6»21'7] tr Zpezﬁ J+%(1 + sz)emo'jz H NIk eiﬁ.]_
Jj=1 k#j

=2 tr[peig* I+ %(N + J,)en’: eifj‘]

il 0
=e 2 (N4 ——
e 3 <N 3(in)>XN. (6.154)

A similar calculation, following the derivation of (6.17), gives

N . .
tr Zaj+paj_e’§*J+ei”Jzel§J’
j=1
= {(N/2) (¥ + (i€)*(i€*)%e™ " + 2(i€) (i€™))
G GRS e P
: 21 . - - 0 e LS . ¢ -k 0
—i€ (e + (i€) (i€ ))8—(2.-5—% (¥ + (i€)(ig*)) a0 | X

(6.155)

The derivation of the phase-space equation of motion is now concluded
in exactly the same manner as in Sect. 6.1.3. We go immediately to the
result. Comparing (6.23), we obtain the phase-space equation of motion for
N independent radiatively damped two-level atoms:
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oP

= (6.156)

L(vvma 9 8)

v’ dv*’ Om
with

I o o0 0
v,v" " By 8o’ Om

(20
="\ 5o ov*

7 7
2 0 Ov
+ '—yﬁ{(e_za% —1)(N —m) + ——L 2o (N +m)
2 Ov2ov*2
8 2 1 0 02
2 <e_2gﬁ * 81}%1}* B ><8v 86 ) * 2N6v6v*} )
(6.157)

Exercise 6.10 Show that with dephasing processes included the term
71,( Z;V=1 0jp0j, — N ,0) must be added to the master equation and the op-
erator
6 0?
Ldephase =Y |5 8 + o0 €

must then be added to (6.157).

~2%% (N + m)} (6.158)

The shift operators et2s% appearing in (6.157) lead to a description for

the inversion dynamics in terms of a jump process, evolving between discrete
states, as in the single-atom case (Sect. 6.1.4). In place of (6.35) and (6.36)
we may write

© N/2
P(v,v*,m,t) = Z Py (v, v*,8)6(m — 2M), (6.159)
=—N/2
with
/d% Par(0,0%8) =par = D (u; M|p(t)|u; M); (6.160)

pum gives the probability for the system to adopt the inversion state m = 2M,
M =-N/2,-N/2+1,...,N/2, with N/2 — M atoms in their upper states
and N/2+ M atoms in their lower states. Substituting the expansion (6.159)
into (6.156), and applying the shift operators, we equate coefficients of the
d-functions to obtain the coupled equations
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G

62
Ovov*

+ z'wA) —gv + (— — zwA) 0

b 2 a*v + Nyi——

o (0,0 (N/2 + M + N)| P
M ovov \av' " our° )7 IR

4

+ (R + 1)] Py

+[—(€if aa >+7ﬁ(N/2‘M+1)]PM_1, (6.161a)

and

0 0
(a—v + EN * )PN/2 = 0. (6161b)

For N = 1 these reproduce (6.38). After integrating over the polarization
variable v we arrive at rate equations describing the evolution of population
between discrete inversion states:

Pm = —1(N/2+ M + Naypar +v(f+ 1)(N/2+ M + D)paria
+y(N/2 — M + 1)par—1. (6.162)

The set of coupled partial differential equations (6.161) is equivalent to the
phase-space equation of motion (6.156). The exact solution to this equation
of motion is going to be a complicated singular function. When N is large,
however, a much simpler and more transparent solution is available if we seek
only a lowest-order treatment of the quantum fluctuations.

6.3.5 Fokker—Planck Equation:
First-Order Treatment of Quantum Fluctuations

On the basis of the arguments offered in Sect. 6.2.4, in the large N limit
we expect to be able to replace the strictly singular distribution representing
the density operator by a nonsingular distribution. We hope, therefore, to
obtain an adequate treatment of quantum fluctuations to first order in 1/N
by replacing (6.156) and (6.157) by a Fokker—Planck equation. The procedure
that formally takes us to such a description is van Kampen’s system size
expansion (Sect. 5.1.3). Corresponding to the scaled operators J_, J, and
J, introduced in (6.142), we define scaled phase-space variables ¥, ¥*, and ,
with

v= N1, v* = N7*, m = Nm. (6.163)
To obtain a systematic expansion of the phase-space equation of motion in
inverse powers of the system size, we write

= (J-(&)) + N2, (6.164a)
= (J4 () + N2, (6.164b)
i = (J,(t)) + N~2p. (6.164c)
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For the present problem we already have the time-dependent solutions for
(J-), (J4+), and (J,) [Eqgs. (6.149)], and also the corrections due to quantum
fluctuations (for quadratic operator averages) [Eqgs. (6.150)]. Our objective
is to use the system size expansion for the phase-space equation of motion
to reproduce these results. We will obtain a macroscopic law governing the
motion of (J_), (J;), and (J,), and a linear Fokker—Planck equation for the
distribution

P(v,v", p,8) = N¥?P(N(J_(t)) + N0, N(J, (t)) + N2,
N(L(t)) + NY?p,t); (6.165)
the macroscopic law plus the Gaussian solution to the Fokker-Planck equa-

tion should reproduce (6.149) and (6.150).
From (6.165) we write

0P . of OP dUJ_(t)  oP d(J,(t)
o=V (a(j_(t» & tanLm

oP d(J.(t) OP
AT.(0)  dt *W)

_ ni2(OPA(I_(t)) AP d(Ji(t)) 0P d(J.(t))

=N W d oo ;t ET )

9 (n32
+at(N P).

Then, substituting the phase-space equation (6.156) for 8P/dt, and using the
scaling relations (6.163) and (6.164), we find

0P _ \p [OPAI_(1) | OP d(Ji(t)  OPd(J.(1)
ot ov dt ov* dt Oup dt

+ 58; [%(21‘1 +1)+ z‘wA] [(J-()) + N~/?0]

ai* (3204 1) — iwsa] [0 (0 + N-2/207]

+ a—iv(% +1) [(27‘1 + 1)+ (L)) + N_1/2,u]

+

0?2 92 _ -
+ an + -B—E’Y[QTL +1+ <Jz(t)>]
62 82

)~ g

Ovdu

2’y7‘z<j+(t)>}15 +O(N"V3).

Collecting terms of order N*/2 and N°, we have
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%_1;3 _ Nl/z{%lj <i<zc;t(_t)> + [g(Qﬁ +1)+ z‘wA] (j—(t)>)

O (W1 (2 an 1) i 7. 0)

+‘;_1; <d<J;t(t)> 20+ D)[(TL() + (2 + 1)_1]>}

Y (9m ol 2 T2 2m 4 1) — a2
+{[§(2n+1)+zw,4] 6yv+[2(2n+1) zwA] Eyrid
&}
A
+ (27 + )6,uu

_0? _ - 0?
g+ v[(2n+ 1) + (J.(2))] o2

—2ya(J_(t)) & — 2y J (1)) & }P+O(N—1/2)
T T B '(6 166)

In the large N limit the terms of order N'/2 vanish if (J_), (J4), and (J.)
obey the macroscopic law

é%l]tﬁ - ‘[%(277 +1) +iwa | (J-), (6.167a)
d<;l]t+> = —[%(271 +1) — iwa | (T4), (6.167b)
dﬁ;’ﬁ = —y(2n+ D[(L®) + @r+1)77]. (6.167c)

Quantum fluctuations about this deterministic motion are described by the
Fokker—Planck equation for a radiatively damped two-level medium:

OP (17, .10 Y o= iy o .
E —{[5(2”+1)+ZUJA] ayy+[2(2n+1) ZCL)A] 5;1/
_ 0
+ (20 + 1)87“
_0? _ - 0?
= 0? = 0? _

Note 6.7 When the dephasing term (6.158) is included, the damping rate
~p is added inside the square bracket in (6.167a) and (6.167b), and inside the
first two square brackets on the right-hand side of (6.168). Also, the term
o1 + (J(t))]6%/0vdv* is added to the diffusion in (6.168).
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Equations (6.167) are precisely the single-atom equations of motion (2.37),
and reproduce the deterministic dynamics defined by (6.148) and (6.149). It
remains to show that the quantum fluctuations described by (6.168) satisfy
(6.150); from the definition (6.78) of the phase-space average, and the scaling
(6.163) and (6.164), we must show that

(72)p = N((J2) = (J1)?) = —(J4)?, (6.169a)
(12)p = N((J2) = (J)%) = =(J_)?, (6.169b)
(1), = N((J2) = (J.)?) =1 - (].)%, (6.169¢)

(79)p = N ({2~ (T ) = 11+ (7)) = (), (6.1690)

(FH)p = N L)~ T0) = (00 +(T),  (6.169)
() = N} = (TNT) = ~(L)(1+ (). (61690

Since the Fokker-Planck equation (6.168) has a time-dependent diffusion, we
cannot derive the covariance matrix directly from the results of Sect. 5.2.4.
Nevertheless, it is not difficult to solve for the moments on the left-hand sides
of (6.169); the calculation is made relatively easy by the diagonal drift. The
details are left as an exercise.

Exercise 6.11 Use the Fokker-Planck equation (6.168) to show that the
elements of the covariance matrix obey the equations of motion

%(F@)P = —2[ 220 +1) — iwa| (+7),, (6.170a)
%(172)1) =220+ 1) +iwa] (), (6.170D)
%(,72) = —2v(2n + 1) (12), + 2v[(2n + 1) + (J.(t))], (6.170c)
dit(uTy)P = —y(2n + 1) (V") + 77, (6.170d)
%(VT,,)P . [5”21(27@ 1) —ioa| (770) p — 29T (1), (6.170¢)

= (7)p = - [377(275 +1)+ iwA] (7R), — 29A(J_(8)).  (6.170f)

Solve (6.167a)-(6.167c) to define the noise sources, then solve (6.170a)-
(6.170f) and show that (6.169a)—(6.169f) are satisfied for all times.
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6.3.6 Steady-State Distribution of Inversion

The solution to the Fokker—Planck equation (6.168) is a multidimensional
Gaussian distribution with time-dependent means and covariance matrix
given by the solutions to (6.167) and (6.170). Moments of all orders can
be constructed from the means and covariance matrix using the Gaussian
moment theorem. We noted previously [below (6.151)] that first-order correc-
tions to deterministic dynamics, based on a large N limit, are only expected
to be accurate when the order of the moments considered is much less than
N. With this qualification, all normal-ordered operator averages constructed
from (6.167) and (6.170) via the Gaussian moment theorem will agree, up to
terms of order N~!, with the exact results. In our present example, where
all of the atoms are statistically independent, this is just a consequence of
the central limit theorem. As a final illustration let us see how the exact and
approximate distributions for the inversion compare in the steady state.
In the asymptotic limit ¢ — oo, solutions to (6.167) approach the steady
state ~
<j:i:>ss =0, <Jz>ss = "(27TL + 1)—1' (6'171)

The steady-state statistics are described by the Fokker-Planck equation

op = {[Z(Qﬁ—}— 1)+ iwA} -8—1/ + [%(271 +1) — iwA} —?—;u*

ot 2 ov v
0
IR
+v(2A + )8uu
9 _na+1 9?2 4
+7n————8yay* +47n——~2ﬁ+1W}P (6.172)

The steady-state distribution Ps(v, pu*, 1) is constructed using (5.80):

Pes(v, V%, 1) = N (v, v ) Mss (1), (6.173)
with
- 2n+1 2n+1
Nes(v,v*) = n%_— exp( nt 14 > (6.174a)
™ n
- 1 2n+l 1(2ﬁ+1)2 2]
M —— . 6.174b
We will focus on the distribution over inversion states m = —N,—-N +

. N,orm=-1,-14+2/N,...,1; from the scaling (6.164c) and (6.174b),
the steady-state distribution for m is given by
— 1

) (27 + 1)2 @+ 1Y
Ma(m) = Z= AN s+ 1) eXpl 2NWL+—1)(m+ 2ﬁ+1> }
(6.175)
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where we have defined
May(m) = NY2 M, (Nl/Q(m - (jz>ss)). (6.176)

The exact distribution over inversion states can be found from the statis-
tical independence of the atoms and the single-atom solution

<sz>ss = _(2ﬁ + 1)_—1- (6177)
Each atom is found in its upper state with the probability (p;)2 = %(1 +
(0j2)ss) = n/(27i + 1), and in its lower state with probability (p;)11 = 3(1 —

(0j2)ss) = (R4 1)/(27i + 1). The probability for k atoms to be in their upper
states and N — k atoms to be in their lower states is then given by

N! a N/ a+1\V*
- : A1
P = 2N — k) <2ﬁ+1> <2ﬁ+1) ’ (6.178)
the inversion (per atom) in this state, with k excitations, is
mi = [k — (N —k)]/N =2k/N — 1. (6.179)

Thus, the medium excitation obeys a binomial distribution, to which the
Gaussian (6.175) is an approximation. The moments (k™) can be calculated
using the generating function (e**):

dn

(") = (k)

=0

_d_"i NI (z a \/a+1\VF
T RN - R\ 2+ 1) 21

=0

_ _ N
d* (n+1 s D
_ 1
dz™ (2ﬁ+1 te 2n+1) . (6.180)
o=
The mean and the variance for the inversion readily follow. We have
_ _ \N-1 _
n+1 n
— N x T
(k) <2ﬁ+1+e 2ﬁ+1) “omn+1
=
n
=N )
CEanEE (6.181a)
and
_ _ (N-2 _ o \2
+1 n
k) = N(N - 1)( = g -
() = N( )(2ﬁ+1+e 2ﬁ+1> ( 2ﬁ+1) O+<k>
e

=N2< n\, el (6.181b)
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Then

(M) = 2(k)/N —1=—(2a+ 1)}, (6.182a)

and

4 a(@+1)
= — . 1
N (27 + 1) (6.182b)
1.0 2.0
(a) (b)
=os) =10
& &
0.0 , 0.0 :
1.0 00 1.0 1.0 00 1.0
m n
4.0
(c)
‘3:2.0 .
R‘mi
0.0 ' | .
-1.0 0.0 1.0
7

Fig. 6.4 Comparison of the exact (discrete) distribution over inversion states
pss(mr) = (N/2)pr [Eq. (6.178)] and the Gaussian approximation Ms(mn)
[Eq. (6.175)] for 7 = 1: (a) N =4, (b) N =16, (c) N = 64.

We see that the exact mean and variance are correctly given by the ap-
proximate Gaussian distribution (6.175); indeed, this is so even if N is not
large. The distributions, however, will approach a close functional similarity,
in the sense of Fig. 6.2, only as N becomes large. The explicit comparison
between pgs (k) = (N/2)pr and Mg(m) is illustrated in Fig. 6.4. The dif-
ference between these distributions for finite N will show up in the higher
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moments as corrections beyond the order N~!. (When unlike-atom corre-
lations are present, the mean and variance will not be obtained exactly for
finite NV from the Gaussian approximation as they are here.)

Exercise 6.12 Show that (6.175) and (6.178) give the following results for
the third moment of the steady-state inversion:

_yl2nmt )

(3),, — ()5 = RS (6.183)

_4n(R+ 1)

Ty (3 —2/N). (6.184)



7. The Single-Mode Homogeneously
Broadened Laser I: Preliminaries

We have now developed the bulk of the formalism we need and can turn our
attention to rather more ambitious applications than the damped harmonic
oscillator and the damped two-level atom. We restrict our attention in this
book to the single-mode laser. In Volume 2 we consider the degenerate para-
metric oscillator and cavity QED. As can be judged from a quick look at
Haken’s book on laser theory [7.1], the first of these examples can easily fill
a book on its own. We will therefore have to be rather selective in what we
cover in two chapters. Our main objective is to illustrate the things we have
learned in a practical application: the derivation of a master equation and
associated phase-space equation of motion, the reduction of the phase-space
equation to a manageable form using van Kampen’s system size expansion,
and the extraction of useful results from the resulting stochastic model. The
topics that we address are covered in sections V and VI of Haken’s book. The
treatment will be similar to the one found there; although, we do not follow
Haken’s notation, and we will fill in the details in some of his calculations.
The laser Fokker—Planck equation is derived using somewhat different meth-
ods by Louisell [7.2]. Laser theory can also be built around density matrix
equations, following the approach of Scully and Lamb [7.3]. For a comparison
with the phase-space method, the Scully-Lamb theory can be studied in the
text by Sargent, Scully and Lamb [7.4].

We are going to look into a small, and some might say dark corner of
laser physics. We want to understand the fundamental statistical character
of laser light resulting from the probabilistic nature of quantum mechanics.
In the real world, the noise in lasers has more to do with practical engineering
concerns, such as mechanical stability, hydrodynamic stability in a dye flow,
and so on. The noise we are interested in — the quantum noise — is what
remains after all of this is gone.

The basic physics underlying laser action is simple. There is much beyond
the basics; but this is all design and engineering — to achieve a different op-
erating wavelength, more power, a different pulse width. The physics behind
the quantum fluctuations is also simple. One would hardly think so, how-
ever, after wading through master equations, phase-space representations,
and system size expansions to arrive at an answer. We will therefore begin
by deriving the laser Fokker—Planck equation using rate equations and a little
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intuition. Hopefully, we can then appreciate the simple physics before it gets
lost in the mathematical details of the full quantum-statistical theory.

7.1 Laser Theory from Einstein Rate Equations

A conventional gas discharge generates light by spontaneous emission from
an excited medium. The central idea behind laser action is to extract energy
by stimulated emission. Two essential conditions must be met: The excitation
(pumping) of the medium must produce population inversion on the lasing
transition so that stimulated emission will dominate absorption, and the en-
ergy density in the laser mode must be raised sufficiently for the stimulated
emission rate to exceed the total loss rate, including the removal of energy in
the output beam. The means of achieving population inversion are as diverse
as the types of available lasers. There is often much physics involved in the
details of an inversion mechanism. For our purpose, however, this is a practi-
cal concern; certainly central to the design of a real laser, but not important
for understanding generic quantum-statistical properties of the laser field. We
will model the pumping process by a simple idealized scheme involving two
or three levels.

Control over the energy density of the laser mode is provided by an optical
cavity. The output beam represents loss from this cavity, and therefore the
laser mode must be modeled as a damped oscillator, driven by the inverted
medium. Energy is injected by stimulated emission, and the rate at which
energy is deposited in the field depends, nonlinearly (gain saturation), on
the amount of energy already present. The dynamical paradigm is that of a
driven damped nonlinear oscillator. Our goal is to find the oscillator equation
in quantized form.

7.1.1 Rate Equations and Laser Threshold

Lamb’s semiclassical laser theory derives a classical oscillator equation from
Maxwell’s equations driven by a nonlinear polarization [7.5, 7.6]. Our first
attempt at a quantum theory we will follow an equally simple, but different
approach. This approach has the advantage that it is formulated from the
outset in quantum-mechanical language, and naturally includes the source of
quantum fluctuations. With the help of a little intuition it will lead us to the
laser Fokker—Planck equation with considerably less labor than is required
by the rigorous quantum theory. We focus on the energy exchange between
the laser mode and the lasing medium, and accept quantum ideas at the
level of Einstein’s theory: the energy quantum (photon) is the basic unit of
excitation for the laser oscillator, and the exchange of quanta by spontaneous
emission, stimulated emission, and absorption [7.7] describes the interaction
of the laser light with the lasing atoms.
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3
| 13)
732
To+¥a1 I,
- i Fig. 7.1 Three-level model for the
Y ¥ ' WBax Y WBr, laser medium. The transition |2) —
1) |1) is the laser transition.

A collection of N three-level atoms provides the simplest model for the
laser gain medium capable of producing population inversion by incoherent
pumping. For the full quantum-statistical theory there is advantage in the
simplicity of a two-level model. But at least one more level is needed for the
pumping process. We therefore start with a three-level model and see how
this reduces to a two-level description later on. We adopt the level scheme
illustrated in Fig. 7.1. The laser transition, |2) — |1), interacts on resonance
with a single cavity mode with frequency we; 31, V32, and v21 are decay rates
for the various atomic levels, I, is the incoherent pump rate, and WBy; is
the stimulated emission and absorption rate for the laser transition, where
W is the energy density per unit atomic linewidth in the laser mode, and
By, = Bjs is the Einstein B coefficient.

If N1, N3, and N3 denote the atomic state populations (N7 + Ny + N3 =
N), the rate equations for the atoms are

Ni = ~TyNi +v21No + (Ip + 431) N3 + WBa1 (N2 — N1),  (7.1a)
Ny = —721 N2 + 32 N3 — WBa (N2 — N1), (7.1b)
N3 = —(Iy + 31 + 732) N3 + I, N1 (7.1c)

The number of quanta in the laser mode is determined by the balance between
stimulated emission and loss to the output beam:

n = —2kn + WBay1 (Na — Ny), (7.2)

where 2k is the photon loss rate from the cavity, and for the present we
neglect spontaneous emission into the laser mode.

The energy density in the laser mode is given in terms of the photon
number by

— hwe

W _= 'n,—’ 73
Vo (/) 9

where Vg is the mode volume and
/2= (L +721)/2+ () (7.4)

is the homogeneous width (half-width at half-maximum) for the laser transi-
tion. The term <, is added when phase destroying collisions are important.
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To calculate B we use the relationship between the Einstein A and B co-
efficients {7.9]. From the result (2.33) for the Einstein A coefficient, we find

(wa = wc)
3d?\ n2c?
321:<—) —An
diy) hwd;
_(3d\ 7P (1 4wddi
- \d%,) wd \dmeg 3hc3
2Vom
= ﬁu?c 92, (7.5)
where

- de2
97\ 2heaVg (7.6)

is the dipole coupling constant (assumed real) between the laser field and the
laser transition [Eq. (2.16)]. We are considering a single laser mode with a
particular polarization é; thus, the factor 3d?/d3,, d = é-d,2, appears on the
right-hand side of (7.5) to remove the dipole orientation average (d?) = d?,/3
from the expression for the Einstein A coefficient. Equations (7.3) and (7.5)
now give the stimulated emission rate into the laser mode:

— 44°
WBgl(Ng - Nl) = nTi(NQ - Nl) (77)

Note 7.1 Einstein theory only provides an approximate treatment of the in-
teraction between light and atoms. It is normally used in situations involving
broadband excitation, which corresponds to the conditions in the blackbody
problem Einstein considered. But the interaction between the laser mode and
laser transition is not broadband. Nonetheless, we can still use Einstein rate
equations. Rate equations are valid for narrowband excitation so long as the
homogeneous width is much broader than the natural width [7.8]. These are
the conditions that justify our rate equation model for the laser. Under these
conditions the energy density W that enters the stimulated emission rate is
an average of W(w) for the exciting field over the atomic absorption line. It
is for this reason that we find the homogeneous width 7 /2, rather than the
laser linewidth, in the denominator of (7.3). The required energy density is

Ti7 o =7 ’Yh/27'r
W= /O dw W(w) T2+ (o)
- /wdw [n@ VL/2m Yr/2m
0 Vo (1L/2)? + (w —wr)? ] (7n/2)? + (w — wa)?
hwr, 1

= Vgrn /D) 1+ A7 "
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where A = 2(wg —wg)/vh is a dimensionless detuning, and wy, and v, /2 are
the laser frequency and linewidth. To evaluate the integral we have assumed
that v < yp. With wp = ws = we, (7.8) reduces to (7.3).

Note 7.2 The homogeneous width 7, [Eq. (7.4)] is obtained by summing
contributions from all decay and pumping rates out of states [1) and |2).
This general rule can be derived from a master equation treatment of the
incoherent transitions. For transitions |i) — |j), at rates -;;, between an
arbitrary set of atomic states, we obtain the master equation

(6). = Z S (203)leli) 51 = 1i) Gl — olidi). (7.9)

This is the obvious generalization of (2.26), which describes two incoherent
transitions: |2) — [1), at the rate yo1 = y(7 + 1) (with |5)(i] = [1)(2| = 0_),
and [1) — |2), at the rate v12 = yn (with |j)(i| = [2)(1] = o). Now from
(7.9), the equations of motion for the atomic coherences py;, k # [, acquire
damping terms

: 1
<pkl)incoh 2 Z(W +715) | Pt (7.10)

The homogeneous width for the |k) — |I) transition is therefore 1 > (Vs +
715), which is the sum over all rates out of the states |k) and |I).

The stimulated emission term in the rate equations (7.1) and (7.2) in-
troduces the nonlinearity that causes the laser threshold behavior. This term
also couples the atomic populations to the photon number. When there are no
photons in the laser mode the atomic populations settle into an equilibrium
state balancing decay and incoherent pumping. Solving (7.1a)—(7.1c) with
n=0and Ny =Ny =N3=0 gives the unsaturated steady-state inversion

I, — - T,
N v32(Lp — y21) — v21(Lp + ¥31) ' (7.11)
Y32(Lp + ¥21) + 721 (2 + 7¥31)

Once photons appear in the laser mode the atomic populations change as
the laser transition begins to saturate. If n(¢) changes slowly compared with
atomic decay and pumping rates, the atomic populations will follow adiabat-
ically, maintaining an equilibrium with the instantaneous photon number.
Assuming that these conditions hold (this is true in the vicinity of threshold)
we make an adiabatic elimination of atomic populations; the algebra is left
as an exercise:

N; - NY

Exercise 7.1 Solve (7.1a)—(7.1¢) with N; = N, = N3 = 0 and show that
the saturated steady-state inversion is given by
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1

Ny— Ny = (N9 - N)——, 7.12
2 1 ( 2 1 ) 1 + n/nsat ( )
where the saturation photon number ng,y is
Yr|132(lp + Y1) + 721 (2T +¥31)
Ngat = [ o b ] (7.13)

892(y32 + 31 + 31, /2)

Note the relationship between (7.12) and the steady-state inversion for the
driven two-level atom given by (2.120b). Show that the saturation photon
number for the two-level atom is 72 /8¢2.

Substituting (7.7) and (7.12) into (7.2), we obtain the photon number
rate equation

. P
=-2 1——], 7.14
n Iin( T n/nsat) (7.14)
where the pump parameter p is defined by
2g° 0 0
= —(Ny —N7). 7.15
© ’Yhf%( 2 1) ( )

The steady-state photon number ng satisfies the quadratic equation
Nss(1 — 9 + Mg /Ngat) = 0. (7.16)

Solutions to this equation show the threshold behavior illustrated in Fig. 7.2.

Fig. 7.2 Laser threshold behavior.
The steady-state shown by the bro-
ken line is unstable.

Below Threshold - p < 1: Below threshold the photon loss rate exceeds
the stimulated emission rate. Since ngs must be positive (7.16) has only one
acceptable solution,

ne =ng =0. (7.17)

From (7.12) and (7.15) the below threshold inversion is

K
(Na—Ny)_=N§ —ND = ;h?p. (7.18)
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At Threshold — p = 1: At threshold the photon loss rate is equal to the
stimulated emission rate. Equation (7.16) has the doubly degenerate solution

Nenr = N2 = 0, (7.19)
and the threshold inversion is

(N2 = N) = N§ = NO = 122 (7.20)

2g2°

thr

Above Threshold — g > 1: Above threshold the stimulated emission rate
determined by the unsaturated inversion exceeds the photon loss rate. There
are two acceptable solutions for ng:

ngs = 0, (unstable)

Ngs = Nsat(pp — 1). (stable)
The ng = O state is unstable; linearizing (7.14) about this state gives n =
2k(p—1)n > 0, and therefore any small nonzero photon number is amplified.

Amplification stops when the saturation term (14 7n/ng,;)~! brings the gain
minus loss back to zero, which happens when

ns =g = Near(p — 1). (7.21)

The saturated inversion above threshold is
1
1 + n/nsat

1
= (N? - N9 =
(N 1)p

(N2 _N1)> = (Ng —NIO)

_ s
292

= (Ny — Ny) (7.22)

thr”

The saturated inversion is held at the threshold value for all ¢ > 1, a phe-
nomenon known as inversion clamping (or inversion pinning).

7.1.2 Spontaneous Emission and Thermal Photons

Equation (7.14) describes the amplification by stimulated emission that leads
to the lasing state above threshold. What, however, is to be amplified? Where
does the first photon come from? According to (7.14) the laser will not turn
on as the pump parameter is raised if the laser mode does not initially contain
at least one photon.

The answer, of course, is that we have omitted two photon sources. We
have omitted the thermal source that brings the laser mode to thermal equi-
librium when the pumping is turned off. This is corrected by adding the term
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2kf to (7.14), as in the equation of motion for the mean photon number
of the damped harmonic oscillator [Eq. (1.79)]. We have also omitted spon-
taneous emission. Spontaneously emitted photons are included by adding a
term YsponN2 to (7.14); Yspon 1S the spontaneous emission rate into the laser
mode. With the addition of these two terms the photon number rate equation

becomes
Y

1+ n/Ngat

At optical frequencies 7 is negligible; therefore the first photon must be sup-
plied by spontaneous emission. At microwave frequencies 7 is not negligible;
even at low temperatures (T' ~ 4 K) a few thermal photons are present.

The rate Yspon is not equal to the Einstein A coefficient for the |2) — |1)
transition. yspon only accounts for spontaneous photons emitted into the laser
mode, while A is the emission rate to all modes of the vacuum electromagnetic
field. We can calculate Yspon , however, using the standard method for relating
Einstein A and B coefficients. We write the stimulated emission term in (7.23)
in the form (7.7), and then

n=—2kn (1 ) + 267 + Yspon V2. (7.23)

2

2
o= —2kn|1— v—g%(N2 — N1) | + 267 + YsponNe. (7.24)
h

Now if the atomic populations are maintained in thermal equilibrium, with

M _ (BamB))/ksT _ ghwc/ksT (7.25)
Ny

(7.24) must bring the cavity photons into equilibrium with the atoms. Thus,
this equation must have the steady-state solution ng = 71 = (efwe/ksT 1)1
[Eq. (1.52)]. This requires

492 (N 442
Yepon = in<_1 _ 1) _
Yho \V2 Yh
After we substitute for 7 and N; /N, the spontaneous emission rate into the

laser mode is
4g°

e
With the help of (7.12) and (7.15), we write this in the form

7sponN2 = Ns. (726)

2g2 29>
YsponN2 = L(Nz + N1) + —g—(N2 - N)
Yh Th

Ny 1 o
=2 = I A .
K(C D, +t37 T n/nsat>, (7.27)

where
Nzolg2

C= ,
Y

(7.28)
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and
Noy = No+ N (7.29)

is the total number of atoms distributed between the two levels of the laser
transition.

Exercise 7.2 For the three-level model illustrated in Fig. 7.1, show that

0 1+ n/néat

Ny = N. 7.
21 21 1 + n/nsat’ ( 30)
where r r
N31 =N Y32(Lp + Y21) + Ye1(Ip + ¥31) ’ (7.31)
Y32(lp + Y21) + Y21(20p + 731)
and
I T,
nl, = Yh [732( @2+ Yo1) + Y21 (L + ’731)] ‘ (7.32)
892 (732 +v31 + Ip)

We can now write down the complete photon number rate equation. Sub-
stituting (7.27) into (7.23) and using (7.30), we have

1. © _ 1+n/nl, 1 Y
26) ' =-n(l - ——— +<n+C’ =+ - .
(2r) ( 1+n/nsat) 14+n/ngt 214 n/ng

(7.33)

This equation can be simplified considerably if the laser is not operated too
far above threshold. Typically ns, and nl,, are large numbers, and under
normal operating conditions n/ngs < 1, and n/n.,, < 1. Then we may
neglect the saturation terms in the second bracket on the right-hand side of
(7.33). We will discuss how to estimate ngat shortly (Sect. 7.1.4); for a He-Ne
laser ngay ~ 108. Of course, we cannot neglect the saturation of the stimulated
emission term appearing in the first bracket. It is this gain saturation that
prevents the photon number from growing without bound above threshold.
However, for n/ng.t < 1, we only need to include the gain saturation to first
order. Then the final form of the rate equation for photon number in the laser
mode, including thermal and spontaneous emission sources, is

(2k) ' = —n(1 — p + Pn/Neat) + 7 + Nepon- (7.34)
We have written (7.27) as
Yspon N2 ~2 ')’sponNgo = 2/1(0 + %p) = 2K Nspon; (7.35)

Ngpon = C' + %p is the spontaneous emission photon number — the number of
photons in the laser mode due to spontaneous emission well below threshold.
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The laser can now turn on above threshold using a thermal or spontaneous
photon to start the amplification process. The steady-state photon number
satisfies the quadratic equation

ngs(1 —  + Pss/Nsat) — (2 + Nspon) = 0, (7.36)

which has a single (positive) solution for all values of the pump parameter:

1 1
Ngs = —%nsat(l - KJ) + %nsat\/ ( - p)Q + 4@(7—1 + nspon)/nsat-( )
7.37

Note 7.3 We must not confuse the pump parameter p with the pump rate
I',. In particular, for I', = 0, all of the atoms are in the lower state of the
laser transition (if # = 0), and for p = 0 (I'; = 721), the populations in
the two states of the laser transition are equal. When I, < 721 the pump
parameter takes negative values and the atoms act as an absorber rather than
as a gain medium. The solution (7.37) is valid for both positive and negative
values of .

In contrast to Fig. 7.2, the plot of (7.37) in Fig. 7.3 shows a smooth
transition through the threshold region. The sharpness of the transition is
determined by the ratio (7 + nspon)/Msat- This ratio determines the range of
the pump parameter over which the second term in the square root on the
right-hand side of (7.37) is important. We define the laser threshold region

by
11—l <|1—plnr 52,/-———n+"s"°“. (7.38)
Nsat

This should be a small number. If it is not, even spontaneous emission into the
laser mode is sufficient to saturate the laser transition, which would negate
the whole aim of building up a field by stimulated emission. The range of the
threshold region in a He-Ne laser operated on the 0.63 ym line is |1 — p|¢nr ~
10~* [7.10]. Since 7 is negligible at optical frequencies, if ngat ~ 10® and
|1 — plene ~ 1074, then nepon ~ 1. We can estimate the change in photon
number over the threshold region by using (7.37) to write

nﬁ]r = i%nsat‘l - p|thr + %nsatu - p|thr\/_2_

= Ingall — olene (V2 £ 1), (7.39)

where n&r and ng, are the steady-state photon numbers at the upper and
lower boundaries of the threshold region, respectively. Then

n;}r_\/i—i—lN

nt_hr \/é—l

Thus, the photon number changes through the threshold region by approxi-
mately one order of magnitude.

6. (7.40)
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Tiss — nsat(@ - 1) ~ (7_74 + nspon)/(p - 1)

‘-_—— MNgs ~ vV nsat(ﬁ + nspon)

0 4 i 74
®

Ng = N + TMspon

Fig. 7.3 Passage from the nonlasing to the lasing state with thermal and sponta-
neous emission sources included.

Equation (7.37) gives a number of results that are in rather remarkable
agreement with those obtained from the full quantum statistical theory.

Below Threshold — 1 — p > |1 — pl|¢n: With the inclusion of thermal and
spontaneous photons the steady-state photon number below threshold is no
longer zero. Expanding the square root in (7.37) to first order, we find

. Atngen N+CH+3p
Ny = .

(7.41)

n<

1—-p 1-p

This agrees exactly with the result obtained from the full quantum-statistical
theory (Sects. 8.1.3 and 8.1.4).

At Threshold - p = 1: From (7.37) the threshold photon number is given
by

Nthr = n;gr = \/nsat (n+ nspon) = \/nsat (ﬁ +C + %p) (7.42)

This result is larger, by the factor /7 /2 & 1.25, than the result obtained from
the full quantum-statistical theory (Sect. 8.2.2). (For ngat ~ 108, nspon ~ 1,
and 7 negligible, ny,, ~ 10%.)

Above Threshold — 1> p—1 > |1 — @|tn,: We restrict our attention to the
region not too far above threshold. The requirement p — 1 < 1 ensures that
Ngs/Nsat < 1. Expanding the square root in (7.37) to first order gives the
correction to the solution ns = net(p — 1) [Eq. (7.21)] due to the thermal
and spontaneous emission sources:

it Ngpon  N+C+3p

Ny — Neat (P — 1) = ng — Near(p — 1) = o1 = o1

(7.43)

This result is a factor of four larger than that derived from the full quantum-
statistical theory (Sect. 8.3.3).
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7.1.3 Quantum Fluctuations: A Stochastic Model

The rate equation treatment including thermal and spontaneous emission
sources provides a surprisingly accurate picture of laser operation. Neverthe-
less, it is, of course, limited in two major respects. First, the rate equation
approach deals only with energy. It has nothing to say about the field. In
particular, it provides no direct information on the laser linewidth. Second,
(7.34) is a deterministic equation for a definite photon number n. In quantum-
mechanical language this assumes that the laser mode is always in a Fock
state |n(t)). Surely this is not correct. Indeed, so far we have done nothing
to explicitly incorporate the probabilistic character of quantum-mechanics
into our theory, and we are therefore in no position to speculate on quantum
states. Equation (7.34) should be interpreted as an equation for the mean
photon number.

One way to build a probabilistic theory around (7.34) is to “invent” an
underlying birth-death equation for the probabilities, P,, that there are n
photons in the laser mode. Such an equation should produce (7.34), at least
in some approximation, as the equation of motion for (n) = % > nP,. This
approach leads to a connection with Scully-Lamb theory. Let us consider this
connection briefly before turning to our main interest, a stochastic description
in terms of the laser field.

There are two approaches that we might take when inventing the underly-
ing birth-death equation. The first makes a mathematical extrapolation from
(7.34) with little additional physical input. The approach is direct and simple;
although, taken on its own it is somewhat unconvincing since the mathemat-
ical extrapolation is not unique. The more convincing approach builds upon
well-defined physical arguments to construct a unique birth-death equation.
We will look at both approaches. It as well to build some confidence in the
mathematical extrapolation since this is the path we must follow to construct
a stochastic laser model.

In the mathematical approach we invent the underlying birth-death equa-
tion by first writing (7.34) as an equation for the mean photon number:

(26) "M i) = —(n) (1 — p + p(n) /nsar) + 7 + Nepon- (7.44)

Something must be done about the nonlinear term (n)? appearing on the
right-hand side, since such a term cannot appear in the exact equation for (n).
In a statistical theory we expect the equation for the mean photon number
to couple to equations for higher moments of n; therefore (n)? must be a
factorized approximation for (n2?). The correct equation for the mean photon
number must be

(25)_1@) =—-(n)(1—p)— @<n2>/nsat + 7 + Ngpon- (7.45)

Each term in (7.45) now suggests a corresponding term in the underlying
birth-death equation. We write F(n) — (f(n)) to mean Y .. ,nF(n) =
(f(n)). Then the following correspondences hold:
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() «— P, (7.46a)
n) «— nP, — (n +1)Ppy1, (7.46b)
(n?) «— n?P, — (n+1)2Poy1, (7.46¢)
l—nP,1—(2n+1)P, + (n+1)Ppq1. (7.46d)

The choice of terms on the right-hand sides is not entirely “black magic.”
Familiarity with the damped harmonic oscillator leads us to (7.46b) and
(7.46d); these can be deduced from the birth-death equation obtained by
taking diagonal matrix elements of the master equation (1.73). The nonlinear
term in (7.46¢) can be found with a little trial and error. Note that each of
the right-hand sides sums to zero, guaranteeing the conservation of total
probability (3,-, P, = 0). This removes some obvious ambiguities—the
possibility of replacing (7.46b) by (n) «— P,, for example. Some ambiguities
remain, nonetheless; based solely on the mathematics, the extrapolation we
have made is not unique. For example, we can replace (7.46¢c) by (n?) «—
(n —1)2P,_; — n?P,, and (7.46d) by 1 «— P,_; — P,, (which might seem
quite reasonable for the spontaneous emission term if not for the source of
thermal photons). We will return to this issue shortly. Continuing for the
moment with what we have, after putting the pieces together we arrive at a
probabilistic model in the form of the birth-death equation for photon number
in the laser mode:

(2’9)_1Pn =—(1-p)nP— (n+1)Pryi]
- (p/nsat)[nan - (n + 1)2Pn+1]
+ (7 + ngpon) (NP1 — (2n + 1) P, + (n + 1) Ppyq]. (7.47)

We can now make a connection with Scully-Lamb theory. To do this we must
rewrite (7.47) in a slightly different form. The details are left as an exercise:

Exercise 7.3 Verify that (7.45) follows from (7.47). Then set Ny = N? =0
in (7.15) and (7.29), and show that if 7 is negligible, (7.47) can be written in
the form

P,=AnP,1 — (n+1)P,) — B'[n?P, — (n+1)?Pny1]
— Py — (n+1) Py, (7.48)
with A’ = 2kp = 4¢° N2 /v, B' = 260 /nsar = 462N /yhnsat, and C' = 2k.

Equation (7.48) agrees with the first-order expansion — for nB’//A’ =
n/nsay < 1 — of the Scully-Lamb laser equation (Eq. (4) of Ref. [7.3a]). Most
of the parameters in the Scully-Lamb definitions of A’, B’, and C’ (Eq. (5) of
Ref. [7.3a]) may be identified in a one-to-one correspondence with parameters
in our own theory. We have N < 74 /%4, Y1h/2 < Yab, Nsat < 49%/VaVs, and
2k « v/@Q). Because, however, of the different pumping model used by Scully
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and Lamb, there is no direct correspondence between the atomic decay rates
appearing in their expression for nga; (Nsas = 49°%/747) and those appearing
in ours [Eq. (7.13)].

Note 7.4 As it appears in the original papers [7.3], the Scully-Lamb laser
equation assumes there is no population in the lower laser level. For this
reason we set N; = NY = 0 in order to make a connection with Scully-
Lamb theory. These conditions can be achieved with the appropriate pumping
scheme [see the discussion below (7.75)] and in our notation give ngpon = p;
at threshold ngpon = 1. Scully-Lamb theory may readily be extended to allow
for a nonzero population in the lower laser level [7.11].

In+1)
26"\ (1) (n 41) 2N () (n+1) @ (n+1) (A +1)(n+1)
VK Ynk
In)
2| | wn-nn an| @y
In—1)

Fig. 7.4 A simple birth-death laser model. All transition rates are in units of 2k.

We noted that there is some ambiguity in the correspondence (7.46). The
ambiguity does not arise if we construct the birth-death equation starting
from a physical picture of the elementary absorption and emission processes
it must describe. These are the same absorption and emission processes ac-
counted for in the Einstein rate equations formulated in Sects. 7.1.1 and 7.1.2.
Now, however, they are to be expressed in terms of transition rates governing
the flow of probability between states of photon number n. The various tran-
sition rates are shown in Fig. 7.4. Reading from the left they describe: the loss
of photons through the cavity mirrors, the absorption of photons through the
cavity mirrors, stimulated and spontaneous emission into the laser mode, and
the absorption of photons by the laser medium. Na(n) and N;(n) denote the
numbers of atoms occupying states |2) and |1), respectively, given the photon
number n; when the atomic populations may be adiabatically eliminated we
write [Egs. (7.12) and (7.30)]

1 1 n/n,
N. — NO _NO sat .
2(n) R — i~ + VAT 7/t (7.49a)

1 1 n/n.
=NO— — L NJ L sat 7.49b
Ni(n) gy + 22T ¥ 1 /nms ( )

The birth-death equation corresponding to Fig. 7.4 takes the form
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P, = =2k(A+ 1)[nP, — (n+ 1) Pyy1]
+ 260 [nPpr_1 — (n + 1) P,]

+ 4,),_g:[N2(n —1)nP,_1 — Na(n)(n+ 1)P,]
+ %[Nl(” +1)(n 4 1)Ppy1 — Ni(n)nPy). (7.50)

In order to compare this equation with (7.47) we must expand the saturation
terms to lowest order in the manner described below (7.33). We first separate
the saturation terms in the expressions for the atomic populations, writing
(7.49a) and (7.49b) as

n/nsat

Na(n) = Nj — '———(Ng - %Nglnsat/néat)y (7.51a)
1+ n/nsat
n/n
Ni(n) = N? — I:/—n/i:;—t(N{) — NS ngat /1y ). (7.51b)
Sa’

Then, with the help of (7.15), (7.26), (7.28), and (7.35), we write

29° 2¢° 29 1
%NS = Tspon;, %—’;Nlo = TMspon — §, ;h—REN% =C;
thus,
292 /
;h—l;N2(”) = Nspon — (1) (Nspon — CMisat/Tgay), (7.52a)
292 /
ﬂNl (n) = (nspon — ) — S(n)(Nspon —  — Cnsat/Ngyy), (7.52b)
where S(n) is the saturation factor given by
S(n) = _Mnsan (7.53)

14 n/ngat
Now the birth-death equation may be written as
(26) 7' Py = —(1 = @)[nPn — (n+ 1) Poy]
— QIS(n)nPa = S(n+1)(n+1)Pat]
+ (7 4 Nspon) [PPrn—1 — (2n + 1) Py + (n + 1) Pyyq]
+ (Nspon = Cnisat /Mgar)[S(n — 1)nPry
- Sm)2n+1)Py +S(n+1)(n+ 1)Ppy]. (7.54)

The second term on the right-hand side of (7.54) is a nonlinear correction —
due to gain saturation — to the first; the fourth term is a nonlinear correction
to the third. We must keep the correction to the first term since this term
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vanishes when p = 1. For n/ng,s < 1, we include the correction to lowest
order, setting S(n) = n/nsat. The nonlinear correction to the third term may
be neglected entirely. In this approximation (7.54) reduces to the birth-death
equation (7.47).

The steady-state probabilities, P5°, defined by setting P, = 0 in the
birth-death equation, can be found by referring to Fig. 7.4. The steady state
is maintained by the balancing of transitions between neighboring photon
states:

[+ 1+ (26° /r)Ni ()] P = [+ (20° /ynk) Na(n — 1)]PR2. (7.55)

This is what is known as detailed balance. Equation (7.55) has the solution

“r A+ (292 / k) No(k — 1)
PSS — SS y
n H 4+ 1+ (292/vnr)N1(k)

(7.56)

5% is determined by normalization. We can convert this solution into a sim-
pler form which satisfies (7.47) using (7.52a) and (7.52b) to write

i+ (2¢°/ynk)Na(k — 1)
7+ 1+ (292 /) N1(k)
n -+ Tlispon — S(k - 1)(nSP0H — Cnsat/ngat)
n+ Nspon +1-~ P — S(k)(nspon I CnSat/néat)
A+ gpon — pS(k) + 52, 6 (k)

= , 7.57
N+ Ngpon + 1 — p ( )

where the 6;(k) are saturation terms that follow by making an expansion in
powers of S(k); for example,

81(k) = pS(k) — S(k — 1)(nspon — Cnisat/Mgat)

7+ Nspon
+ S(k
( )ﬁ+nspon+l—p

— [S(k) — S(k: — 1)](nsp0n - Cnsat/n;at)

(nspon — P Cnsat/n/sat)

Ngpon — 9 — CNgat /Ny,
— S(k)(1 - p) Pm” +1i/p t, (7.58)
spon

When k/nsay < 1, all of the §;(k) may be neglected. 6;(k) is the dominant
term, and noting that this term is negligible is sufficient. The contribution
to 61(k) proportional to [S(k) — S(k — 1)] is of order 1/ng, and clearly
negligible. The contribution proportional to S(k)(1 — p) is negligible since
all saturation terms are unimportant below threshold, while at, and not too
far above threshold, the S(k){1 — p) in 6;(k) is very much smaller than the
©S(k) separated out explicitly in the numerator of (7.57). Thus, dropping
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the sum and setting S(k) = k/nsa in (7.57), the steady-state probabilities
(7.56) become

n

P = ppe J[ 2t apon — 9K /sar, (7.59)
pey Pt Nspon +1—p

this is the solution for the distribution of photon number in the laser mode
in steady state which we obtain by applying the detailed balance condition
to (7.47).

Figure 7.5 illustrates the way in which the photon number distribution
changes through the threshold region. Various approximate expressions for
Pp® capture this evolution well. Their derivation from (7.59) is left as an
exercise:

(a) (b) (c)

1.0} 1.0+ 4.0}
~ <+ el
o [« o
- Lol 1
& 05} 2 05} 2 2.0
a$ aF s

0.0 L 0.0 : 0.0 s

0.0 2.5 5.0 0.0 2.0 4.0 0.0 1.0 2.0
nx10"2 nx1074 nx107°

Fig. 7.5 Laser photon number distribution for i+nspon = 1, Nsat = 10° (|1 —p|enr ~
107*): (a) below threshold, 1 — p = 1072; (b) at threshold, p = 1; (c) above
threshold, p — 1 = 1075.

Exercise 7.4 Prove the following results from (7.59):

Below Threshold -1 > 1 — p > |1 — p|in,: The photon number is dis-
tributed according to the “thermal” distribution

PSS — (<n><)"

n = (T_H—m:)n—ﬂ, (7.60a)

where .
T + Nspon n+C+H+ sp
<n>< = <n>S<S = 1—_5;0 = 1_ p2 *

Note the agreement between (7.60b) and (7.41) (also see Sects. 8.1.3 and
8.1.4).

(7.60b)

At Threshold - p = 1: The photon number is essentially distributed con-
tinuously, with
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1 ——"2—)] (7.61a)

P = f (:
vV nsat n+ 7’Lspon 2 nsat M =+ Nspon

with mean threshold photon number

<Tl>t E thr \/>\/ nsat n+ nspon
= \/;,/nsat(ﬁ+c+%). (7.61b)

Note the agreement within a factor of \/2/7 between (7.61b) and (7.42) (also
see Sect. 8.2.2).

Above Threshold — 1 > p — 1 > 0: The distribution (7.61a) generalizes as

V Nsat (n nsp()n | ]' g: |th!

1 (TL - nsat(p B 1))2]

(7.62)

X ex
P { 2 Msat (TL + nspon)

where @ denotes the Gaussian probability integral [7.12]. For p—1 > |1— |,
the photon number has mean and variance

(n)s = (n)2 = neat(p — 1), (7.63a)

= <”2 s>s - (<n>s>s)2 = TNgat (7 + Nepon)
=g (+C+1p). (7.63b)

2

("2>> - ((n)>)

Note the agreement (to dominant order) between (7.63a) and (7.43). Also,
(7.63a) and (7.63b) indicate that the photon number distribution above
threshold is significantly broader than a Poisson distribution (also see Sect.
8.3.3).

Equation (7.47) provides a simple probabilistic theory. But it is still lim-
ited to a description in terms of energy states. A second way to build a prob-
abilistic theory from the rate equation (7.44) is to “invent” an underlying
stochastic model for the laser field amplitude & = e*“*a. Such a model can
answer questions about the field — questions like: what is the laser linewidth?
A stochastic model provides a connection with the phase-space version of the
full quantum-statistical theory which we will discuss shortly.

To “invent” a stochastic model we must construct a Fokker—Planck equa-
tion for the probability density P(&,&*) that reproduces (7.44), with

(n) = (|a?) = /d2d |&|?P(&, a*); (7.64)
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more precisely, our Fokker-Planck equation must give the mean value equa-
tion

(26)7H(1&?) = ~(1a*)(1 = p) = p(1a|*)/nsat + 7 + Nspon, (7.65)

which reduces to (7.44) after the factorization (|&|*) ~ ((|d]2>)2. It is not dif-
ficult to come up with the appropriate Fokker—Planck equation. The first two-
terms on the right-hand side of (7.65) describe cavity loss and saturable stim-
ulated emission gain. These are coherent processes. They remove and add en-
ergy by coherently decreasing and increasing the field amplitude, and should
be contributed by deterministic (drift) terms in the Fokker—Planck equation.
In contrast, the third term on the right-hand side of (7.65) describes the inco-
herent thermal and spontaneous emission energy sources. This term should
be contributed by a noise (diffusion) term in the Fokker—Planck equation.
Writing F(&,&*) — (f(&,&*)) to mean [d?a|a]?F(&,a*) = (f(&,a*)),
the term by term correspondence is

(|6]%) — P(&,a"), (7.66a)
(|a?) — —% <%d + 8‘2* a*) P(a,a"), (7.66b)
(1&*) — —% (%d + 8(;* d*> la2P(a,&"), (7.66¢)

1— aa;a*p(d’d*)' (7.66d)

Again, familiarity with the damped harmonic oscillator helps us to select
the right-hand sides; (7.66b) and (7.66d) are deduced from the terms on the
right-hand side of the harmonic oscillator Fokker-Planck equation (3.52).

Exercise 7.5 Show that the mean value equation (7.65) follows from the
Fokker-Planck equation

opP ) )
-1 _ -~ = ~ % _ ~12
5 [(&ia + Rt )(1 © + p|a|? /nsat)
_ 9% 5
+2(n + nspOn)W] P, (7.67a)

with corresponding stochastic differential equation
dao=—-a(l—p+ pld|2/nsat)(ndt) + 4/ K(7 + Ngpon ) (AW + idW3); (7.67b)
W, and W are independent Wiener processes.

Equation (7.67a) is the laser Fokker—Planck equation. From this equation
results (7.60)—(7.63) can be recovered, together with new results, such as the
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linewidth of the laser field. In fact, from this equation we can derive all of the
results we will obtain from the full quantum-statistical theory. The role of
the full theory is really only to show how (7.67a) can be rigorously derived;
and to show in some detail what approximations are needed to arrive at this
stochastic model. It is important to realize that what we have here is essen-
tially a classical stochastic description for the laser field. Although, one might
choose to couch the theory in quantum-mechanical language, the fluctuations
of the laser field are the fluctuations of a classical stochastic complex field
amplitude. Generally, quantum probability cannot be accommodated within
a classical stochastic description, and therefore some “reduction” of the quan-
tum mechanics must take place as we pass from a fully quantum-mechanical
microscopic formulation to the macroscopic laser Fokker—Planck equation.
We will see how this reduction is made in the next few sections. This is not
to say that we cannot label the noise on the laser field, or part of it, as quan-
tum noise. Quantum mechanics leaves its mark in the diffusion coefficient
Nspon- Lhe size of this coefficient, specifically its nonzero value, is a state-
ment from quantum mechanics. This statement is found in the relationship
between (7.7) and (7.26): stimulated emission gain is necessarily accompa-
nied by spontaneous emission noise. This is something that Einstein theory
tells us. But Einstein theory is ad hoc — it is not integrated with the mathe-
matical formulations of mechanics and electromagnetism. Our job now is to
derive the stochastic model defined by (7.67) from the theory of quantum
electrodynamics.

7.1.4 Two-Level Model and Laser Parameters

First let us look again at the model for the laser medium. It is cumber-
some to carry a detailed description of the pumping process through into
the quantum-statistical theory. Moreover, the model shown in Fig. 7.1 is, on
the one hand, an idealization of any real pumping process, and on the other,
not the only reasonable idealized model that might be chosen (Ref. [7.13]
describes a commonly used four-level model). We therefore build our mi-
croscopic theory around a two-level model of the laser gain medium, ex-
cluding all additional states needed to achieve population inversion. This
model includes everything essential to our purpose. The model is illustrated
in Fig. 7.6. It may be derived as a limiting case of our three-level model by
taking 32 > Iy + ¥31, y21. In this limit, negligible population resides in
state |3}, and the pumping rate to the upper level of the laser transition is
determined by I',. We set

M= Fp7 Y= V21, (768)
and (7.4), (7.11), (7.13), (7.30) and (7.31), and (7.32), now read

Yo =11 + 71 (F7p), (7.69a)
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N - NO=NT =T (7.69b)
Y+
+
Neat = ————%(292 n), (7.69¢)
Ny = N3, = N, (7.69d)
+
My = Mg = LT (292 ), (7.69%)
12)

WB2 Fig. 7.6 Two-level model for the laser
medium. The three-level model of Fig. 7.1
reduces to this model when 732 > I, +

1)y 731, 7Y21.

h=1Ip| N="Ya| WBay

It is useful to summarize the parameters controlling the behavior of the
stochastic model (7.67). In developing the full quantum-statistical theory,
we will use van Kampen’s system size expansion (Sect. 5.1.3) to provide
a description of fluctuations around a deterministic macroscopic state — a
rigorous version of the addition of thermal and spontaneous emission noise
to the noiseless laser behavior illustrated in Fig. 7.2. As we look at each
parameter, we might take this opportunity to identify the role it plays in the
context of the system size expansion. To this end, we first introduce a scaled
time ¢ and scaled field amplitude &, defining

Qn

£ =n_%a. (7.70)

Then (7.67a) and (7.67b) become

Kt,

IR

oP 9. 9 . . 82
—_— = —.,— T_* ].— &2 “(n —
5 [<6da+ 550 )( o+ plal )+2nsat(n+nspon)adaa*:| g

(7.71a)

and

dczy = —C:l(l — + g9|54|2)df+ A/ (T_l + nspon)/nsat (dV_Vl + isz); (771b)

the Wiener processes W7 and W5 have variances £ (the processes W; and W,
have variances t).

Equations (7.71) depend on four parameters: g, @, Nspon, and ng,. The
saturation photon number plays the role of the parameter {2 characterizing
the system size in Sect. 5.1.3. The macroscopic limit — the limit of zero
fluctuations — is reached for ns,; — oo. In this limit the behavior of the laser
is controlled by a single intensive parameter, the pump parameter
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292 -
o= (NQ-NO=ocTl— (7.72)
ThE Mmtn
with Na?
=9 (7.73)
Yhk

In a system of finite size there are fluctuations about the macroscopic state.
We will see shortly that the rigorous system size expansion needed to describe
these fluctuations is different for operation below threshold, at threshold, and
above threshold. However, in each case the fluctuations scale as an inverse
power of ng,s. After this scaling has been removed, the strength of the fluctua-
tions is determined by two intensive parameters: the thermal photon number

7 = (ehwo/ksT _ )7 (7.74)
and the spontaneous emission photon number

2Ng*> m

. (7.75)
YhE Y1+

Ngpon = C+ %@ =

The two-level model for the laser medium suppresses the details of the
pumping mechanism. It does, however, allow the pump parameter to be
changed in two different ways. In the first, v; provides the control. This
applies when the lower level of the lasing transition is populated at thermal
equilibrium, with NY = N for 74 = 0. When ~; = 7|, the populations N}
and NJ are equalized, and gain is available once v; exceeds v|. Generally the
laser operates with vy — ) < 71 + ). Then, from (7.72), 2C must be large
so that the small difference between «; and 7| translates into sufficient gain
to reach threshold. Equation (7.75) gives ngpon = C + %p > 1.

The second mode of operation applies in situations where the lower laser
level is an excited state that is not normally populated at thermal equilibrium.
If decay out of this state is fast enough, it may be assumed that this level
remains unpopulated while the laser is in operation. This requires that we
take vt > | in the two-level model. The pumping excites atoms from an
energy state below the lower level of the laser transition into the upper laser
level. Thus, control over the pump parameter p is provided by changing
N = N (consequently changing C). A four-level scheme is needed to give the
simplest complete description of this process [7.13]. Since NY = 0 (y; > 7)),
we find ngpon = g; at threshold, nspon = 1. This is the situation in Scully-
Lamb theory [7.3].

Since the saturation photon number determines the importance of fluc-
tuations, let us spend a little time to give it special consideration. If we use
(2.33) to express d3, in terms of the radiative decay rate |, (7.69¢) and (7.6)
give
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Wh(7T+vl)2heoVQ< di >2< 1 4w, 1)

Ngat =

8 we  \é-diz) \4meq 30c3 v,
1 (mw2\ /L
:_<”wo>< /C>7h(’YT2+’Vl)’ (7.76)
2\ 012 J\1/7 7

where we have written Vg = mw3L, where mw? is the cross-sectional area of
the laser mode and L is the cavity length;
(é-di2)?

o190 = W(V /27) (7.77)

is the weak-field absorption cross-section for the laser transition.

Note 7.5 The cross-section o12 can be calculated from the radiated power
in weak-field resonance fluorescence. Using (2.127), (2.120b), (2.112), and
(2.91), we have (Y2 < 1)

4wAd2

E2
hry ’

P = yhwa(2|pss|2) = vwazY? =

where E is the electric field amplitude for the coherent excitation. The power
density in W/m? for the exciting field is 2e9cFE?; thus, o1 is obtained from
the statement of conservation of energy, 2¢gcE%019 = P:

2wAd2 . 2wAd2 e 377/03 _ (é . d12)2
eochy  eoch Y13d2,) T d&%,/3

g12 =

(X2 /2m).

The physical content of (7.76) can be appreciated by setting vy = 0, so
that the laser medium acts as a two-level absorber. The ratio (1/v,) =+ (L/c)
is the number of times a photon inside the cavity revisits each atom during
the atomic lifetime. (Photons remain in the cavity for many atomic lifetimes
when x < 7;.) Equation (7.76).can now be written as

1
n/nsat = 2”(012 > —/’—y—l-

mw2) Ljc

number of photons presented to each atom within
=2x ! . rom wi (7.78)
an absorption cross—section per atomic lifetime

Thus, the condition n = ng,, means that half a photon is presented to the
atom within an absorption cross-section per atomic lifetime. [Note that the
greatest rate at which a two-level atom can scatter photons is half a photon
per lifetime, corresponding to full saturation (n/ns,t > 1), for which the
probability for the atom to be in its excited state is one half]

The saturation photon number must be large if the fluctuations are to be
small. In this regard there is an important qualitative difference between the
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contributions to the diffusion constant in (7.71) coming from 7 and nspon.
The thermal photon number may be extremely small. At optical frequencies
7 ~ 10738 at T = 300K. Thus, thermal fluctuations are not intrinsic to the
quantum dynamics of the laser and may be negligible quite independent of
the size of ngat. On the other hand, the fluctuations represented by ngpon
are intrinsic to the quantized dynamics; they cannot be reduced (beyond a
certain limit) other than by increasing ns,¢. To see this, note that at threshold
Nspon = C + %, and, from (7.72), C has a minimum value C = % Therefore,
if the laser is to lase, it is necessary that nspon > 1; the minimum ngpen =1
occurs when the laser operates with N? = 0.

The laser is therefore intrinsically aware of its “size,” as measured by
Nsat- Lhis is because the laser is a nonlinear device whose energy is quantized
in “lumps” of finite size. There is an interplay between nonlinearity and
the size of the lumps. The nonlinearity derives from the saturation of the
laser transition. The degree of saturation depends on the energy density per
unit atomic linewidth at the site of each laser atom. A characteristic energy
density Wi, is needed to “turn on” the nonlinearity. The number of photons
(lumps) that must be present in the cavity to provide this energy density
scales proportional to the mode volume. The same energy density may be
achieved in a cavity with a large mode volume or a cavity with a small
mode volume. The smaller mode volume provides the same Wi, with fewer
photons. In a small volume the fluctuations associated with the coming and
going of the lumps are large relative to the mean energy needed to turn on
the nonlinearity.

The role of ng, as a measure of system size is displayed explicitly in (7.76).
This expression is proportional to the mode volume Vg = mw3L. Choosing
wo = 1mm, L = 15cm, A = 0.6um, v, ~ 107s7, and v; ~ v, ~ 3 x 10857}
— numbers appropriate for a He-Ne laser — we obtain ng,: ~ 108.

7.2 Phase-Space Formulation
in the Normal-Ordered Representation

7.2.1 Model and Hamiltonian

The microscopic model for the single-mode homogeneously broadened laser
is built on our descriptions of the damped harmonic oscillator (Sect. 1.4) and
the damped two-level medium (Sect. 6.3). The model is shown schematically
in Fig. 7.7. We use a ring cavity rather than a standing-wave cavity to avoid
the awkward problem of spatial effects (Note 6.1).

Following the approach of Chap. 1, we formulate the mathematical de-
scription in terms of a system S interacting with various reservoirs R. Our
main interest is in the system S, which is comprised of a single ring-cavity
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Fig. 7.7 Schematic diagram of
the microscopic laser model.

mode for the laser field, coupled to N identical two-level atoms represent-
ing the laser medium. In the dipole and rotating-wave approximations, the
Hamiltonian for this coupled atom-field system is given by

Hg=Hs+ Hp + Hyp
= Lhwed, + hwcata +ihg(alJ_ — aJy), (7.79)

where J_, J;, and J, are the collective atomic operators defined by (6.44);
the phases ¢; in the definition of J1 are ¢; = k¢ -7, where 7; is the position
of the jth atom; for simplicity we assume exact resonance between the atoms
and the field.

Hamiltonian (7.79) has been studied extensively. Jaynes and Cummings
where the first to study its single-atom version [7.14] and the many-atom
Hamiltonian was first studied by Tavis and Cummings [7.15]. In our laser
model Hg is only part of the story. The laser is intrinsically a dissipative
system, and we must add various interactions between S and the environ-
ment to account for the flows of energy into and out of the system. First,
the ring-cavity mode has three perfectly reflecting mirrors and one partially
reflecting output coupler. We model the loss of energy through the partially
reflecting mirror by a weak interaction with a reservoir of electromagnetic
field modes outside the cavity (see Sect. 7.2.5), and then use the formalism
for the damped harmonic oscillator from Chap. 1. Second, each atom loses
energy by spontaneous emission (fluorescence) out the sides of the cavity.
This energy loss is described by coupling each atom to the many modes of
the radiation field, as in Sect. 6.3.1. Third, we need a model for the pumping
that injects energy into the system. In Sect. 7.1.4 we saw how the pumping
mechanism might be reduced to a simple rate y; for the transfer of popula-
tion from the lower to the upper state of the laser transition. From (6.129) we
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see that this may also be modeled by the reservoir interaction used to treat
atomic decay. The terms proportional to (7 + 1) and 47 on the right-hand
side of (6.129) describe downwards and upwards transitions between the two
atomic levels, respectively (see Sect. 2.2.3). By retaining the term describ-
ing upwards transitions, and dropping the second term, we obtain a simple
quantum statistical model for the pump.

Note 7.6 The upwards and downwards transition rates appear in (6.129)
in the ratio n/(A + 1) = e~™a/ksT Mathematically, then, exclusively up-
wards transitions can be modeled as damping by a thermal reservoir with
a low negative temperature. There is a small technical problem here, how-
ever, if we use a reservoir of harmonic oscillators as we have done previously.
For negative temperatures the thermal equilibrium density operator for the
harmonic oscillator is not normalizable. This difficulty reveals itself in the
fact that the mean photon number calculated from (1.47) is negative. To get
around this problem we can form the pump reservoirs from collections of two-
level systems. The master equation for the damped two-level atom may be
derived following an almost identical calculation to that of Sect. 2.2.1 using
a reservoir of two-level systems rather than harmonic oscillators. In place of
(2.15b) and (2.15¢) we have

Hp =3 hwp ks, (7.80a)
P
Hsp =Y Mrko- Ty + rjoy Tio), (7.80b)
P

where Yy, Yk, and Xy, are pseudo-spin operators for the kth two-level
system of the reservoir, with frequency wy and coupling constant ;. The
thermal equilibrium density operator for the reservoir is

(1) (1)), + e Per/kaT(12)(2]),

Ry = 1;[ g e : (7.81)

The only changes to the master equation (2.26) are the replacements

e—hwa/ksT
n — trR(ROZk+2k_)wk=wA = m, (7.82&)
1
n+1— trR(ROEk—Ek-F)wk—_-wA = m, (7.82b)

and, of course, y is not to be read as the Einstein A coefficient, but as I',. For
low negative temperatures, (7.82a) and (7.82b) approach the limits 7 — 1
and 1+1 — 0; in (2.26), only the term proportional to 7, describing upwards
transitions, survives.
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To complete our microscopic laser model we add the environmental in-
teractions, coupling the system S described by the Hamiltonian (7.79) to a
reservoir R with Hamiltonian

Hp = Hf + Hf + HS, (7.83)
where

HE =" hwyr]ry, (7.84a)

k
HA = Z hwkr,ty/\rk,,\, (7.84b)

kA

N . .
HE=>" (Z %m;z@ : (7.84c)
7=1 k

HE is the Hamiltonian for the electromagnetic field modes that couple to
the laser mode through the output mirror; H ﬁ is the Hamiltonian for the
free-space electromagnetic field that causes the radiative decay of the atoms;
and HY is the Hamiltonian for N independent two-level pumping reservoirs.
The electromagnetic field modes in (7.84a) and (7.84b) are in thermal equi-
librium at the ambient temperature 7', and each two-level system in (7.84c)
is described by an equilibrium density operator of the form (7.81), at some
low negative effective temperature Tj,. The interaction between S and R is
described by the Hamiltonian

Hsp = HEp + Hip + HEp, (7.85)
where
HI, =hal'" +a'l), (7.86a)
N
Hip = hlo;-T} +0;41)), (7.86b)
j=1
N
HEp =Y h(o;-If, + 0,1 Tjp). (7.86¢)
j=1
I't and I' are defined in (1.39b); I’;r and I'; are defined in (6.125b); and
r=>"w'sl, Tie=Y rSl_. (7.87)
k k

Equations (7.79) and (7.83)—(7.86) define the complete laser Hamiltonian
H=Hs+ Hgr+ Hgp. (788)
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7.2.2 Master Equation for the Single-Mode Homogeneously
Broadened Laser

The laser master equation is now derived using the formalism of Sects. 1.3.1-
1.3.3. We may pass directly to the general non-Markovian equation (1.34),
with 4N + 2 system operators

{si} = (a,a%01_,014,...,0N_,ONy;01-,014,...,0N—,0Ny), (7.89)
which couple to 4N + 2 reservoir operators

(L} = (0, 00,0y, T I Tl T, T Ivg)- (7.89D)

Operators in the interaction picture are defined by
{3;} = el/MHst {51 o= (/M Hst (7.90a)
([} = e@/PHrY [}~ (/M HRE, (7.90b)

Two simplifications enable us to write down the master equation directly
from results we have already derived. First, we note that the reservoir op-
erators {I;} are all statistically independent, except for the pairs (I'!,T’),

(F;‘, I;), and (FJ o Ljp)- This follows because the reservoirs for damping the
laser mode, dampmg the atoms, and performing the pumping, are statisti-
cally independent; and although the operators (F; , Fj) are derived from the
same reservoir for all j, the spatial distribution of the atoms ensures the inde-

pendence of these operators for different j [see the discussion below (6.128)].

We may now write
= 3),+ ).+ 6), aon

where each of the three terms on the right-hand side has the form (1.34), with

(31, %2), = (a,a"), (7.92a)
(I, Iy, = (I, 1), (7.92b)
(31,--,8an), = (61-,014, -+, ON—,GN1), (7.92c)
(Ih,...,Ien), = (I, I, ... T, ), (7.92d)
(31, .,§2N)p = (1-,614,---,0N=, ON+), (7.92e)
(I, Ton), = (Mg, Tugy - Ty Tivg ) (7.92f)

One obstacle remains: the form of the Hamiltonian Hg that is to be substi-
tuted into (7.90a). This Hamiltonian includes the interaction H4r between
the laser mode and the laser atoms. In the absence of this interaction, us-
ing the standard Markov approximation described in Sect. 1.4.1, (ﬁ)F and
([)) , produce the terms on the right-hand sides of (1.73) and (6.129), respec-
tively; as we have noted, the contribution from (;3)SO can also be deduced from
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(6.129). The presence of the interaction term H4r means, however, that the
three environmental interactions are not completely independent. Although
the reservoir operators are statistically independent, there is a communica-
tion from one reservoir interaction to the other through the internal coupling
in the system S. We discussed the effects of such coupling in Sect. 2.3.2. The
system S interacts with the reservoir R at the eigenfrequencies of the full sys-
tem Hamiltonian Hg = Ha4+ Hp+ H 4, rather than at the frequencies of the
decoupled components H4 and Hp. But for reasonable coupling strengths,
this change is negligible. This is shown explicitly for Scully-Lamb laser theory
by Carmichael and Walls [7.16]. We therefore neglect the effects of Har on
the reservoir interactions by replacing Hg with H4 + Hp in the definitions
of {3;} and p; the interaction term [H 4, p]/ih must then be added to the
right-hand side of (7.91). With these modifications we may pass directly from
(7.91) to the master equation for the single-mode homogeneously broadened
laser:

p = —izweolJ., p) — iwcla'ae, p| + gla' I — aJy, p]
+ k(2apat — atap — pa'a) + 2xn(apal + alpa — alap — paal)

N
ol
+5 ;2aj—p0j+ —3J.p— 3pJ. — Np

N
+ % Z2Uj+p0j_ +1J.p+31pJ. — Np|. (7.93)
j=1

The damping terms for the laser mode are taken from (1.73) with v — 2k; the
terms describing the atomic damping and pumping are taken from (6.129)
with y(72 + 1) — v, and y72 — ;.

Note 7.7 The thermal photon number (determined by the ambient temper-
ature) enters the atomic transition rates as well as appearing explicitly in the
source term for the laser mode; the interaction HZp between the laser transi-
tion and the free-space electromagnetic field generates transitions describing
the absorption and emission of thermal photons. The upwards thermal tran-
sitions add to the pump transitions generated by Hp. Thus, if v is the
Einstein A coefficient for the laser transition, vy = yn 4+ I'y, = I',. When the
pump reservoirs are taken to be in a low negative effective temperature T,
downwards transitions are only produced by Hég; 7, = v21 = 7(7 + 1).

Note 7.8 With nonradiative dephasing processes included, the term

N
. Yp
=1 2p0. — N .
<p>depha5e 2 ]—Zl 952P9; p (7 94)

is added to the master equation (7.93).
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7.2.3 The Characteristic Function and Associated Distribution

We wish to convert the operator equation (7.93) into a phase-space equation
for the full laser system of atoms plus laser field. For this purpose we intro-
duce a distribution function in the normal-ordered representation using the
Glauber—Sudarshan representation for the field, and Haken’s representation
for N two-level atoms. Combining the definitions of Sects. 3.2.1 and 6.2.3,
we define the characteristic function

Xy (2,256,65m) = tr(peiz*"T ei#agit” J+ gin etl-). (7.95)

The normal-ordered averages for the field operators and collective atomic
operators are given by

(@' a? J2JTJLY = tr(pal? a? IR JTIP)
P’ +a' +ptrtq
~ 8(iz )7 8(i2)7 (i€ pd(in)r0(i€)1 N

z=2*=0
£=£€*=n=0
(7.96)

The distribution P(a,a* v,v*,m) is the five-dimensional Fourier transform
Of XN (Z’ Z*’ &7 6*7 T,):

P(a, a*, v? /U*V m)

1 P e w )
%/d2z/d2£/dan (Z,Z*,é,g*, 77)e—zz o e—zzae—zﬁ v e-—zfve—mm

1 [eS) e} 00 0o o . |
ﬁlwdu/_wdv/_wdw/_oods/_wdnxjv(u_H,/,u_W’

w + s, w — is, n)e—2z(uz—1/y)e—2z(w19—stp) e,

(7.97)

I

with the inverse relationship
XN (Z7 Z*7 5’ 5*77)
= /dza/dzv/dm P(a, o v,v*, m)e? @ 2@l v gibveinm

:/ da:/ dy/ dﬁ/ dgo/ dm P(z + iy, x — iy,

9 + i, 9 — i, m)e2i(ux—uy)e2i(w19—sgo)einm‘

(7.98)
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From (7.96) and (7.98), we have
(an,aqlJ_’ierJZ)

op ta +p+r+q 2 2 b . .
‘a(iz*)ﬂ'@(z’z)()'a@f*>p6<z‘n>ra(ie>q/ “/ / m Play o, v,0m)

L * . sk * . :
N ezzaezf v elfveznm

z=z*=0
E=€*=n=0

— <a*p/aq/v*pmrUQ)P, (7_993)
with

(a*P af U*Pm’“vq /d2 /d2 /dmoz*p o 2Pm I P(a, o, v, v, m).
(7.99b)

7.2.4 Phase-Space Equation of Motion for the Single-Mode
Homogeneously Broadened Laser

Converting the master equation (7.93) into a phase-space equation of motion
is now accomplished by a straightforward application of the techniques we
have learned in Sects. 3.2.2, and 6.1.3 and 6.3.4. In fact, we have already
derived most of the laser phase-space equation; the interaction term gla'J_ —
aJy, p| is the only term in (7.93) that we have not converted to phase-space
form in one of our earlier calculations. Drawing on our previous results for
the damped harmonic oscillator and the damped two-level medium, we may
write the phase-space equation of motion for the single-mode homogeneously
broadened laser in the form

9P _ 1, o 9 9\, 0 0
ot a\vvhm o g am ) P LE @0 50 e

+Lap <a,a*,v vm, —, ——, —, — ——)}P, (7.100)

where, from (6.157) [with v(7 + 1) — v, v — 7],

Lalvorm 2 0 9
A\ By Bor am

(202
= Wwc av’U 81}*

+ﬂ[(e2%-1)(N+m)+ 9,+2

2 ov ov* v
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g -2 o 22
+ o |(e7%27 —1)(N —m) + =55 €*27 (N + m)

2 Ov2ov*2?

2 2
_2% 8 . 1 —_8_ 6

+2<e + oo 2)(8vv+ +2N(9 50 |

(7.101a)
and from (3.47) (with v — 2k),
o 0
Ly (a o da’ Ba* )
) 0 . _ 02
=(k+ zwc)—éaa +(k — zwc)aa* a* + 2Fm8a6a* . (7.101b)

The derivation of the one term we have not met previously is left as an
exercise:

Exercise 7.6 Show that the interaction term g[a'J_ —aJy, p] in the master
equation produces the differential operator

2 0 0 0 B
0o’ Oa*’ Ov’ Ov*’ Om

0 02 0
_ “25% _1o* 4 2 — 2 g
g{[(e v* + 3™ 8U2v]a+ 30"
—2% _ 0 _ 02 * * 0 *
+[(e 3 1)v+ —8v*m -———av*zv ]a + aa*v
(7.101c)

in the phase-space equation of motion.

Note 7.9 If the nonradiative dephasing term (7.94) is included in the master
equation we add the term LgephaseP to (7.100), where Lgephase is given by
(6.158).

Equation (7.100) is considerably more complicated than the Fokker—
Planck equation we invented from the rate equation treatment of the laser
[Eq. (7.67a)]. First, it describes not only the laser field, but also the atoms.
Second, it is not a Fokker—Planck equation; the atomic variables introduce
derivatives to all orders, and we cannot hope to find the exact solution for
P(a,a*,v,v*,m). In fact, from the discussion in Sects. 6.1.4 and 6.2.4 we
know that the exact solution to (7.100) is highly singular, and only approx-
imately represented by a smooth, well-behaved function. Our task now is
to introduce the approximations that allow us to extract useful information
from this equation. With the use of van Kampen’s system size expansion and
the adiabatic elimination of atomic variables, we will be able to connect the
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complicated phase-space equation of motion (7.100) with the Fokker—Planck
equation (7.67a). Before we begin this exercise we need to spend a little time
on one last detail of our laser model.

7.3 The Laser Output Field

7.3.1 Free Field and Source Field for a Lossy Cavity Mode

The master equation treatment of resonance fluorescence (Sect. 2.3) was built
around a description of the source of the fluorescence, the driven two-level
atom. The master equation (2.96) provided a mathematical description of the
atomic dynamics. To obtain information about the fluorescence we needed
a relationship between the atomic source and its radiated field; this was
provided by the operator version of the dipole radiation formula, given by
(2.76) and (2.83).

We have an analogous situation here. The intracavity laser field is de-
scribed by the driven, damped oscillator, obeying the master equation (7.93).
This is not, however, the laser output field. Classically, the field at the output
of an optical cavity is obtained from the intracavity field after multiplying
by a mirror transmission coefficient. Quantum mechanically, this simple rela-
tionship will not do. It asserts that the output field is described by operators
VTe¥Tq and VTe Tal, where T is the transmission coefficient for the
output mirror and ¢7 is a phase change on transmission through the mir-
ror. But a and a' obey the commutation relation [a,a'] = 1, and therefore
[\/Te"‘”a, \/Te_wTaT] =T < 1. As we saw at the very beginning of the
book (Sect. 1.2), special care must be taken to preserve commutators when
dealing with dissipation in quantum mechanics.

What does the transmission of an intracavity field through an output
mirror have to do with dissipation? Well, the cavity output field carries the
energy dissipated by the laser mode. The energy lost from the cavity is not
simply discarded, it is radiated into the many modes of the electromagnetic
field outside the cavity. These modes form the reservoir that damps the in-
tracavity field, and it is these modes that carry the useful laser output. We
modeled the laser mode losses by the reservoir interaction (7.86a). The mas-
ter equation describes one end of this interaction; by eliminating the reservoir
variables, a simple description is obtained for the system S which retains the
dissipative effects of the reservoir R. We must now consider the other end
of the interaction — the effect of the system S on the reservoir R. We can
construct the laser output field by calculating the source contribution from
S to the reservoir mode operators r and r,t, a calculation analogous to that
of Sect. 2.3.1.

Figure 7.8 shows the laser cavity with external traveling-wave modes 7,
satisfying periodic boundary conditions at z = —L’/2 and z = L’/2. The
field outside the cavity is described by the Heisenberg operator
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----- ez = —L)2
eirz/c
z=L}2
V z=140 .
i s
T=0 l T<<1
/ Fig. 7.8 Schematic diagram of
the laser cavity and output field
T=0 T=0 modes.
E(z,t) = EM(z,t) + B (2, 1), (7.102a)
with
~ hw .
(+) — ip k [(wi/c)z+¢(2)]
E'7(z,t) = 260; 1/ Se AL re(t)eil@e/z+o()], (7.102b)
EC)(z,t) = ED(z,0)f, (7.102¢)
where s
_ R z2>0 .
P(z) = {0 <0 (7.103)

¢r is the phase change on reflection at the cavity output mirror. Of course,
there are also counterpropagating modes, and modes polarized orthogonal to
€o; but these can be neglected since they do not couple to the laser mode.
Using the Hamiltonian (7.88), we obtain Heisenberg equations of motion

’I"k = —iwkrk — in,";a. (7.104)

The term ik}a couples energy from the intracavity field into the modes of the
external field; for the present, the coupling constant } need not be specified.
Integrating (7.104) formally, we have

t
ri(t) = rp(0)e ™kt — ikje et / dt' a(t)ewr—welt' 1) (7.105)
0

where a(t) is the slowly-varying operator
a(t) = e™“cta(t). (7.106)

Then the laser output field is given by
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EM(2,1) = B (2,t) + B (2,1), (7.107)

with
B =6 Tk gye—ilwr(t=2/0—6(2)] 7108
¥ (Z,t) = Zeoz %0 AL/ Tk( )e , ( . )

and

T A h —tlwe (t— —¢(z
EM(2,1) =601,2€0AL’6 [welt—z/c)—¢(2)]

t
x Y gk /0 dt’ a(t')etwr—we)t'—t+z/e) (7 109)
k

This field decomposes into the sum of a freely evolving field E +)( t) (free

field), and a source field E_E,J“)(z, t), in a manner analogous to the decompo-
sition (2.76)—(2.78) for resonance fluorescence.

To express the source field in manageable form we introduce the density of
states g(w) = L' /2mc for traveling-wave modes in one dimension, and perform
the summation over k as an integral:

EM)(z,1) = /2 h ‘/ e ilwe(t—2/c)=¢(2)]
€pAC

/dw\/a_m /dta eilw—wo) (' —t+2/c).
(7.110)

Assuming that a(t') varies slowly compared with the optical period 27/wc,
we can treat the integrals in the manner described below (2.82) — we set
Vwk*(w) & wsk*(we) and extend the range of the frequency integral to
—oo0; after evaluating the frequency integral, we obtain

E(
/
= &g QMZCVL (we)e '1[“’0“ z/¢)= ¢z)]/ dt'a(t)6(t' —t+ z/c)

€0

L’ " 0
(we)erRa(t — z/c ct >z >
250 \/ c)e /c) (7.111)
z < 0.

Thus, for ¢t > z > 0, the source field is proportional to the intracavity field
evaluated at the retarded time ¢t — z/c.

Note 7.10 The source field radiated by a standing-wave cavity can be found
in much the same way. In this case the external reservoir field is expanded
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in the standing-wave modes of a large external cavity of length L’. The time
integral in (7.110) is taken over the sum of two terms, one proportional to
expli(w—we)(t' —t+2/c)], and the other proportional to expli(w—we)(t' —t—
z/c)]; the two terms are contributed by the counterpropagating components
of the reservoir modes. We expect the source field to propagate in only one
direction, despite the presence of counterpropagating terms in the reservoir
modes. This follows naturally from the mathematics. Two é-functions, 6(t' —
t+2z/c) and §(t' —t — z/c), appear inside the integral leading to (7.111). The
range of this integral selects the contribution from the é-function that gives
a retarded field propagating away from the cavity output mirror, and rejects
the second contribution. [An analogous situation is illustrated by (2.82) and
(2.83).]

It is now time to determine the value of the reservoir coupling constant
k*(we). If (7.111) is to give the expected relationship, (a) — vTe**T(a),
between the mean intracavity field and the mean output field, we must choose

' . . .
it L rt(wo)en = \/% VTe™ = \arer,  (1.112)

where k = T'¢c/2L is the cavity decay rate appearing in the master equation
(7.93). [Note that the field inside the laser cavity is expanded like (7.102a),
with no sum, and with 7, — @, wy — we, and L’ — L.] We can also derive this
relationship from (1.70a) (without the phase factor). In the present notation,
(1.70a) gives
2k = 2mg(we)|k(we)|?.

Substituting g(we) = L'/2wc for the reservoir density of states, we find
V' I'/c|s(we)| = V2K, which is the modulus of the relationship (7.112). The
final form of the source term in the cavity output field is now

V2ke®Ta(t — t>2>0
B (2,t) = v2eOA rePralt —zfe) cb>2 (7.113)

z < 0.

In fact, (7.113) is the relationship we would write down directly from the
classical result for the transmission of the intracavity field through the cavity
output mirror; we could have constructed the complete expression (7.107)
for the cavity output field from our understanding of the classical boundary
conditions at the output mirror; the free-field term is just the contribution
from the reflection of incoming reservoir modes into the cavity output (our
theory assumes R = 1 — T = 1). The only difference between the quantum-
mechanical and classical pictures is that E‘Ef)(z, t) and Eg+)(z, t) are opera-
tors in the quantum-mechanical theory, and therefore play an algebraic role
that is absent in a classical theory. The source field does not commute with
the free field — the operators Egri)(z, t) and Eg)(z, t) do not commute; it is
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their noncommutation that preserves the commutation relation for the oper-
ators, E(Y)(z,t) and E(-)(z,t), of the total field. Thus, the free-field term
cannot be dropped from (7.107) even when the reservoir modes are in the
vacuum state. On the other hand, when the reservoir modes are in the vac-
uum state this concern for algebraic integrity in the quantum theory really
has little practical consequence, since we are generally interested in normal-
ordered, time-ordered operator averages, quantities that are insensitive to
vacuum contributions. A discussion of these issues is given in Ref. [7.17].

Note 7.11 Equation (7.113) yields exactly what we would expect for the
average photon flux from the laser cavity:

2600A

HED) (2, ) B (2, 1)) = 26(at(t — z/c)alt — z/c)). (7.114)
hwe

The right-hand side is the product of the photon escape probability per unit
time and the mean number of photons in the cavity.

Of course, the free-field term does contribute to normal-ordered, time-
ordered averages when the reservoir modes are not in the vacuum state.
Moreover, there are situations in which non-normal-ordered, or non-time-
ordered averages are needed. Then things are not so straightforward; the free
field contributes to the output, and to calculate its contribution we generally
need nontrivial information about how it is correlated with the source. Now
is a good time to see how this information can be obtained.

7.3.2 Coherently Driven Cavities

We start with a simple example. Consider an empty cavity driven by a coher-
ent field. The reservoir mode with frequency wy = wc is in the coherent state
|3}, and all other modes are in the vacuum state. Thus, from (7.107), (7.108),
and (7.113), the cavity is driven on resonance by the mean field (z < 0)

(B (z,1)) = (B (2,1))

hwe

0/ 5ecap Pe T, (7.115)
0

with mean output field (z > 0)

(BM) (2,1)) = (B (2,1)) + (B (2,1))

hwe
— 4 idn
e 2EOAL, ( B

/T V2R €97 (i t—z/c))) —iwo(t=2/9)  (7.116)
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The geometry is shown in Fig. (7.8). The first term inside the bracket in
(7.116) is the input field, reflected into the output, and the second term
is the field radiated by the cavity. Since the cavity has only one partially
transmitting mirror, in the steady state the two contributions must interfere
to reconstruct the input amplitude, with a possible phase change. To check
that this is so we need (a)ss. This is obtained from the mean-value equation

(@) = —r{a)y — ik(we)B, (7.117)

where k(wc¢) is the system-reservoir coupling coefficient given by (7.112); the
driving term in (7.117) is derived from the interaction Hamiltonian

Hgspg| t

= h(nZar}; + kka k) | ) —e (7.118)
Substituting the steady-state solution to (7.117), (@)ss = —ik{wc)B/k, into

(7.116), we find (z > 0)

WEg=wc

(B (2, 1)) = iy | € {e“’w

QGOAL/
T e i [CV2RB ‘
+ L//C 2[4‘, €1¢T (— % _I;JR_/B_ ez(¢R_¢T)>i| e—le(t—z/c)
= —ePritoy [ o S Be et/ (7.119)

This is the mean driving field amplitude multiplied by the phase factor —e*®®.
We do, therefore, recover the anticipated result.

Note 7.12 Equation (7.112) gives the phase of the coupling coefficient k(w¢)
as arg[k(we)] = dr — ¢ — /2. This phase was chosen so that it is consistent
with the boundary condition that couples the field {(a) out of the cavity.
We might, alternatively, choose the phase of k(w¢) so that the driving term
—ik{we)B in (7.117) is consistent with the boundary condition that couples
the external driving field into the cavity. This requires arg|x(wc)] = ¢ —
¢r + m/2. The two choices of phase are consistent if ¢p — ¢ = 7/2. It can
be verified that this relationship between the phase changes on transmission
and reflection at a mirror does, indeed, hold. It must hold for energy to be
conserved. Consider fields of amplitude A and B incident on the two faces of a
mirror such that the outgoing field amplitudes are C' = v/ Re'®r A++/Te¢T B
and D = VRe'R B++/Te'®T A. The incoming and outgoing energy fluxes are
proportional to |A|?+|B|? and |C|>+|D|? = |A]>+|B|?+2V/RT cos(¢r—br),
respectively. Thus, we require ¢ — ¢ = 7/2 for the energy to be conserved.

What happens if we allow the cavity in Fig. 7.8 to have two partially
transmitting mirrors, with transmission coefficients Ty < 1 (k; = ¢T1/2L)
and Ty < 1 (kg = ¢T2/2L)? Let T} refer to the mirror at which we input the
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coherent amplitude 3, and T3 refer to a second cavity mirror with a vacuum
field input. The mean output field at mirror 1 is given by (7.116) with k — &;.
The steady-state field amplitude is

o 7 hw % 3 ~
20 (B (2,00 = 54 |97+ VI er/2m1e 7 (@),

At mirror 2 the steady-state output field amplitude is given by a similar
expression:

. (7.120a)

hwe
2€0AL’

VL' [\ 262697 (@)ss .

In the mean-value equation (7.117) we now have x; + Kk in place of x, and
k(we) = —iy/c/L'\/2k1e{®r=¢T) Thuys,

o - (BT (2,1))] =

(7.120b)

A () hwe 2k
(E t))| = -
0 (B (2, 0)] =/ 305 |6 - =
hwe  |k1 — ke
=4/ 7.121
2¢0 AL | K1 + Ko Iﬂl’ ( a)

and

R (4 hwe  2/k1Ks
. )| = . 12
o (BSD ()] =y 5o ) (7.121b)

When k3 = 0 we recover the result from (7.119) — the full input field ampli-
tude appears in the output at mirror 1, with no output at mirror 2. When
K1 = kg the free-field and source-field contributions cancel at mirror 1; there
is no output at mirror 1, and the full incident field amplitude is transmitted
by the cavity through mirror 2. More generally, we obtain partial transmission
and partial reflection by the cavity with [é0<E§+)(z, )2+ |é0(E§+)(z, t)? =
(hwe /2€0AL')|B|?, as expected from the classical theory of interferometers.
It is clear from this example that the free-field term in (7.107) is not always
negligible.

7.3.3 Correlations Between the Free Field and Source Field
for Thermal Reservoirs

Accounting for free-field contributions is more difficult when this field is not in
a coherent state. It is common to encounter thermal reservoirs, as in our laser
theory, and reservoirs with different statistical properties are also sometimes
of interest — for example, squeezed reservoirs, where the free field is in a
broadband squeezed state. We can appreciate the difficulties that arise, as
well as the road to their resolution, by considering the first-order correlation
function for the full cavity output field E(z, t). First, let us simplify the
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notation in (7.107), (7.108), and (7.113) by scaling the field operators so that
the source field appears in units of photon flux. We write (¢t > z > 0)

E(z,t) = Ve/L'ri(t — z/c) + V2ka(t — z/c), (7.122)

E(z,1) = —ie™ 97y [ S 260‘4‘3 E®(z,1), (7.123a)

rp(t — z/c) = ei(ér= ¢T>Z,/ﬂrk e wr(t=2/e)  (7.123b)
we

Then the normalized first-order correlation function for the field E(z,t) is
given by

9D (1) = (7)) (/L) r}O)r (7)) + 26 Jim (T (a(t + 7)) |
+V/e[LV2x] Jim (rf(®)a(t + 7)) + lim (o' ()rs(t+7) |},

where

(7.124)
with
<‘§T<§>ss - (C/L )(rfo) + 2“ SS t v C/L,ﬁ;( <a Tf)ss)
(7.125)

We need more than the source-field correlation function (af(t)a(t + 7)) if
we are going to calculate this quantity. The free-field correlation function
(r} (t)rs(t+7)) is presumably straightforward to calculate, given the state of
the reservoir. But how do we calculate the correlations between the free field
and the source field, the correlation functions (r f( Ja(t+7)) and (af(t)rs(t+
)7

When the free field is in a coherent state these correlation functions fac-
torize; because they are in normal order, the action of ri and 7 7 to the left
and right, respectively, on the reservoir state, replaces the operators by co-
herent amplitudes. In general, however, there is no similarly straightforward
procedure available. Gardiner and Collett [7.18] provide a method for calcu-
lating these correlation functions using an input-output theory built around
quantum stochastic differential equations — a Heisenberg picture formulation
of reservoir theory. We will follow a different approach which is more closely
tied to the Schrodinger picture formulation of reservoir theory we have been
using. It is not possible to perform a single calculation that is applicable to
all master equations. As an illustration we consider a fairly general form of
the master equation, with p = Lp, where the action of £ is defined by

L0 = ;ﬁ[Hs, O] + Low + L0, (7.126)
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with
LowO = m(2aOaT —ata0 - OaTa)
+ 2x7(aOa’ + atOa — a'a0 — Oaa'), (7.127a)

£'0= chk 0,0, 0] + d;[0;,004]; (7.127b)

O is an arbitrary system operator; Loyt describes the interaction of the cavity
mode (source) through the output mirror with a reservoir in thermal equilib-
rium, and £’ includes reservoir interaction terms involving system operators
Oj and Oy, that commute with a and af. The laser master equation (7.93) has
this form, where the operators Oj and Oy, are the Pauli pseudo-spin operators
describing the lasing medium.

We must begin our calculation at a level that still includes the reservoir
operators explicitly. The master equation is of no direct use since the reservoir
operators have been traced out of this equation. We return to the Heisenberg
equations of motion. The Heisenberg equation for the mode operators of the
reservoir field is given by (7.104). The Heisenberg equation for the lossy cavity
mode is

1
=——-a,Hs+HR+HSR]

a= 75l
1
= E[a,Hs—i—HgR]
1 .
= —h[avHs] - Z;Hﬂk, (7.128)

where we have used Hfy, = h(al'" + a'I"), with I'! and I given by (1.39b).
Substituting the solution (7.105) for ri(t), and treating the mode summation
and time integral as we did in passing from (7.110) to (7.111), we have

1 ] + ' /
o= cpla, Hs] —e7 } |~k|2/ dt'a(t!)ellon o)t =0
k 0

- ZZ KkTk (O)B—iwkt
k
1 1 ron—iwet L[ o [ s oo (1)
= i—[a’HS] — (L' Je)e™™ct— [ dwlk(w)|* | dt'a(t)e c
0

h 2w Jo
— ianrk(O)e twit
k
1
:—h[a HS]—— (L' Jc)|k(we) a—zanrk —iwkt
1 )
= E[a, Hg] — ka — zz kgry(0)e ™"k, (7.129)

k
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The last term on the right-hand side of (7.129) describes the driving of the
cavity mode by the freely evolving modes of the reservoir field. The cav-
ity mode will only respond to those free-field modes with frequencies close
to wc. For these frequencies we may read (7.129) with kp = k{we) =
—ie®r=¢7) /c/[/\/2k, and (7.123b) with \/wi/we = 1. Thus, (7.129) may

be written in the form

= %[(L,H‘S] — ka —\/c¢/L'V 275 (7.130)

Equation (7.130) allows us to express the correlations between the free
field and the source field in terms of averages involving system operators
alone. By multiplying this equation on the left or right by an arbitrary system
operator O, we find

Ve/DV26(0(t + 1) (1))
= %<O(t +7)a, Hs(1)) — w(O(t + 7)a(t)) — (Ot + T)a(t)),

7

(7.131a)
Ve/I'V2(rs()O(t + 7))
ih([a Hs|()O(t + 1)) = wla()O(t + 7)) — (a(t)O(t + 7)),
(7.131b)
and, for 7 > 0,
Ve/IV2R(0(t)rs (t + 7))
( n) a(t+7)) + {00 [a, Hsl(t + 7)),
(7.132a)

Ve/L'V26(rs(t + T)O(t))
=— (ad; + /-@) (a(t+1)O(t)) + Z%([a, Hs)(t+ 7)0(t)).
(7.132b)
We will use these relationships to prove

0 T<0
Ve/LIV26(O(t + 1) (1)) =4 K7 [O(t +7),a(t)]) =0 (7.133a)
([0t +7),a®)]) T >0,

;’;i/\

and
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T<0

Ve/DV26(rs(H)0(t + 7)) = &(A+ 1)([O(t + 1), a(t)]) =0
2k(n

o

+1)([O(t +7),a®)]) 7> 0.
(7.133b)

Most of the two-time averages appearing on the right-hand sides of (7.131a)
and (7.131b), and (7.132a) and (7.132b), can be evaluated directly using the
quantum regression formula in the version (1.97) or (1.98). A little thought
is required, however, to evaluate the averages involving a.

The proof of (7.133a) and (7.133b) draws on the explicit form of Loy,
since it is through this operator that information on the state of the reservoir
field enters. Specifically, we will need the following results:

Exercise 7.7 For the superoperator Loyt + £’ defined in (7.127), show that

tr[a(Lous + £)0] = —rtr(a0), (7.134a)
(Lout + L) (a0) = a[(Lous + L)O] + ka0 + x27i[a, O], (7.134b)
(Lowt + £)(0a) = [(Lows + L£)O0la + ka0 + k(27 + 1)[a, O], (7.134c)

where O is an arbitrary system operator.

We will follow the proof of (7.133a) through in detail, and leave the similar
proof of (7.133b) as an exercise.

Proof of (7.133a) — 7 < 0: The vanishing of correlations between the free field
and source field for 7 < 0 is expected on physical grounds. Correlations arise
through the driving term proportional to 7¢ in (7.130). But this equation
predicts that a(t) will only depend on rf(t’) for ¢ < t. If r¢ is correlated
with itself at later times, correlations between a(t) and r5(¢’) for ¢’ > t could
still arise. However, ry appears as a O-correlated field to the cavity mode.
Of course, it is not strictly é-correlated. But the cavity mode only responds
to a narrow band of frequencies around wc, in which case (7.123b) leads to
6-correlated free-field fluctuations in the sense of the discussion below (1.52).
We therefore expect that (O(t + 7)rf(t)) = (O(t + 7)) (rf(t)) = 0 for 7 < 0.

We prove this result from (7.132a). We must show that the correlation
function on the left-hand side vanishes for 7 > 0. Notice that if the right-
hand side of (7.132a) is set to zero, we obtain the equation of motion for
(O(t)a(t + 7)) given by the quantum regression formula [in the form (1.107)]
from the mean-value equation

1
if
The vanishing of the correlation function on the left-hand side is required,

therefore, for the quantum regression formula to hold. More formally, from
(1.97), we have (7 > 0)

—(a) — k(a) + —([a, Hs]) = 0.
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(35 +#) Oate + 7 = (5 + ) irfact (o00))
= tr{a(£ + K)e“T (p(1)O)}
_ %u{a[ﬂs,eu(p(tm)]}.

where we have used (7.134a). Using the cyclic property of the trace, and again
using (1.97), we find

(% + n) (O@)a(t + 7)) = %tr{[a, Hsle“ (p(t)0)}

. ilh«”)(t)[a, Hs(t + 7). (7.135)

Substituting (7.135) into (7.132a) gives (O(t)rs(t + 7)) =0 for 7 > 0. O

Proof of (7.183a) — T = 0: We prove this result using (7.131a). To calculate
the average (O(t)a(t)) we may write, for any two system operators O; and

02,
A~ A F A d .~ -
<0102> + +<0102> = c—ﬁ<0102>, (7136)

and

(0105) — (0201) = trsm{x(t) (01%[02, H] - %{01, H]02>}

= trsen{ O [, x(001] - O, Ot

= trs{O2L[p(t)01] — 01L[O2p(t)]}, (7.137)

where H and x(t) are the Hamiltonian and density operator, respectively, for
S ® R, and the trace over the reservoir is taken in the same Born-Markov
approximation used to derive the master equation (Chap. 1). From (7.136)
and (7.137),

2(010) = %<0102> +te{OuLlp(t)0r] — OrLOap(®)]}.  (7.138)
Equations (7.138) and (7.126), and the master equation = Lp, now give
2(0a) = (0a) + tr{aLlo(t)0] - OLlap()]}
= tr[0aLlp(t)] + tr{aLlp(t)O] — OL[ap(t)]}
= z,iﬁtr [OaHsp(t) — Oap(t)Hs + aHsp(t)O — ap(t)OHs
— OHgap(t) + Oap(t)Hs] + tr{Oa(Lous + L')p(t)
+ a(Lowt + L)[p(t)0] — O(Lout + L)[ap(t)]}- (7.139)
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We rewrite the second term in the curly bracket using (7.134a), and the third
term in the curly bracket using (7.134b). Then, after reordering operator
products using the cyclic property of the trace, we find

(Oa) = X 2 (Ola, Hs) ~ r(Oa) — xn{[0, a)) (7.140)
Substituting (7.140) into (7.1313) completes the proof of (7.133a) for 7 = 0.

ad

Proof of (7.183a) — T > 0: The proof again follows from (7.131a). We now
need the average (O(t + 7)a(t)). For any two system operators O; and Oy,
we have (7 > 0)

(O, (t+ 7')02
= trsgr {X t)e @#/h) HTOle (/mH h[OQ, ]}
= trS@R{ e —(i( /h)HT—lﬁ[ HOZX( )] e(i/ﬁ,)HT}
= tl‘s®R{01€ (i /h)HTlh [02 t)H)
~(HOzx(t) — Oax(D)H) |e W’”HT}

d d (2 T (2 T
= (5~ ) msor{Ore UM OpypjetimiTy

- (% — %) trs{élecT[OZP(t)]}

= trs {01657 (0a[Lp(t)] — L[O2p(1)])}. (7.141)

The trace over the reservoir has again been taken in the Born-Markov ap-
proximation. We now calculate (O(t + 7)a(t)), 7 > 0, from (7.141):

(O(t + 1)a(t))
= tr{0e“ (a[Lp(t)] — Llap(t)])}
= ;ﬁtr{OAeﬁT [aHsp(t) — ap(t)Hs — Hsap(t) + ap(t)Hs]}
+ 66{0™ (al(Lous + £)p(0)] — (Lous + £)lap()])}
A crf 1 _
= tr{Oe (ﬁi [a, Hs]p(t) — kap(t) — k27a, p(t)])},

where the last line follows from (7.134b). Then, using (1.97) and (1.98), we
find
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(O(t +ma(t)) = %(O(t +7)fa, Hs)(1)) = #(O(t + T)a(t))

= 260{[O(t + 7),a(?)]). (7.142)
Substituting (7.142) into (7.131a) completes the proof of (7.133a) for 7 > 0.
O
Exercise 7.8 Show that (7 > 0)
d A 1 A
<E + /-z) (a(t +1)O(t)) = i_h<[a’ Hg)(t + m)O(t)), (7.143a)

@0y = ilh([a,Hs]@ — #{0a) — ka([0,a]),  (7.143b)

(@10 + 7)) = = ([a, Hs)())0(t +7)) — K{a()O(t + 7))

—26(7 4+ 1)([O(t + 1), a(t)]), (7.143c)
and hence prove (7.133b).

7.3.4 Spectrum of the Free Field plus Source Field for the Laser
Below Threshold

We can now evaluate all of the terms in (7.124) and (7.125) for a cavity mode
radiating into a thermal reservoir. Using (7.133a) we have

gD(7) = ((E18)) " { (/LY O)r (7)) + 26 Jim (al (B)a(t + 7))]

+2m[ lim ([ (t), a(t + 7')]>]}, (7.144)

with
(E1E)es = (c/L')(rlrs) + 26{ala)ss + 2x0[at, a))ss
= (¢/L')(rkrs) + 26 ((ala)es — 7). (7.145)

To go beyond this point we must specify the details of the source that de-
termines the correlation functions (af(t)a(t + 7)) and (a(t + 7)a’(t)). Before
we perform the calculation for the laser, let us consider a simpler problem.
The damped harmonic oscillator model of Chap. 1 provides a description of a
cavity mode coming to thermal equilibrium with the reservoir field. In steady
state the presence of the cavity should be invisible to a measurement made on
the total reservoir field; effectively, the cavity mode is simply “absorbed” into
the reservoir, becoming part of a slightly larger thermal equilibrium system.
If we calculate the spectrum of E(z,t) (z > 0) from the source field alone,
taking the Fourier transform of the correlation function (1.116), we obtain
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a Lorentzian line with halfwidth . This is not correct since it is not the
blackbody spectrum. Equations (7.144) and (7.145) give the correct result.
From (1.80) and (1.116) we have

(aTa)s = 7, (7.146a)

and
tEQO(aT(t)a(t + 7)) = ne"weTe Il (7.146b)
lim ([af(t),a(t + 7)]) = —e~™ctexI7l; (7.146¢)

t—oo

the correlation function lim;_, o (a(t+7)at (t)) = (a+1)e~*cte=*I needed to
obtain the commutator (7.146¢) is calculated in a similar manner to (1.116).
When these results are substituted into (7.144) and (7.145), we see that the
interference term, 2x7 lim;_,([a'(t),a(t + 7)]), between the free field and
the source field cancels the source term 2k lim;_, o (a'(¢t)a(t + 7)). Thus,

gD (r) = ((rhrp)) Tk O)r (7))
= [Zwkﬁ(wk,T)
k

= [/Ooodwwﬁ(w,T)] _1/Ooodwwﬁ(w,T)e—iw

W' (1 +iT/tR), (7.147)

-1
Z wr(wg, T)eﬂwkr
k

6
2
where tg = h/kpT is the thermal correlation time, and we have used (1.56)
to calculate the normalization +’(1)~! = 6/#2. This is the reservoir corre-

lation function plotted in Fig. 1.1(a). Its Fourier transform gives the (one-
dimensional) blackbody spectrum

Zl / dre“m g (r) = (6t%/72)wi(w, T). (7.148)
TJ -

The laser is a nonequilibrium device. Above threshold the photon flux
2k(a’a)s = 2Kkngat(p — 1) will dominate any thermal background, since, by
design, the laser is to act as a source of coherent radiation. Below threshold,
from (7.41) and (7.60b) we have

n+ Mspon B

Ta)y =
<a a>ss 1 — o ) (7149&)

the mean-value equation (@) = —[iwc + k(1 — p)]{a) [from (7.71b); also see
(8.61b)] and the quantum regression formula [Eqgs. (1.107) and (1.108)] give
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DL+ Ropon o —iwor~s(1-)I7l(7.149b)

Jim (af (t)a(t + 7))

1—
tl_iglo([af(t), at+ 7)) = —e‘“"fte_"(l_“’)“l. (7.149¢)
We then have
(1) = (E10) ™ { g wcth) 01 4 /)
(” T Mopon _ —> e-WCTe—~<1-P>|T‘}, (7.150)
with
(E1€)s = %(wct%)“l + 2k (ﬁl%";"“ - n) (7.151)

The Fourier transform gives a Lorentzian line with halfwidth k(1 — p) sitting
on the background blackbody spectrum (7.148). The Lorentzian component
signifies a departure from thermal equilibrium. It has two pieces. First, a
Lorentzian proportional to nspon/(1 — ) is added to the background black-
body spectrum due to amplified (p > 0) or deamplified (p < 0) spontaneous
emission. Second, the blackbody spectrum is reshaped over the cavity band-
width due to the amplification or deamplification of thermal fluctuations by
the laser medium. The second effect is accounted for by the term proportional
ton/(1—p)—n =fp/(l —p)in (7.151); for p > 0 thermal fluctuations are
amplified over the cavity bandwidth, while for p < 0 they are deamplified,
or absorbed.



8. The Single-Mode Homogeneously
Broadened Laser II: Phase-Space Analysis

We now set about the task of reducing the laser phase-space equation of mo-
tion (7.100) to the Fokker—Planck equation (7.71a). There are two steps to
be taken. We must eliminate derivatives beyond second order, and we must
eliminate the explicit appearance of the variables v, v*, and m describing
the laser medium. Actually, we are not quite going to pass directly from
(7.100) to (7.71a). We eliminate derivatives beyond second order using van
Kampen’s system size expansion. But in Sect. 5.1.3 we discussed the fact
that a systematic “small noise” expansion generally leads directly to a linear
Fokker-Planck equation. The laser Fokker—Planck equation (7.71a) is nonlin-
ear. It is possible to arrive at this nonlinear equation from (7.100) by dropping
derivatives and performing the adiabatic elimination of atomic variables. This
approach, however, does not treat the fluctuations in a systematic way. Equa-
tion (7.71a) retains terms of the same order as terms that are dropped; at
least it does so in certain operating regions. A systematic system size expan-
sion leads directly to the linearized version of (7.71). This expansion should
tell us if, and when, the linearization breaks down. We will therefore first
seek a self-consistent laser theory, including fluctuations, analogous to the
theory of the radiatively damped two-level medium developed in Sect. 6.3.5;
we seek a set of macroscopic equations like (6.167a)—(6.167c) and a linear
Fokker—Planck equation describing fluctuations about the macroscopic state.
We will find that this linearized theory holds below threshold.

8.1 Linearization: Laser Fokker—Planck Equation
Below Threshold

8.1.1 System Size Expansion Below Threshold

We observed in Sect. 7.1.4 that ng,, provides a measure of the system “size”;
it is a natural choice for the system size parameter 2 [Egs. (5.39)]. However,
our microscopic laser model includes variables for the laser field and the laser
medium on an equal basis. The natural system size parameter for the medium
is IV, the number of atoms occupying the states of the laser transition. At
this stage it is simplest to use just one of these parameters to scale all of the
H. J. Carmichael, Statistical Methods in Quantum Optics 1
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variables. It does not really matter which one we choose. Using (7.69¢c) and
(7.73) we see that they are related by

N = ngat 4057 é = 2 .

RN
We must take £ < 1 to justify the adiabatic elimination of atomic variables,
and 4C need not be correspondingly large. It is possible then that N and
nsat differ by a few orders of magnitude. But we can assume that both are
much larger than their ratio, so either one can be chosen for the system size
parameter and still be the largest parameter (orders of magnitude larger than
1/£) in the problem. We choose N as the system size parameter, in keeping
with the work of Haken [8.1].

The system size expansion begins with the definition of scaled variables.
The appropriate scaling can often be determined by a combination of guess
work and physical intuition. For example, our heuristic derivation of the
Fokker-Planck equation (7.71a) can tell us how to scale o, and the size we can
expect the fluctuations in « to be. The idea behind van Kampen’s method,
however, is that a systematic approach will tell us the scaling and the size
of the fluctuations. We saw how this works for a one-dimensional example
in Sect. 5.1.3. Although the algebra is a little tedious, we will perform the
present calculation without making a priori assumptions about scaling. We
set

(8.1)

a= NPa, o = NP a™, (8.2)
v= NP2y, v* = NP2p*, m = NP3,
with

a=(a(t))+ Nz (8.3a)
& = (al(t)) + N0z, (8.3b)
v = (J_(t)) + N %y, (8.3¢)
% = (Jo(t)) + N~2p* (8.3d)
m = (J.(t)) + N™p (8.3¢)

where
a=N"a, al = N, _ (8.4)

J_=NP2J_, Jyx= NP2 J, J, =NPJ,.

The laser equations themselves will determine the correct choices for pq, po,
D3, 41, g2, and g3. We define

P(z, 2% v,v*, u,t) = N”1+”2+”3“Q1_Q2"Q3P(a(z, t),a* (2% t),

v(v, t),v* (1 t), m(p, t),t),
(8.5)

and then the phase-space equation of motion in scaled variables is
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OP OPda OP da* OPOv OP ov*
Z — NPitpetps-qi—q2—q3 (-~ 4 ~“- T~  Z ¥ 4“7 T
ot =V <aa 5t " dar ot v ot o o
9P om 0P
om Ot ot
OP d{a OP d{J_(t ))
q2
(8z >+N ( o + c.c.
6P d<J ( )> 9 P1+P2+P3—q1—q2—g3
6u At 815 (v P)
OP d(a oP d{J ( ))
q2
(82 dt )—i—N ( 7 + c.c.
8Pd o o 0
N o { ( Vo B0 o o t)
= 0
+Lp<z,z,8 Bz*’t)
- . ., 0 90 90 0 0 _
+Lap (z,z VS S B B o t>] , (8.6)
where
9 9 9,
Vit Ov’ ov*’ ou’
0 0 0
=1 * Nd2—P2 ___ 92—p2 a3=p3 ___
(o/ 000 ), NP L s D e L),
(8.7a)
T *2 a — q1—pP a q1—p a
LF(“’az’az*’t>=LF(a(z’t)’ Y, N N )
(8.7b)
and
Laplzzrvrp 2, 2 0 0 0,
AF | %52 22 9z 62*’ 61/ 31/*’ 8”
=Lar <a(z, t),a” (2" 1), v(v,t), 0" (V' 1), m(p, t),
0 0 0 0 0
Nth P ___ Nth —P1 N!D P2 q2—p2 q3—p3_— .
0z’ 9z’ v N ov o 8u)
(8.7¢)

Equation (8.6) includes terms of order N% N% and N%. Since q1, go,
and ¢z are positive, these terms diverge for large N unless their coefficients
vanish identically. The requirement that their coefficients vanish determines
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the macroscopic law, or the laser equations without fluctuations. It also fixes
the values of p1, p2, and p3. We substitute the explicit expressions (7.101a)-
(7.101c) into (8.7a)-(8.7c), and collect all first-order derivatives of P with

constant coefficients (coefficients with no dependence on z, z*, v, v*, and p).
This gives the equation

O = o O8O (o iwcrate)
—N—p1+”2_1/2\/ﬁg<.f__(t)>} —i—c.c.}
+ qu{aa]: [d< dt( ) + (’YT ;’Yl —i—iwc) (j_(t)>
-NPI—P2+P3-1/2\/N9<Jz(t)>(a(t)>] + c.c.}

g3 < (t)> 7 1—p3’7T vl
# N G2 [BBO) 4 ) (10 - 1o L)

+NPP2=Ps=1/29 /N g ((Jy () (a(t)) + c.c.)]
first—order derivatives higher—order
+ (with nonconstant coeﬂ"lcients) + < derivatives ) (88)
If the coefficients of N9, N92 and N% are to vanish, the individual terms

inside each square bracket must first be of the same order in N. To determine
these orders we must recognize that v Ng is to be treated as a term of order

NY. This follows from (7.73), which gives

Ng? 2
g -20'7" _ oo+ (2%)
K2 2K

(8.9)

We have divided by k2 so that we can compare dimensionless quantities; the
square root of the ratio on the left-hand side of (8.9) is the quantity that
appears in (8.8) when time is scaled by x~!. The adiabatic elimination of
atomic variables will require 7,/2k > 1, and C may also be large [see the
discussion below (7.75)]. Therefore v/Ng/x may be much larger than unity.
When we assert that it is of order N°, however, we claim only that it is much
smaller than the lowest nonzero power of N appearing in the system size
expansion. Assuming, then, that this is so, the requirement that all terms
inside the square brackets in (8.8) are of order N leads to the equations

—p1+p2—1/2=0, p1—p2+p3—1/2=0,
1-p3=0, p1+p2—p3—1/2=0

with solutions
p1=1/2, p2 =p3 = 1. (8.10)
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Then the requirement that the coefficients of N9, N% and N% vanish gives
the macroscopic law (equations)

g% = —(k +iwc)(@) + VNg(J_), (8.11a)

diz(—l;) = —(k—iwc)(@’) + VNg(J4), (8.11b)
dj% - (%ﬂ + WC) (J-) + VNg(J.)(a), (8.11c)
d<c}7t+> =- (1%7_1 - iwc) (1) + VNg(J.) (@), (8.11d)
d((jiz) =-(m+m) <<jz> - %) — 2v/Ng((Jp) (@) + (J_)(ah).

(8.11e)

The first two equations describe the damped field amplitude driven by the
polarized laser medium. The last three equations are the optical Bloch equa-
tions for the medium [compare Egs. (2.97)], driven, self-consistently, by the
field.

The powers, q1, g2, and g3, that govern the size of the fluctuations, remain
to be determined. To do this we must look at the explicit form of the terms in
(8.8) designated as “first-order derivatives with nonconstant coefficients” and
“higher-order derivatives”. Expanding these terms using (8.7) and (7.101),
and substituting the known values of p1, p2, and p3, we find

%—}tz = {._a_ [(H + l(JJC)Z — NQ1—Q2 \/ﬁgl/:l + c.c.

0z
O f(mtwn .
+E/'-(——2——+lw'c)l/

N Ryl () - N Rgfate)] e

+ 58;7 :('YT +)n+ NTN2VNg (T4 (1) 2 + c.c)
+ N“I2+‘132\/—]Vg(<d(t)>l/* + C.C.):l
82
+ N2 2Rn 020z*
2 2
#veemt [y VR (et 2y + e )|

- 52
— N92ta—1 — .C.
271 ((J (t»auaﬂ +Cc>
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) (1 - () 1)
2

= _ 0
—2V Ng((J4+ () (a(t)) + c.c.)] o2
first—order derivatives second—order derivatives
+ with nonlinear coefficients + with nonconstant coefficients
higher—order —
+ ( derivatives )}P’ (812)
we have explicitly displayed the terms found in a linear Fokker-Planck equa-

tion — first-order derivatives with linear coefficients, and second-order deriva-
tives with constant coefficients; the remaining terms are

first—order derivatives
with nonlinear coefficients

— N9~ q1\/_g( uz+cc>+N‘13 - qzz\/_—ga (Vz+cc)

(8.13a)
second—order derivatives
with nonconstant coefficients
a (0 0?
— N-1l9 _ — —_
=N [vra (6 V+CC> (n 71)3u2u]
VN +2¢2—-1/ 7 0? 1 0
—q1 q2— R q2—1 /= -
+ V(N (T () g+ N E(0) 5w
82 62
— NI (1) 5 e — N a() 5
—q1+qa—1 9 2¢5—q1—q2—1 o
+N 1rq2 —6751/21 — N“B~N1~% 2—8?1/ z +C.C.>, (813b)

and

higher—order
derivatives
02 - 0 0? 0
3g2—2 I 2q2—2
[N o <<J‘ g, * C‘C) N e (81/ te C)

+N4q2—3l(<j (t)) 4 1)_i4__ + N492—93—32 1 o S A—
2\ Ov2ou*2 2 Ov20v*2

derivatives higher
+ (than second—order in /.L) : (8130)

We hope to choose q1, g2, and g3 so that the terms appearing explicitly in
(8.12) are of order N°, and every term in (8.13a)—(8.13c) vanishes, for large
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N, as some negative power of N. All powers of N appearing explicitly in
(8.12) are zero if

G —@2=¢—q9g=q9g—q=0, 21 —1=2¢2-1=2q3—1=0,
g2+q3—1=0.

These equations are satisfied with
G =q=q=3 (8.14)

Then, each term in (8.13a)-(8.13c) does, indeed, vanish as some negative
power of N; these terms follow an expansion in powers of N~1/2. The terms in
(8.13c) designated as “derivatives higher than second-order in ” come from
third- and higher-order derivatives in the expansion of the shift operators
et2%% in (7.101a) and (7.101c). We can be sure that they also vanish for large
N since they are of higher-order in N=1/2 than the second-order derivatives
in g that are explicitly displayed. We have therefore found a self-consistent
system size expansion. Fluctuations about the macroscopic state described
by (8.11) obey the Fokker-Planck equation

%—f = {2 [(/-c + iwe)z — \/Ngv} + gg; [(fi —iwe)z" — \/NQV*}

0z
+ a% KYT;—“ + iwc> v —VNg((J(t)z + <d(t)>u)]

g (15 i)~ VR0 + (ol

0
* o [(71 +y)u

+2VNg((T4 (62 + @(®)w" + (T-(1)=" + (@' (0)v)]
2 82 82

2 s -
+ “”azaz* 0 ovov*

VN (T4 () at) + <J_<t>><a*<t>>)] f—}P (8.15)

Note 8.1 When the dephasing term Lgephase P [Eq. (6.158)] is included in
the phase-space equation of motion, two changes are required in the linearized
theory: In (8.11) and (8.15),
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2
(VT ;’” + iw ) (W + iwc> - (15. + iwc>, (8.16a)

and in (8.15),

82 _ 82
Noasr — D1+ w1+ (0)] 55— (8.16b)

8.1.2 Laser Equations Without Fluctuations

Now that we have identified the scaling law for the variables «, a*, v, v*,
and m, in terms of powers of N, it is convenient to fine tune the scaling
relations to simplify the final equations of the linearized theory. It is natural
to scale field variables in terms of ng,; rather than N, and this choice leads
to a simpler Fokker—Planck equation if atomic fluctuations are scaled in the
same way. Also, judicious insertion of 24/2C in the definition of 7 (J_) and

v* (J4), and 2C in the definition of m (J,), helps simplify the equations.
Thus, using (8.10) and (8.14), for the field variables we write

o= n;;fo‘z, of = n;ﬁa*, (8.17)
with
& = (a(t)) +nge 22, (8.18a)
& = (a' (1)) + ngy/* 2", (8.18b)
where
a= n;ﬁa al = n;;faT (8.19)

for the atomic variables we write

2v2Cv = No,  2V2Cv* = No*,  2Cm = Nm, (8.20)
with
o= (J_(t)) + n/?, (8.21a)
7 = (Jy () +ng v, (8.21b)
o= (J.(t)) + nt/u, (8.21c)
where
2V2CJ_=NJ_, 2V2CJ,=NJ,, 2CJ,=NJ.. (8.22)

We must now read the macroscopic equations (8.11) and the Fokker—Planck
equation (8.15) with
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—~ Nsat _ P Nsat =t 23
a—>\I/Na, a—q/Na, (8.23)

and
J_ —J_ /2\/'0 J+—>J+/2\/_C J, —»J/20 (8.24a)
v — vt — v /2V2C, p— ,u/2C
(8.24b)

Now, in a frame rotating at the frequency we of the laser mode, the laser
equations without fluctuations [Eqgs. (8.11)] become

1) _ —(@) + (J_), (8.25a)
n—l%‘:‘p = —@@" +(J,), (8.25b)
-1 = ~

(52) A -+ @, (8.250)

—1 = - ~ _
() L =g+ i, (8.250)

on 4+ L (00— ) - 1@ + (@),
(8.25¢)
where

a = evetg, al = e~wotgh (8.26a)
J_= ewetj_, j+ =e wet], . (8.26b)

We have used (8.1) and (7.72), and (8.9) with v, = v + 7.

We noted in Sect. 7.1.4 that the laser equations without fluctuations de-
pend on a single intensive parameter, the pump parameter p. This is the
case in (8.25a)—(8.25¢). These equations take the place of the rate equations
(7.1) and (7.2) in our previous theory. They are more complete than the rate
equations since they describe the laser field and the polarization of the laser
medium rather than just the photon number and atomic populations. We are
interested in steady-state operation. The steady-state solutions are

a>SS = [(@)lss ei¢, (8.27a)
T>ss = ’<a>|ss e—i(b’ (827b)

—

Qn

{

and
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~ — p a eiq& . c
(J-)ss TG §s|< Mss €™, (827¢)
= p _ _z
(T4 )ss @ gs|<a>|sse ’ (8.27d)
— _ p .
(Jo)ss = T3 FIGE (8.27e)

where the mean field amplitude obeys the quadratic equation

[@)ss(1 = o+ [{a) ) =0, (8.28)

and the phase ¢ is arbitrary. Solutions to (8.19) reproduce the laser threshold
behavior illustrated in Fig. 7.2.

Below Threshold - p < 1: Since |(@)|% must be positive, (8.19) has the
single solution

(@)]< = @)l = 0; (8.29)
we then have
(@< =(a)s =0, (8.30a)
(@h<=@hs =0, (8.30b)
(J )<= (J)5=0, (8.30c)
(J1)< = (T1)5 =0, (8.30d)
()< =(L)s = e (8.30€)
At Threshold - p = 1: Equation (8.19) still has the single solution
{@)ne = (@) =0, (8.31)
and
(@)ne = (@57 =0, (8.32a)
(@) me = (@) =0, (8.32b)
(e = (J )BT =0, (8:32)
(T Jewe = (T )" =0, (8.32d)
(Jo)ome = (J)i" = 1. (8.32€)

Above Threshold - p > 1: Equation (8.19) has two solutions. The solution
|{@)|ss = 0 is unstable and for stable operation above threshold

@l =la)le = ve -1 (8.33)

We then have
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(@)s = (@) = /p — 1€, (8.34a)
@hs =@hz =vp—-1e, (8.34b)
<j_>> = <j_>s>s =/p— 1€, (8.34¢)
(J4)> = (T2 = —1e7?, (8.34d)
(L)s = (L)a =1 (8.34e)

Note 8.2 Actually, the steady-state solution (8.34) is not always stable. Un-
der certain conditions a second laser threshold is reached beyond the threshold
at o = 1. Above the second laser threshold the solution (8.34) is unstable
and the laser settles into either a periodic oscillatory state or a chaotic state.
This behavior is readily appreciated by noting the relationship between the
laser equations (8.25) and the Lorenz equations [8.2]

X=-0(X-Y), (8.35a)
Y =-Y+rX -XZ, (8.35b)
Z = —bZ + XY. (8.35¢)

The Lorenz equations have been extensively studied for their interesting non-
linear dynamics, in particular, for the chaotic solutions they exhibit [8.3]. If
we assume that the phases of the laser field and the medium polarization are
equal and constant in time, (8.25a)—(8.25¢) are mapped into (8.35a)—(8.35¢)
by writing

X=l@l Y=l Z=p- (L) (8.36)

and
2K

Y1+’

Haken found this mapping connecting the single-mode laser equations with
the Lorenz equations [8.4]. In recent years there has been a considerable
amount of research in the area of laser instabilities. The field is reviewed by
Abraham, Mandel, and Narducci [8.5], and Narducci and Abraham [8.6].

b=2, r=p. (8.37)

Note 8.3 We have derived the laser equations (8.25) with v, = v + 7.
When nonradiative dephasing processes are included, if J_ and .J; are defined

by
Th 7 T 7
—_oVPeCJ_ =NJ_, 220 J, = NJ,, 8.38
Vo +7 M+ " v (838)

[in place of (8.22)] the laser equations without fluctuations take the same form
as (8.25), with the replacement v+ + 7, — v, = v + v, + 27, in (8.25¢) and
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(8.25d). The identification with the Lorenz equations then requires o = 2k /vy,
and b= 2(y; + )/

Exercise 8.1 In Note 7.1 we noted that rate equations are valid when the ho-
mogeneous width is much broader than the natural width (v, = v+, +vp >
1 + ;). When this condition is satisfied the polarization variables may be
adiabatically eliminated. Show that adiabatic elimination of the polarization
from (8.25a)—(8.25e) gives the rate equations

(n+ w)‘ld—;’%—) = (L)1 +1(@)?) + o, (8.39a)
e TG0 e - ). (8.30b)

Show that these equations are equivalent to (7.1) and (7.2) when the three-
level model of Sect. 7.1.1 is reduced to our current two-level model for the
laser medium (for 32 > I'y, + 731, Y21)- Equations (8.39) always predict
stable steady-state operation above threshold. The comparison between this
prediction and the behavior of the Lorenz equations illustrates the limitations
of a rate-equation description of laser dynamics.

8.1.3 Linearized Treatment of Quantum Fluctuations
Below Threshold

We now use the Fokker—Planck equation (8.15) to describe the fluctuations
about the steady-state (8.30). We saw in Sect. 7.1.2 that, in a rate equation
theory, the inclusion of thermal and spontaneous photons gives a nonzero
photon number in the laser mode below threshold. The laser equations with-
out fluctuations give [(@)|2 = 0; thus, in the present treatment, all of the
energy in the laser mode below threshold is carried by the fluctuations. Our
first task is to reproduce the rate equation result for the mean photon num-
ber [Eq. (7.41)]. Actually, we will derive a more general result which applies
for arbitrary values of £ = 2k/(v; + 7). Equation (7.41) is recovered in the
limit £ < 1, the limit that justifies the adiabatic elimination of atomic vari-
ables. After making this elimination we will derive the laser linewidth below
threshold, something the rate equation treatment was not able to give to us.

Before we begin, we must rewrite the Fokker—Planck equation (8.15) to
reflect the new scaling adopted in the last section. For the scaling defined by
(8.17)—(8.22) the distribution P is given by

P(z, 2% v,v" pu,t)

_ 1
= N3nsa%/2i€é—5p(a(z, t), a* (2% ), v(v, t),v* (V% 1), m(p, t), t).
(8.40)
Then, applying the transformations (8.23) and (8.24), and transforming to a
frame rotating at the frequency wc, (8.15) becomes
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i

2 ov
P I (L) — (@ )

P, (8.41)

ﬁ(z,z*, U, 0% 1) = P(2(2,t), 25 (2% 1), v(0,t), v* (5%, 1), 1, t), (8.42)

z = e Wotz 2* = eletzx (8.43a)
v = e wetp v* = eWotpx, (8.43b)

We have used (8.1) and (7.72), and (8.9) with vy, = v; + 7.
Equation (8.41) is more general than the equation we require here. It pro-
vides a linearized description of fluctuations about transient solutions to the

macroscopic equations. After substituting the steady-state solutions (8.30),
we obtain the much simpler equation

oP [ 8 . O on e MAND
at‘["’”az(z N+rgmE -0+ T g (002
A ate N AP 9
e P W)Jr('YT'*”Yl)aHH
_ 92 , 92
2 T8 M g

1 ) 95
+Clv+) (1 - @> —67] P. (8.44)
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This is the laser Fokker-Planck equation below threshold without adiabatic
elimination of the medium polarization.
Equation (8.44) can be solved by the separation of variables. We write

P(,3%0,0% i, t) = X (51,0, )Y (52, D2, )M (1, 1), (8.45)

with
F=7 + i, 3 =7 —iZ, (8.46a)
U =1+ iy, Ut =0 —ibs. (8.46b)

Then (8.44) separates into three equations. There are two equations describ-
ing real and imaginary parts of the coupled fluctuations in the laser field and
the medium polarization:

oX [ &, . . m+m o . . 1 _&
at _[“azl (tr =)+ =5 g5 (= 9R) + 5engm
1., 0% ] =
+§£ 0’778—1712] X, (8.47a)
3}:" _ 0 i +7 %) 1 _ 62
o = [”622( B =)+ T g, (e T pR) R
0?1z
+= 5 1C7Ta ]Y (8.47b)
and a third equation describing fluctuations in the atomic inversion:
oM 0 1 e\ 021 -
el (7 +m[8u“+§ 0(1 iC2) B M. (8.47c¢)

We are primarily interested in (8.47a) and (8.47b), since these equations con-
tain the information about the laser field. It is useful, however, to make one
observation about (8.47c). This equation is equivalent to the Fokker-Planck
equation governing inversion fluctuations in our treatment of the radiatively
damped two-level medium (Sects. 6.3.5 and 6.3.6). Specifically, (8.47c) corre-
sponds to the Fokker-Planck equation derived from the third and fifth terms
on the right-hand side of (6.172). To see this correspondence we use (8.1) and
(7.72) to rewrite the diffusion term in (8.47c) as

62
1 _ PN
(vi +m)¢°C (1 402> o

Y1 vl Qnsat 6 )
= + 1— 4C
(1 %)[ <7T+7l> }( N 02

4’7T7l ( o Nsat 82 )
= ———=(4C"——=—5 ). 8.48
Y+ N op? ( )
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When we allow for the different definitions of u [Eq. (8.24b)], (8.48) repro-
duces the diffusion term in (6.172) with the identifications y; — ~7n and
v, — v(+1). So far as the inversion is concerned then, below threshold the
laser medium behaves in the same way as the collection of statistically inde-
pendent atoms in our treatment of the radiatively damped two-level medium;
of course, with the negative temperature pumping reservoirs needed to pro-
duce a positive steady-state inversion. We will see shortly that this connection
can often also be made for the polarization, despite the fact that the individ-
ual atomic dipoles are coupled by their interaction with the common laser
field.

Equations (8.47a) and (8.47b) can be analyzed using results from the
treatment of linear Fokker-Planck equations in Sect. 5.2. Fluctuations in
the real and imaginary parts of the laser field and medium polarization are
statistically independent, and have zero steady-state mean. Therefore, from
the phase-space expression for operator averages [Eq. (7.99)] and the scaling
(8.17)—(8.19), the average steady-state photon number is given by

(a'a)< = (ala)s = (B1Z1)5 + (2272); - (8.49)

ss ss

Of course, the fluctuations in the laser field are phase symmetric, and there-
fore the two contributions to (afa). are equal. Explicit solutions for X and

Y are given by (5.80). We do not need the distributions themselves, how-
ever, to solve for (afa).. The variances appearing on the right-hand side of
(8.49) can be found by solving directly for the steady-state covariance matrix

(a121)z (a); (2222); (Z2m);
CSS = ( _ Xss _ Xss) =< _ Yss L Yss>' (8_50)
(Bin)z,, (i), (R2in); (P2in)s
From (5.102a), Cg; satisfies the matrix equation
-2k 2k —25 (11 + 71)@)
Cs,+C
((w+w)p —(7T+'Yl)> > ( 26 —(n+v)

KN 0
= _2< 0 5‘107T>' (8.51)

This provides us with a set of three simultaneous equations for the variance of
fluctuations in the laser field, the variance of the fluctuations in the medium
polarization, and the correlations between the field and polarization. The
solution of these equations is left as an exercise:

Exercise 8.2 Solve the matrix equation (8.51) to obtain

==\ ==\ _ 17[2:(1—p)+v +7/]+2Cy
e N e e

P
@
[



320 8. The Single-Mode Laser II: Phase-Space Analysis

== L[ fp(y+y)+20n  m
(1/1111)}—(ss = (V2V2 Ye "3 p(l ST G + - C{, (8.52b)
(2“11/1))2-Ss = (22112)1—/55 = 2@(1 TGP np—— (8.52¢)

Equations (8.49) and (8.52a) give us the average photon number in the
laser mode below threshold without adiabatic elimination of the medium po-
larization:

A[26(1 — p) + 7 + 7] +2Cn

(=)@ 71 +70) (8.53)

(aTa>< =

8.1.4 Adiabatic Elimination of the Polarization
and Laser Linewidth

When the laser medium relaxes much faster than the field [for £ = 2x/(v; +
7v,) < 1] (8.53) reduces to the expression

nn+1)+Cn +y) +C =)
A=) +n)
a+C+1ip
l-p
7+ Nspon
l—p

(aTa>< =

(8.54)

This is the result (7.41) obtained from the rate equation theory. The reason
for this exact agreement can be appreciated more readily after we adiabat-
ically eliminate the polarization to obtain a stochastic model involving the
laser field alone. The adiabatic elimination is made using the Ito stochastic
differential equations equivalent to the Fokker—Planck equations (8.47a) and
(8.47b). The equivalence between Fokker—Planck equations and Ito stochastic
differential equations is defined by (5.149); in the present case it gives

dz; = —k(% — 0;)dt + VendW}, (8.55a)
- Y+~ ~ _ i
dr; =~ L(5; — %) dt + /€ 1Cy AW, (8.55b)

where W! and W} are independent Wiener processes, and i = 1, 2. For £ < 1,
we set di; = 0 on the left-hand side of (8.55b), and write

-1
S s Mt [r—1 i
Uidt = pZ;dt + <———2 > E-1Cy AW, (8.56)

Substituting this result into (8.55a), we have
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dz; = —k(1 — ) Zidt + VERdWE + €4/ E-1Cy AW (8.57)

The last two terms on the right-hand side of (8.57) describe the two sources
of fluctuations that drive the laser field: one from the thermal reservoir that
damps the laser mode and the other from the laser medium. These fluctua-
tions are statistically independent, and therefore the sum of the two Wiener
processes may be replaced by a single process whose variance is the sum of
the individual variances. We write

Cly +7)+Clyr =)
YT+
=k +C+ ip)
= k(7 + Nspon)- (8.58)

kn+ECy =k|n+

The stochastic differential equations for the real and imaginary parts of the
laser field amplitude are now

dz; = —Ii(l —p)Zdt + 4/ k(A + nspon)dWi. (8.59)

The Fokker—Planck equations corresponding to (8.59) are

X 3 1 27 =
-17* — _ - 25
Koy [(1 ©) st 5+ nspon)—aé%} X, (8.60a)
oY 0 1 8% 1=
-1~ — _ Y =z 2=
K ot [(1 @) 822 29 + 2 (n + nspon) 82_5:1 Y. (860b)

Written in complex notation, the laser Fokker—Planck equation below thresh-
old is given by

N

oP .. 0 N\, .. 8
5= [(1 —-p) (52 t 552 ) +2(n + ”spon)a—égg] ; (8.61a)

with corresponding stochastic differential equation
dz = —(1 — p)zdt + 1/ (7t + Nspon) (AW} + idW3), (8.61b)

where
t = kt. (8.62)

Equations (8.61a) and (8.61b) are the same as the equations obtained by
linearizing the stochastic model (7.71) about the steady state (@)« = 0. In
contrast to the heuristic derivation offered on the basis of rate equations,
the self-consistent treatment we have just followed leads directly to a linear
Fokker—Planck equation. This derivation also reveals the role of the adia-
batic elimination of the polarization, and the relationship between polar-
ization fluctuations and spontaneous emission into the laser mode. Let us
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look at these issues briefly before proceeding with the derivation of the laser
linewidth.

Polarization fluctuations are fed into the stochastic differential equation
for the laser field by the expression (8.56) for 7;dt. The first thing to note, is
that in the adiabatic limit (¢ < 1}, the polarization fluctuations are produced
by statistically independent atoms. To confirm this assertion we calculate
the strength of the polarization fluctuations assuming statistical indepen-
dence and compare it with (8.52b). For statistically independent atoms, with
(J_Y< = (J4)< = 0, we can write [Eq. (6.150d)]

(JeJ )< = 5(N + (J)<),

and using the scaling (8.20)—(8.22), and (J,)< = p, we find
(171) 5 + (2i2)g = (4 J-)<
_ 2 Nsat ﬂ ﬁ
802725 (1+ 5¢)
=2l (8.63)
K

we have also used (8.1) and (7.72). This result agrees with that given by
(8.52b) for £ < 1. The second thing to observe is that the source of spon-
taneous photons in the rate equation theory is represented in the present
theory, after adiabatic elimination, by the fluctuations from the medium po-
larization. The variance of these fluctuations — from the last term in (8.57) —
is )

¢Cyy = 28 <NL) (8.64)

YT\ Mt

This is just one half of the spontaneous emission rate ysponN2 [Eq. (7.26)]
into the laser mode; the sum of the variances for the real and imaginary parts
of the field give the full spontaneous emission rate. This relationship between
polarization fluctuations and spontaneous emission illustrates the ambiguity,
or flexibility, of interpretation that often arises in quantum mechanics. We
can trace the source of the polarization fluctuations all the way back to the
last term, v;8%/8v0v*, on the right-hand side of (7.101a). This origin sug-
gests that these fluctuations are introduced by the pumping process. Indeed,
they are the analog from the pump reservoir of the thermal reservoir fluctu-
ations that drive the damped cavity mode through the term 2xk79?/dada*
in (7.101b). Is the source of fluctuations, then, the medium pump fluctua-
tions, or spontaneous emission? Well, for the model we are studying these are
the same thing. The polarization fluctuations are certainly derived from the
pump interaction and depend directly on the pump rate ;. But this rate also
determines the excited state population N = N9 = N~ /(71 +7,), which de-
termines the rate of spontaneous emission. Thus, the strength of polarization
fluctuations driven by the pump process is tied in a self-consistent way to the
inversion achieved, and therefore to the spontaneous emission rate into the
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laser mode. Pump fluctuations and spontaneous emission are two different
views of the same thing.

The interpretation in terms of spontaneous emission should, however, be
reserved for those conditions that justify adiabatic elimination of the polar-
ization. It is really only under these conditions that the Einstein description
of the quantum dynamics in terms of spontaneous emission and stimulated
emission is well defined. We can appreciate from (8.52b) that a qualitative
change takes place when adiabatic elimination of the polarization is not justi-
fied. For £ = 2k/(y; +7,) ~ 1 the polarization fluctuations no longer take the
form (8.63) derived for statistically independent atoms — even if we neglect
thermal fluctuations. The atoms communicate with each other through their
interaction with the laser field, and the dynamics are truly those of coupled
field and polarization oscillators. We will return to the issue of atom-atom
correlations in Volume 2 (Sect. 14.1.4).

Exercise 8.3 When nonradiative dephasing processes are included the
changes (8.16) are made in the Fokker—Planck equation (8.15). Show that
if J; and J_ are defined by (8.38), rather than (8.22), and @ and ©* are
defined by

[—"_9v20w = N, [—_2\20v* = Nv*, (8.65)
g + 71 Rl

rather than (8.20), the Fokker—Planck equation (8.41) holds with the changes

Nt mtnt2n _m (8.66a)

2 2 2’

2

- 9 - Yh (L) &8
1 _ 1 -
& W0 gase — & W [% e <1 t %0 )| swar
(8.66b)

The stochastic differential equation for the polarization [Eq. (8.55b)] is now

d; = —72 (7 — pzi)dt + \/5 10 [fyT +7p<1 + QC)]dW’ (8.67)

M +7
Show that adiabatic elimination of the polarization still gives (8.59) with
Ngpon = C' + %p

To complete our discussion of fluctuations below threshold we calculate
the laser linewidth. The spectrum of the output field is given by the Fourier
transform of the normalized first-order correlation function
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g9(r)
= ((a'a)<) ™! [ lim (ot @)a(t + )]

t—oo

((aay<) Hemem [tim (DR G +1)z + Jim (O]
(8.68)

Recall that the laser output field is related to the intracavity source field
by (7.107) and (7.113); we can drop the free-field term from (7.107) when
evaluating averages that are normal ordered and time ordered (see Sect. 7.3).
The correlation functions that appear on the right-hand side of (8.68) are
calculated from the Fokker—Planck equations (8.60) using a trivial application
of (5.93). We find

gg) (7_) — e—iwcTe—K(l_P)lTl' (8.69)

The Fourier transform is a Lorentzian and the laser linewidth below threshold
(half-width at half-maximum) is

N + Nspon _ 2/@2ﬁwc N+ Nspon
(ata)< P

where we have used (7.114) to express (a'a)< in terms of the output power
P..

(Aw)_ =K1 —-p) =~ , (8.70)

Exercise 8.4 Green function solutions, ):((21,t|2?,0) and l:/(ég,t|2§,0), to
the Fokker-Planck equations (8.60a) and (8.60b), can be written down from
(5.18). Use these to show by direct integration that

g2(r)
= ((ala)<) 7*] Jim (al (9o (¢ + T)alt + 7)a(t))]

=1+ ((aa)<) [ Jim (FBOFEC+ 7))z + Jim (BOHC+ s

t—o0

=14 2(-0)7I, (8.71)

This result shows the photon bunching of a “thermal” field [Eq. (1.122)]. Of
course, this is expected since (8.61a) has the same form as the Fokker—Planck
equation for an oscillator damped by a thermal reservoir; also, we saw that
the photon number distribution below threshold is that of a “thermal” field
[Eq. (7.60a)).
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8.2 Laser Fokker—Planck Equation at Threshold

The linearized treatment of fluctuations breaks down at the laser threshold.
For p = 1 the drift term in the Fokker—Planck equation (8.61a) vanishes,
and then there is no restoring force to prevent the fluctuations from grow-
ing without bound. This breakdown is apparent from the result (8.52) for
the steady-state covariance matrix. Fluctuations in both Z and # diverge for
g = 1. This problem arises at any critical point, or, more generally, at any
bifurcation point where one of the eigenvalues of the linearized deterministic
dynamics vanishes. In Sect. 5.1.4 we discussed the resolution of this prob-
lem for a one-dimensional example. If the linear coefficient of the first-order
derivative term in the system size expansion vanishes, we are not justified
in dropping the lowest-order nonlinear coefficient. With the nonlinear term
included a new scaling can be found which gives a self-consistent description
of fluctuations in terms of a nonlinear Fokker—Planck equation.

Things are not quite so straightforward in a multidimensional problem.
For example, none of the first-order derivative terms in the Fokker—Planck
equation (8.44) vanish when p = 1; although, the problem of the divergence
shown by (8.52) must be buried in there somewhere. To find it let us calculate
the eigenvalues A of the deterministic equations

%= —k(Z — 1), (8.72a)
. +7 - 5
v = -1 (5 - ), (8.72b)

derived from the drift terms in (8.44). The eigenvalues satisfy the character-
istic equation

A2+A(n+VT;”>+JT;“(1—@=o. (8.73)

One of the eigenvalues vanishes for p = 1. If the Fokker-Planck equation
(8.44) is written in terms of new variables determined by the eigenvectors
of its drift matrix, the coefficients of the first-order derivatives are just the
eigenvalues A (see Sect. 5.2.1); then some of the first-order derivative terms
do vanish for p = 1, and nonlinear contributions to the coefficients of these
derivatives must be retained in the system size expansion.

The general approach in the multidimensional case starts, therefore, with
the diagonalization of the linear drift to determine the “slow” variables — the
eigenvectors whose eigenvalues vanish at the bifurcation point. In the laser
example, however, we need not perform the diagonalization if we plan to
adiabatically eliminate the atomic variables. It is clear that after the atomic
variables have been eliminated the “slow” variables are the real and imaginary
parts of the laser field; all of the “fast” variables have already been removed.
There is still a small catch. We need to be aware that by taking this approach
the system size expansion and adiabatic elimination of atomic variables will
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not separate as independent calculations. We will have to wait until after
the adiabatic elimination of atomic variables has been performed to fix the
scaling in the system size expansion.

8.2.1 System Size Expansion and Adiabatic Elimination
of Atomic Variables

We refer back to the expansion in Sect. 8.1.1. Two observations allow us to
simplify the exact phase-space equation of motion [Eq. (8.12)] and obtain a
Fokker—Planck equation with just one undetermined scaling parameter. First,
the linear drift terms should keep the form they have in the linearized theory.
This requires us to take

G—@=@-@3=q¢g—q=0

We define a single scaling parameter

4=q1 = G2 = q3. (8.74)

We also know that the threshold fluctuations are larger, not smaller than
the fluctuations below threshold. Indeed, the linear theory says they become
infinite. This cannot be correct, but certainly the exponent ¢ must satisfy
the constraint 0 < ¢ < %, since the linearization gave ¢ = % This second
observation ensures that the “second-order derivatives with nonlinear coeffi-
cients” given in (8.13b), and “higher-order derivatives” given in (8.13c), are
negligible for large N compared with the second-order derivatives that appear
explicitly in (8.12).

We can now write down a Fokker—Planck equation that includes the first-
order and second-order derivatives which appear explicitly in (8.12), and the
“second-order derivatives with nonlinear coefficients” given in (8.13a). If we
scale in powers of ng,, the scaled variables are defined by

a=e A, +nlz, (8.75a)
& = @M e +nid 2, (8.75b)
and
7= e T Yo + 1l (8.76a)
7* = et J Ve + ndv", (8.76b)
m = (J, ) thr + Nt - (8.76¢)

The parameter g remains to be determined. The scaling equations (8.17),
(8.19), (8.20), and (8.22) are unchanged. The distribution in scaled variables
is defined by
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P(z,z* v, v*, pu,t)

1
_ 3,.1-5 * (% * *
- N nsat q1603P(a(z)7a (Z ),U(V),U (’/ )»m(,u)at)a (877)
and (8.12) and (8.13a) are now to be read with
N q—1/2 N q—1/2
z— < ) z, " — < ) z", (8.78a)
Nsat Nsat
and
N\? N\? N\?
y_>< ) v/2V20C, v* —+< ) v*/2V/2C, u—>< > 1/2C.
Ngat Nsat Nsat

(8.78b)

Substituting the steady-state solution (8.32), and transforming to a frame
rotating at the frequency we, we find

& - 7)

(9_]:7_ Iﬁ:g(~~l})+lﬁt 0
ot |"az”t 93"

Y+ 0 o . g .
_TT_l'é—ﬂ(’/_ z *nsatil::uz)

Y+ O g s
T g T i)

+
_+_

a — ~% ~ ~ =%
+%%+wnaﬂu+%£ﬁvz+vzﬂ

82 ) 2
5505 T ¢ Mgrae

2g—1 =
+ Ngay [2/171

+HTCn + 1) (1 - ﬁ) 6—6162—2]}157 (8.79)

where P is defined by (8.42). We have used (8.1) and (7.72), and (8.9) with
Y=+

Before we can determine the value of ¢ we must perform the adiabatic
elimination of atomic variables. In complex notation the Ito stochastic dif-
ferential equations equivalent to (8.79) are

dz = —k(Z — D)dt + %, *Vei (dW] + idW?2), (8.80a)
di = —’”T”“”(D — & —ngd pz)dt + nI 2\ €10y (dWD + idW2),
(8.80b)

and
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dp = —(y; + 7)) [+ ned 5(072 + 02%) ] dt
+ i 2 [6-120 (3 + 1) (1 - 1/4C2) AW, (8.80¢)
To eliminate the atomic variables, we set dv = 0 and du = 0, and write

-1
pdt = (1 + nigd p)dt + (ﬁ%) nd M2\ €10, (WL + idW?2),
(8.81a)

pdt = —ngd (0% + 0z*)dt
+ (71 + %)-lng;l/?\/g—lwm +7)(1 —1/4C?)dW,. (8.81b)

Our objective is to find a solution for Zdt in terms of the field variables
and the Wiener increments dW}, dW?2, and dW,, alone. We must therefore
eliminate pdt from (8.81a). We follow an approximate procedure that includes
the fluctuations to dominant order: Since udt appears in (8.81a) multiplied
by n.., and each of the Wiener increments is multiplied by ng;l/ ?, we may
write

nsat z ‘2

1+ —2q|z|2

Nsat

This is the solution obtained by setting dW! = dW?2 = dW, = 0 in (8.81a)
and (8.81b). When we substitute this solution into (8.81a) we are only ne-

glecting fluctuation terms of order ns_ai/ S ngatl/ %. we obtain

~ —1
vdt = f2q —dt + <7T ;’”) RIS Y2, €10 (AW + idW2).
1 + nsat ‘Zl (8 83)

pdt = — dt. (8.82)

The stochastic differential equation (8.80a) for the laser field becomes

dz = —kn_ 29| 2dt + ngatlm k(7 + Nspon) (AW + 1dW3), (8.84a)
where the nonlinearity is kept to lowest order in nsat The corresponding
Fokker—Planck equation is

oP 0 0 9 1=
177 _ |72 . 512 2q—1q/=
K T [nsat <8~ + 55 z )|z| +nil 2(n+n5p°n)—8282_* p.

(8.84b)

We can now determine q. For a self-consistent treatment of the fluctua-
tions the drift and diffusion terms in (8.84b) must be of the same order in
Ngat. T hus,

(8.85)

[X=)
Il
PN
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and the laser Fokker—Planck equation at threshold is

2

opP . 0 N 2 1=
o= [<£z+ 552 >|z] +2(n+nspon)%2—* P, (8.86a)

with corresponding stochastic differential equation
dz = — 2|22t + /7 + Nspon (AW + idWs), (8.86b)
where time has the nontrivial scaling

2. (8.87)
The fluctuations at threshold scale as ns—ai/ * rather than ns—ai/ ? and are there-
fore much larger than the fluctuations below threshold. Equations (8.86a) and
(8.86b) are the same as the equations derived from the stochastic model (7.71)
by setting p = 1 (taking into account the change of scaling).

t=n

Note 8.4 When nonradiative dephasing processes are included, the changes
(8.65) and (8.66) are made in the Fokker Planck equation (8.79). After adi-
abatic elimination of the atomic variables the laser Fokker—Planck equation
at threshold is obtained in the same form [Eq. (8.86a)].

8.2.2 Steady-State Solution and Threshold Photon Number

Because of the nonlinearity, it is quite difficult to find time-dependent so-
lutions to the Fokker—Planck equation (8.86a). The methods used to obtain

such quantities as gt(iZ(T) and gEiZ(T) are reviewed by Haken [8.7]. The book
on Fokker—Planck equations by Risken [8.8] is also a good source of infor-
mation on this subject. The steady-state solution to (8.86a) is, on the other
hand, easily obtained. From this we can calculate the average photon number
at threshold,

<afa>thr = (afa>1siglr = n:;? (5_*—2)1555, (8.88)

for comparison with the result (7.42) given by rate equations.
The Fokker-Planck equation (8.86a) is phase independent. Therefore, to

solve for P, we first transform to amplitude and phase variables, writing

3 =reW, F*=re W, (8.89a)

o  _ulfo 10 9 _ plfo .10
9 ° 2<8r Z7“81/))’ o © 2<8r+1;%>' (8.89p)

We define

ﬁ(r, P, t) = r]g(reiw, re”"¥ 1), (8.90)

and after some algebra (8.86a) gives
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8ﬁ_ 013 1 Ly o 1 &
i {E [r —(n+ nspon)é?j, + 5(” + Nispon) (W T3 r2 3¢2>}

P.
(8.91)
The steady-state solution has the form
Pes(r, ) = %Rss(r), (8.92)
where
jr [r3 — (7 + Ngpon) 217" + %(ﬁ + nspon)%] Ry =0. (8.93)

The solution to (8.93) can now be constructed from the general steady-state
solution (5.30) for a one-dimensional Fokker—Planck equation:

_ 1 1 1 2r3
Rss(r) - ﬁ T+ TNspon xp |:/d7‘ (; @ + nspon):|

1 1
= e ——— N . 4
al exp( 27+ nspon> (8.942)

the normalization constant is

0o 1 4
N'z/ drrexp( ———r—-)
27 + Ngpon
Y
= d
/ yexp ( 2 + nspon)

™
35 VAT T (8.94b)

For the average photon number in the laser mode at threshold we find

1/2 (3
(a'a) e = ”séc (T2)Rss

1/2\/‘ /drr ex —l—L
Meat T /T + Nsag P 2n N + Nspon

2
\/; Nsat (77)1 + nspon)- (895)

This result differs from that given by the rate equation theory [Eq.(7.42)]
by the factor \/2/7. It agrees with the expression (7.61b) obtained from the
birth-death equation constructed in Sect. 7.1.3. In Sect. 7.1.3 we saw that
the connection between the photon number rate equation and the probabilis-
tic birth-death, or stochastic models, was the factorization (n?) — (n)?, or
(|al*y — ({|&|?))?. This factorization is unimportant below threshold where
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the nonlinearity is negligible; we therefore obtain the average photon num-
ber below threshold exactly using rate equations. At threshold, however, the
linear term in the photon number rate equation vanishes, and the nonlin-
ear term is then dominant. The disagreement between (8.95) and (7.42) is a
result of the factorization assumed by the photon number rate equation.

Note 8.5 We can now assess the range of validity of the linearized treatment
of fluctuations. Linearization is valid below threshold so long as the linear
drift term in the Fokker—Planck equation (8.61a) is much larger than the non-
linear drift term in the Fokker-Planck equation (8.86a). Taking the different
scaling of the two Fokker—Planck equations into account, this requires

1- $ > ns_anl:/2|2'fhr = nsa},/2 (Z Z)p = ns_ailz/2<aTa>thr

ss

_ g /T + Ngpon (8.96)
T Tsat ' .

This condition is consistent with our definition of the laser threshold region in
(7.38). For the range of p that matches the linearized theory below threshold
to the nonlinear theory at threshold, both linear and nonlinear drift terms
can be included, as in (7.71). (Of course, this Fokker-Planck equation is not
systematic to the order of the smaller of the two drift terms at either end of
the matching range.)

Exercise 8.5 Show that, for |1 —p| < 1, the Fokker—Planck equation (7.71)
has the steady-state solution

—1
= : Nsat
1+
(a) 27r[\/ 7 + Nspon [ < |1 — 'thr)]

1(ja]* - (p—1))
P l:_-é ('Fl + nspon)/nsa‘c :l

(8.97)

8.3 Quasi-Linearization: Laser Fokker—Planck Equation
Above Threshold

Sufficiently far above threshold the nonlinear drift will again be negligi-
ble with respect to the linear drift, as it was below threshold. We might
then expect to return to the linearized treatment of fluctuations described
in Sects. 8.1.2 and 8.1.3. Unfortunately, things are not this simple. Equa-
tions (8.18) and (8.21) expand the fluctuations about macroscopic field and
polarization states with defined amplitude and phase. Above threshold the
macroscopic equations (8.25) fix the amplitudes of the laser field and medium
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polarization in the steady state. They also require the phases of the field and
polarization to be locked. But the common phase ¢ for the field and po-
larization is left undetermined. This means that fluctuations in ¢ are free
to grow without bound to produce a phase-symmetric steady-state distribu-
tion. Figure 8.1 illustrates the distribution P,,(a), plotted from (8.97), close
to threshold. Above threshold a phase-symmetric state with nonzero ampli-
tude develops [Fig. 8.1(c)]. Clearly the scaling defined by (8.18) and (8.21)
is inadequate to treat such phase-symmetric fluctuations. The steady-state
(8.34) gives |(@)|> = [(J_)|> = vV — 1, and fluctuations z ~ n;ﬁ p—1
and v ~ n’/2\/p — 1 are needed to distribute the phases of the field and po-
larization over the range —w < ¢ < w. If ngtz\/p — 1> 1, this requires z and
v to be large, contrary to the assumption that the scaled fluctuations are of
order unity. To deal with this difficulty we must base our treatment of quan-
tum fluctuations above threshold on a system size expansion in amplitude

and phase variables.

Fig. 8.1 Laser phase-space distribution for # + nspon = 1, 7sat = 10%: (
threshold, 1 — p = 107%; (b) at threshold, p = 1; (c) above threshold, p—1
(The parameter values are the same as those in Fig. 7.5.)

a) below
=102
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8.3.1 System Size Expansion Above Threshold

The system size expansion in amplitude and phase variables is, in principle,
no more complicated than the expansion made in Sect. 8.1.1. The algebra
can get a little confusing, however, because the change of variables involves a
nonlinear transformation; we must systematically expand the nonlinearities
arising from the change of variables along with the nonlinearities and higher-
order derivatives we have already met in the phase-space equation of motion.
Also, we must be particularly careful in our treatment of the phases. Without
fluctuations, the phases of the laser field and the medium polarization are
locked. In the presence of fluctuations, small differences between the phases
of the field and polarization can arise. These small fluctuations in the phase
difference must be retained to give a correct treatment of the much larger
fluctuations that develop in the phase sum. Fluctuations in the phase sum
are responsible for the laser linewidth above threshold. To try and separate
the different aspects of the problem let us first make an expansion of the
field and polarization amplitudes alone. Then we will address the question of
phase fluctuations separately.

It is a laborious task to begin again from scratch, with arbitrary scal-
ing parameters p1, p2, ps, ¢1, g2, and g3, as in (8.2)—(8.4). In fact, this is
not necessary. It is reasonable to assume that the fluctuations in field and
polarization amplitudes scale as they did below threshold, as ns_ai/ % If this
choice is incorrect, we will certainly discover our mistake in the course of the
calculations, since the expansion will not be self-consistent. Thus, in place of
(8.18) and (8.21) we write

a=e?(A) + nsaiﬂz), (8.98a)
a* = e (A(t) + ng*2), (8.98b)
and
5= e (T (t) + no’ *v), (8.99a)
0" = e (T (1) + e v), (8.99b)
= (L.(t) +ng?p. (8.99c)

In these expressions z and v have a new meaning; they now represent real
amplitude fluctuations rather than complex amplitude fluctuations. These
ﬂuctuations can be both positive and negative, but must fall within the

ranges —nsat ’A(t) < z < oo and —nsl,(ffj() < v < oo, bounded below,

since (A(t )+nsai/2) and (J(t) +n ) must be positive. The phase-space
distribution in scaled variables, normalized with respect to the integration

measure dzdpdvdfdu, is defined by
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P'(z,¢,v,0,p,1)
- 1 - _ _ _
= Nong g (AW +ng*2)(T () +nged/ ™)
P(a(z,¢,t),a*(z,¢,t),v(u,9,t),v*(u,@,t),m(u,t),t). (8100)

Note 8.6 In (8.18) and (8.21), the field and polarization fluctuations are
expanded about operator averages (a(t)), (a'(t)), (J_(t)), and (J,(t)) (by
definition the fluctuations z and v have zero mean). A little thought shows
that it is not generally possible to give simple expressions for .A(t) and J(t)
in terms of operator averages. We can certainly relate these quantities to
averages of the stochastic variables @ and v. Taking the mean of z and v to
be zero, we have A(t) = (|a|(t)),, and J(t) = (|0](t))p,- The difficulty arises
when we try to relate these stochastic averages to operator averages. The
relationship (7.99) only applies for operators that can be written as normal-
ordered power series. Amplitude and phase operators are not of this type.
Consider the field amplitude. The definition of amplitude and phase operators
for the field is not unique, but a self-consistent definition is possible [8.9]; for
the sake of argument let us say that the scaled amplitude operator is Vata,
whose action on the Fock state basis is given by Vafaln) = Sa};/ N |n).

It is easy to see that (vafa) is not given by (]EI)P [we write P(&,a*) =
nsat P(n :éf a n;ﬁ &*).] To illustrate this point we take the field to be in the

coherent state |e~#ctn}/2ag). Then P(a,a*) = (@ — ap) and (lal)p = |aq|-
However,

<\/%> = (e_i“’ctnlézc"rol\/g’f—(;|e_“"ctn1/t2do)
_ Ngat |0
saj’,/2 Z \/_LOI) exp( nsathXO‘ )

This is a Poisson average of \/n which is not generally equal to |ag|. For
arbitrary field states we can use (3.15) to write

W%—wﬁ(ZfM”Umsmw@w;
(8.101)

this is not generally equal to (Ei—])l—,. Nevertheless, having said all this, from
(8.201) we see that in the limit of large nga¢ these subtleties are rather unim-
portant. When P(a,&*) is peaked about some |a&| ~ A, and ngar.A? > 1 the
Poisson average in the integrand of (8.201) is appr0x1mate1y equal to nsat ZA
over the dominant range of the integral, and to dominant order we can write

A= (vata).
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To expand the phase-space equation of motion we must transform the
derivatives with respect to &, @*, ¥, and v* into derivatives with respect to
z, ¢, v, and 8. The proof of the basic transformation formulas is left as an

exercise:
Exercise 8.6 Show that
- 0
(A(t) + ngy’ “2)

&
_ 1{ 1,2 0
- 5 Nsat EZ'
-1/2

sat

—1/2
sat

Alt) +

Ngat

0
oar

t)+n

( ?)

sat

and

1

1/2 3¢

T(t) +ng*v

0

- Z_——1/2 (9¢) _w(

) e"?(A(t) + n

0

( ) + Nsat

( ) + Nsat

(-%) (7 (8) +n

—-1/2

2),

(8.102a)

-1/2
sat

z),

(8.102b)

—-1/2

v),

(8.103a)

—-1/2
sat

V).

(8.103b)

Now, from the scaling transformation (8.98)-(8.100), and (8.102) and

(8.103), we find
oP

—3/2 n 1/2 7 1/2
ot N3 sat/ 1603 (A(t) + sat/ )( ( ) sat/ V)
y 0P da 8P@ OPov  OP ov* +Q£_6_72+8_P
Do Ot ' Da* Ot | Ov Ot Ov* 8t | Om Ot ot
dA(t 1 dJ(t 1
_|_ "4( ) — _1/2 P/ + ‘7( ) — _1/2 Pl
dt A(t) + Nsay 2 dt j(t) + Ngat V
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12 (OP' dA(t)  OP'dJ(t) 9P d(J.(t))
sat\ 0z dt ov dt ou  dt

< ~1/2 N/ 7 ~172 v O (3 —3/2 1
+ ( ( ) + Ngat )( ( ) + Msat V) ot (N Msat 16C3 P)
(8.104)

The explicit form of the last term on the right-hand side is given by (7.100).
There is rather a lot of algebra involved in writing this out in terms of am-
plitude and phase variables. However, we only need to find the explicit form
for terms involving derivatives up to second-order. We can convince ourselves
that all higher-order derivatives vanish as some power of nsat/ , just as the
terms (8.13b) and (8.13c) vanished in the expansion in Sect. 8.1.1. Nonlinear
terms corresponding to those given in (8.13a) vanish in the same way. After
completing the algebra we can write

oP' OP' [dA(t - _

ﬁ‘ = n;ﬁ{—a—z [% + K(.A(t) — j(t) COS( — 9))j|
oP'1dJ(t)  mtn s
ov dt 2

+%_};i [fii‘;z_t(@ + (11 + 7)) (1) = p + T () A(t) cos(¢ — 9))”

0 _1/21 1
—i—{naz [z veos(p — 0) — ngyy 57 A0 e 1/2}

sat

1 .
W sin(¢ — 9)}
sat

a¢[wc+ﬁj()

+ ﬁ_—;l% [1/ — ((J=(t))2 + A(t)u) cos(¢ — 0)

_ _ 1
gy €7 (nspon + 17 (1) A(t) cos(¢ — 9))m]

Ku

9 ntn i 1 b
+%[wc— 5 (J=(t) Al )J(t)+"§a};/2V sin(¢ 9)}

+ (1 + '”)a% [+ (T(t)z + A(t)v) cos(é — 9)]

022 T T (A() + ngy/?2)” 062

sat

+ EH’FL

v 26 o + LT AW wsto—0)
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o2 1 1 62 s, 02
'872‘+nsat (j(t)+ ;1/2 )QW]_é- ’YTJ(ﬁayau
63001+ ) [1- g5 U:0) - 56T OAO sl - 0)]
first—order and higher—
+ ( ortder terms in n§1/2 )}Pl (8105>

Equation (8.105) displays the terms of order nsat/ that result from the
change of variables explicitly. These terms enter in two places: in the factors

(A(t)+n5*z )_1 and (J (¢ )+n;a1/21/)_1, and in contributions to the drift in

sat
field and polarization amplitudes (appearing on the fourth and seventh lines).

The contributions of order nsai/ ? in the field and polarization amplitude

drift, arise, mathematically, from passing the factor (A(t) + ns_ai/ 2 z) (T () +

ns_at/ 2V) multiplying the last term in (8.103) through the second derivatives
with respect to z and v. Such terms are sometimes retained as corrections
to the drift. They should not be, however. For a self-consistent expansion
these terms must be dropped along with the nonlinear terms and higher-
order derivatives collected together in the last term on the right-hand side of
(8.105). Thus, we will drop all terms of order nsa};/ ? arising from the change
of variables. We can then quickly complete the system size expansion once
we decide what to do with the phase fluctuations.

There are two points to notice about how the phases enter (8.105). The
first is that phase variables only appear (aside from the derivatives) in the
combination ¢—8@. The natural variables to use for treating phase fluctuations
are therefore the phase difference ¢ — 6 and the phase sum ¢ + 6. Secondly,
fluctuations in the phase difference are driven by the diffusion terms in ¢ and
0, which are of order n_,}; these fluctuations should therefore scale as ns;i/ 2
It is convenient to scale the phase sum in the same manner; although, we
will find that the fluctuations in ¢ + 6 are undamped, and over sufficiently
long times can grow arbitrarily large; scaling the fluctuations in ¢+ 6 simply
keeps the notation symmetric. On the basis of these observations, we write

b+ 0 =0(t) +n e, (8.106a)
¢ — 0= A(t) +ngy/ 6. (8.106b)

Note 8.7 The comment below (8.100) also applies here. There is generally no
simple relationship between ¥(t) and A(¢) and operator averages. However,

to dominant order in n_t/%, we have ¥(t) = arg((a(t))) + arg({J_(t))) and
A(t) = arg((a(t))) — arg((J-(1)))-

We now expand the phase-dependent terms in (8.105) using
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cos(¢ — 0) = cos(A(t)) + O(ns—ai/Q), (8.107a)
and
0
99 sin(¢ — )
= 9 + 2) [nl/z sin (A(t)) + 6 cos (A(t)) + O(n_l/Q)] (8.107b)
31,[) S sat sat ’ .
% sin{¢ — 6)

<% - %)[ /2 gin (A(t)) + 6 cos(A()) + O(ns_a}c/Q)]. (8.107c)

It is important to note that these expansions only require fluctuations in the
phase difference to be small; the phase sum can be arbitrarily large. The
distribution in scaled amplitude and phase variables is now defined by

P(z,v,1,6,t) = ng A P' (2,84, 6,1),1,0(1, 6,1), s t), (8.108)
and obeys the phase-space equation of motion

oP OP' 6¢ oP' 09 8P’
= (n3t)) Lo
ot t2/\9¢ 9t = 00 8t

1/2(0P d(t)  OP dA(t) g .
sat <3w dt +8(5 dt +at(nsatzP)- (8.109)

After substituting from (8.105) and dropping terms of order ng,”, the re-
1/2

maining terms of order ng.; and nl, determine the macroscopic equatlons
and the Fokker—Planck equation describing the fluctuations about the macro-

scopic state. The requirement that terms of order n;g vanish identically gives
the macroscopic equations, the laser equations without fluctuations in ampli-
tude and phase variables:

n—lcfi—“j =—-A+ Jcos A, (8.110a)
-1 ,5
<m> a7 _ —J + (J.)Acos A, (8.110Db)
2 dt
(m + wl)_l% =—(J.)+p—TJAcos A, (8.110c)
W g (w2 E) -
i 2we (n]l 5 <Jz>j sin 4, (8.110d)
aa J  mt,; AW
pr ( 1 te (J. >J sin A. (8.110e)



8.3 Quasi-Linearization: Laser Fokker—Planck Equation Above Threshold 339

Fluctuations about the macroscopic state obey the Fokker-Planck equation
P 5}
aa—t = {n—a—z [z — veos(A(t))]

F BEL DL ()2 + At cos am)]

A(t) 2 J(t) I
jt) r+71 = WA 9
+ (s + IR0 52 ) cos(a0) o
2 2
+ gengs + 56 |On o+ LT 0A() eos(4 )] o
v g
¢ 77‘7()61/0”
-1 = 1 _ _ 62
FE00 430 |1 = 50} - 3T QA cos(a(0)] 2
1 1 (8 8V
HPRTOE <% * %>

q 8 9V -
~|—%§_1 Cvt ! + nt /_l(t) cos(A(t))} <@ — %> }P.

(8.111)

Note 8.8 Equations (8.110) are obtained from our earlier version of the
laser equations [Eqgs. (8.25a)—(8.25¢)] by writing

(@) = Aexp [i3(¥ + 2)], (@') = Aexp [ - i3(¥ + 4)],
(J-)=Texp[ib@ - 4)],  (J;) = Texp[ - ik (@ — 2)]

In general, however, we should not identify A and J with |(@)| and [(J_)|.
This identification is possible while the fluctuations, v, in the phase sum
remain small. But a phase-symmetric state like that illustrated in Fig. 8.1(c)
has [(@)| = [(J-)| = 0, while A and J are certainly not zero.

Note 8.9 When nonradiative dephasing processes are included, (8.110a)-
(8.110e) and (8.111) hold with the minor modifications resulting from (8.16)
described previously: now ¢ and @* (and hence J and v) are defined by (8.65);
we make the replacement (v +7,)/2 — (v + 7, + 27,)/2 = 71/2; and on
the sixth and tenth lines of (8.111),
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8.3.2 Adiabatic Elimination

Above threshold the steady-state solutions to (8.110a)—(8.110e) are

As = A2 =p—1, (8.112a)
J=J3 =Ve—1, (8.112b)
(L)> = (L)z =1, (8.112¢)
Uy = U2 = 2wet + 7, (8.112d)
As = AZ =0 (8.112¢)

the phase ¥ is arbitrary. We will restrict our treatment of the fluctuations
about this steady state to the region not too far above threshold, where
VvV —1 < 1. With this restriction we are able to neglect diffusion terms
proportional to J>~ = v/p — 1 and J>As = p — 1. Then, from (8.111), the
laser Fokker-Planck equation above threshold without adiabatic elimination
is

op
ot

D R S P ¥
+(n+1p ( -Veo—1lz—+p—1v)

71+71 0 Y+ 0
+(K ! )w5+(+ ! )%5

1.0 0? 9? 1) 8
+oRig S+ ﬁlcwﬁ-l-ﬁ 10(’71+71)<1—@5)W

4——‘1 i4—224—15"10 1 AN
2o _1\ay T 8s) T2 o 86

Equation (8.113) is separable. It may be separated into an equation de-
scribing fluctuations in the field amplitude, the polarization amplitude, and
the inversion, and an equation describing phase fluctuations. Our task is to
adiabatically eliminate the polarization amplitude and inversion from the for-
mer to obtain a stochastic description of amplitude fluctuations in the laser
field, and to adiabatically eliminate the phase difference from the latter to
obtain a description of the fluctuations in the phase sum, or equivalently, the

P.

(8.113)
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common phase of the field and polarization. We write the distribution P as
the product

P(z,v,9,6,u,t) = Az, v, u, t)(2, 6, ); (8.114)
the distribution A satisfies the Fokker—Planck equation
0A [ 8 Y+ 0
T A A e G )

+(7T+71)3(N+ Ve—lz+p—1v)

1 (9 02 1 0% 7 .

(8.115a)
and @ satisfies the Fokker—-Planck equation
0P 7 +n) o AN
ot K”“ > e’ T T T ) as?
11 (8 8\ 1., 1682_
+§&n—p_1(%+-a—6> +§§ C'yT <(9¢ 86) P.
(8.115b)

Let us first consider the adiabatic elimination of the polarization am-
plitude and inversion from (8.115a). We wish to adiabatically eliminate the
variables v and p. The Ito stochastic differential equations equivalent to this
Fokker—Planck equation are

dz = —k(z — v)dt + VKA dW,, (8.116a)

dy = _@(y — 2= /p—1p)dt+/6-1Cy;dW,, (8.116b)

and

du=—m+1)(p+Ve—1z+p—1v)dt

+/E7120( +1)(1 — 1/4C?) W, (8.116¢)

where dW,, dW,, and dW, are independent Wiener processes. Equations
(8.116a) and (8.116b) are similar to the equations that describe fluctuations
in the coupled field and polarization amplitudes below threshold [Egs. (8.55a)
and (8.55b)]. The main difference is that above threshold fluctuations in the
polarization couple to fluctuations in the inversion; below threshold these
fluctuations are separable. This difference arises because the laser field and
medium polarization both acquire a nonzero mean amplitude above thresh-
old. But this feature brings little change to the calculations, or to the re-
sults, when the laser is not too far above threshold (v/p —1 < 1). We set
dv = dp = 0 on the left-hand sides of (8.116b) and (8.116¢), and write
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-1
+
vdt = (z+/p— Tp)dt + <l§ll—> VETICrdW,,  (8.117a)

pdt = —y/p —1(z+v)dt
+ (1 + 7)) 7120 (0 + 1) (1 - 1/4C2) W, (8.117b)

Substituting (8.117a) into (8.117b), we find

-1
pudt = —2 p—lzdt~\/p—1<¥) A/ E1Cy dW,

+n +’Yl)—1\/€_120(% +7)(1 = 1/4C?)dW,.  (8.118)

Then substituting the result back into (8.117a), we have

-1
vat = [1 = 2p = /et + 1~ (o - 1/} (15L) \femiomaw,

+ (Vo —1/) (31 +7) 71 €120 (0 + 1) (1~ 1/4C?) dW,.
(8.119)

We have already neglected diffusion terms of order /o — 1 and p—1 in passing
from (8.111) to (8.113). To be consistent we should therefore drop these terms
in the coefficients of the Wiener processes appearing in (8.119). As a result,
the surviving fluctuations from the laser medium are just the polarization
fluctuations we met below threshold [Eq. (8.56)]. After substituting for vdt
in (8.116a), we find

dz = —k2(p — 1)zdt + \/K(7t + Nepon ) AW. (8.120)

Thus, the laser Fokker—Planck equation for field amplitude fluctuations above
threshold is given by

o4 _

1 27 -
57 [2(@— 1)2z+ =(7 + Nspon) 9 }A, (8.121a)

0z 2 922

with corresponding stochastic differential equation

dz = —=2(p — 1)zdt + /(% + Nspon) AW, (8.121b)
where £ is given by (8.62).

Note 8.10 Close to threshold the adiabatic elimination of atomic variables
can be justified even when the condition £ < 1 is not satisfied. This is because
the fluctuations in the laser field “slow down” near threshold. In (8.121), and
also in (8.61), the decay rate for the field is determined by &|p — 1| rather
than by the empty cavity rate k.
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We now return to (8.115b). We wish to adiabatically eliminate the phase
difference 6 from this equation. The diffusion matrix in (8.115b) is not diago-
nal, and therefore to write the equivalent Ito stochastic differential equations
we must first factorize the diffusion matrix in the form BB”T. We may write

1 1 2 9 1 2
KN ——— (i + 2) + -5‘107 _ (__a_ _ 2)
2 2 o —

"o —1\ay " 95 1\ay ~ 86
19 9 (9 9\

with

B—_1 (‘/’ﬁ &0 > (8.123)

p—1\Ven —\/§1Cn
Then, using (5.149), the Fokker—Planck equation (8.115b) is equivalent to the
Ito stochastic differential equations

_ (e mt 1 (/= [e1
dp = (/-e 5 >6dt+\/p_~_1( kndWi +4/& C’deW2>,

(8.124a)
— mtn 1 = _ Jem1 .
dé = <n—|— 5 >6dt+\/m<\/fmdwl V23 CdeW2>,
(8.124b)

dW; and dWy are independent Wiener processes. The phase difference § is
damped at the rate k + (4 + v;)/2. The phase sum ¢ is not damped, and
it is driven by the Wiener processes dW; and dWs, both directly, and also
indirectly by its coupling to the damped fluctuations in the phase difference.
We may adiabatically eliminate the phase difference under the assumption
that the relaxation rate k + (74 +,)/2 is much faster than the rate at which
fluctuations in ¥ grow. To accomplish the adiabatic elimination we set d6 — 0
on the left-hand side of (8.124b), and write

-1
B Y+ 1 — I
bdt = (ﬂ + 5 ) NS (\/ kdWi — 4/ 1Cy dW2>. (8.125)

Substituting this result into (8.124a), we have

dp = —2 ( il \/deﬁ—Q“——\/g—lcwdm).

Ve —T\26+71+7 26+ 71+
(8.126)
Equation (8.126) is equivalent to the Brownian motion equation
dy = BdW, (8.127a)

where
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2 - _ 7+
B = 2 1\/ 2 2 2T TN
\/?é———l( K’+7T+’Yl) (7T+7l) ﬁn"*—( K) 2% C’YT
2 26\
= 1+ n+n . 8.127b
p—1 ( ™" +71) (7 + Tiapon) ( )

The corresponding Fokker-Planck equation reads

) L, i
o) ) B
Y+ p—1 Oy

= =3 (8.128)

Now that we have eliminated the phase sum it is convenient to write
(8.128) directly in terms of the phase ¢ of the laser field. In the steady-state,
from (8.106a) and (8.106b), we may write

¢=10 +A5) +ngy Ly +6)
= wet + ns_atﬂ% ) (8.129)

We have neglected § compared to i because the damped fluctuations in 6
remain finite, while the fluctuations in 1) grow as v/t. We define

B(¢,t) = B($,1) = nga/ 381, 1), (8.130a)

with _ 12

¢=¢—wet =ng, "Ly (8.130b)
Then the laser Fokker—Planck equation for phase fluctuations above threshold
is given by

p 1 2\’ 7 L
a0 _1 (1 R ) n+ Nspon 9”5 (8.131a)
ot 2 Y1 +71) Nsar(p — 1) 92
with corresponding stochastic differential equation
- 9 -1 R -
dd = (1 b= ) N Tspon vy, (8.131b)
M+ Nsat (90 — 1)

where % is given by (8.62).

Note 8.11 When nonradiative dephasing processes are included and the
changes described in the note below (8.111) are carried over into (8.115a)
and (8.115b), the results of the adiabatic elimination are the same, apart
from the replacement of y; + 7, by 74 in (8.131a) and (8.131b).
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8.3.3 Quantum Fluctuations Above Threshold

Equations (8.121a) and (8.131a) are linear Fokker—Planck equations in one
dimension. The Green function solution to (8.121a) can be written down from
(5.18):

1 1
Var \/ [(R + napon) /4(p — 1)] [1 — e=45(e=1)1]

{ 1 [z — zoe‘2"‘(@—1)t]2 }

X exps —= )

2 [(7 + nepon) /4(p — 1)] [1 — e=4sle=1)¢]

A(z,t|z0,0)

(8.132)

The solution for $(¢,t|do,0) is slightly different from that given by (5.18)
since we must account for the different boundary condition that applies to
the phase variable. We wish to solve (8.131a) with ¢ distributed in the range
0 < ¢ < 2m. We write

B(3, 160,00 = > Cmlt)e™?, (8.133a)
and to find the Green function solution take
1

Cpn(0) = %e—im%; (8.133b)

this initial condition gives a periodic é-function at é = ¢o + k2m, where k
is an integer. For simplicity let us assume 2k < v; + ;. Then, substituting
(8.133a) into (8.131a), the C,, obey the equations

1 7+ nspon

Cm = —2——22 - m2Ch,, 8.134
S e — 1) (8.134)
and hence
5( A + 4 1 s .77 1 7+ Nspon
P(¢,tl¢o,0) = o~ > exp [zm(qb — ¢o) — §n_t(p—f—1)m2t . (8.135)

The Green function (8.132) gives us the variance of the steady-state am-
plitude fluctuations, and hence the correction to the average photon number
in the laser mode due to spontaneous emission and thermal photon fluctua-
tions:

(afa)s — near(p — 1) = (z—?)js
_ M+ Ngpon

=D (8.136)
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This result is different from that obtained using the rate equation theory
[Eq. (7.43)] by the factor of four in the denominator on the right-hand side.
The difference arises from the factorization used to pass from the exact mean
energy equation (7.65) to a rate equation description. From the Green func-
tion solution (8.135) for phase fluctuations we calculate the laser linewidth
above threshold. The normalized first-order correlation function for the laser
output is

607 = ((aa)>) " [Jim (o' ()a(t +7)

— e—iwct lim (W)é

t—o0
o
. 1 n+n
= g twat E — T spon .2
‘ eXp[ S nelp—1) ITI}
m=—0QC

1 1o ;
% <§_/ d¢ —i(m+1)¢ ><____/ d¢ez(m+1)¢>
T Jo 2 Jo

1 n—i—nspon ir q
2 nsat( )

— e—iwct

exp [ (8.137)
The Fourier transform gives a Lorentzian line, with the laser linewidth above
threshold (half-width at half-maximum) given by
1n+nson 17 + ngpon 7+ Ngpon
Aw P2 = k= P2 = kPhwo——=22.
(Aw)> = o —1) 2 (ala)> P
It is interesting to note, that when written in terms of the output power
P-., this expression only differs from the expression (8.70), which holds be-
low threshold, by a factor of two. Of course, the actual linewidth varies a
great deal. The output power, or, alternatively, the mean intracavity pho-
ton number, increases by many orders of magnitude from below threshold to
above threshold. Thus, a linewidth of the order of the cavity width x below
threshold is replaced by a very much narrower line above threshold. Using
7+ Nspon = 1 and ngay = 108, we find (Aw)s /K ~ 1076 when p — 1 = 1072
(one percent above threshold).

(8.138)

Exercise 8.7 Show that above threshold

(2) _ 7+ Ngpon —2k(p—1)|7|
T)=14 ——/—"75¢€
9> ( ) nsat(p— 1)2
14 T <aTa>thr 26—2n(@—1)17l (8.139)
2\ (ala)> . .

Compare this with the “thermal” result (8.71) obtained below threshold. For
7 4 Nspon = 1, Nsat = 108, and p — 1 = 1072 (one percent above threshold),
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the difference between (8.139) and the correlation function g(® (1) = 1 for
coherent light is ~ 1074

Note 8.12 The quasi-linearization used to arrive at the Fokker—Planck equa-
tion (8.113) is not valid too close to threshold. When threshold is approached
from above, in place of the deterministic equations (8.72) we have

2= —k(z —v), (8.140a)
- _¥(y—z— Vo —1p), (8.140b)
fr=—(n+r) - Ve -1z—Vp- 1) (8.140¢)

The characteristic equation determining the eigenvalues is

+ +
A+ +w)<>\+ ket ”—2ﬂ><p -+ ES A+ 26) =0
(8.141)

One of the eigenvalues vanishes for p = 1; as described below (8.73), this
means that nonlinear terms must be retained in the system size expansion
close to threshold. In addition to the neglect of these nonlinearities, the

quasilinearization in amplitude and phase variables assumes z < n;£t2A> =
n;{f Vv — 1, in order to remove the nonlinearity arising from the change of

variables. Using (8.136) to estimate the magnitude of z, we see now, that this

requires
1 /% 4 Nspon
—1>» -/ — 142
p-1> o (8.142)

a condition that is consistent with our definition of the threshold region in
(7.38). [The factor of four - relating (8.136) and (7.43) - shows up again in
the comparison between (8.142) and (7.38).]

Exercise 8.8 The Fokker Planck equations (8.121a) and (8.131a) are valid
when the laser is operated not too far above threshold, with p — 1 < 1. We
may lift this restriction without adding too much complication if we con-
sider the four-level model for the laser gain medium mentioned in the second
paragraph below (7.75) (y; > v, 2C = p) and add a strong polarization
dephasing process (y, > 1 > ;) in the manner described in Note 8.9.
Introduce these changes and repeat the adiabatic elimination, starting from
(8.111), without assuming g — 1 < 1. Show that (8.121a) is replaced by the
Fokker—Planck equation

0A [,p—10 1/ p+1\0%]

and (8.131a) is replaced by the Fokker—Planck equation
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0% 1 L2k Cat(pt1)/2 8
ot 2

% Nsat (g — 1) 8(232 & (8.144)

t is given by (8.62).



References

Chapter 1

1.6

1.7
1.8

1.9

1.10

1.11

1.12
1.13
1.14

1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24

1.25
1.26
1.27
1.28
1.29

. R. Senitzky: Phys. Rev. 119, 670 (1960); 124, 642 (1961)
. R. Ray: Lett. Nuovo Cim. 25, 47 (1979)

. O. Caldeira and A. J. Leggett Ann. Phys. 149, 374 (1983)

- H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) pp. 331-347
H. Haken: Handbuch der Physik, Vol. XXV/2c, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970) pp. 51-56
M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) pp. 257-267
F. Haake: Z. Phys. 223, 353 (1969); 223, 364 (1969)
F. Haake: “Statistical Treatment of Open Systems by Generalized Master
Equations”, in Springer Tracts in Modern Physics, Vol. 66 (Springer-Verlag,
Berlin, 1973) pp. 98-168
W. C. Schieve and J. W. Middleton: International J. Quant. Chem., Quantum
Chemistry Symposium 11, 625 (1977)
M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions
(Dover, New York, 1965) pp. 259-260
E. T. Whittaker and G. N. Watson: A Course of Modern Analysis, 4th ed.
(Cambridge University Press, London, 1935) p. 75
G. Lindblad: Commun. Math. Phys. 48, 119 (1976)
Reference [1.4] pp. 324, 336; Reference [1.5] pp. 29-30, and references therein
E. B. Davies: Quantum Theory of Open Systems (Academic Press, New York,
1976)
M. D. Srinivas and E. B. Davies: Optica Acta 28, 981 (1981)
G. S. Agarwal: Phys. Rev. A 4, 1778 (1971)
G. S. Agarwal: Phys. Rev. A 7, 1195 (1973)
K. Lindenberg and B. West: Phys. Rev. A 30, 568 (1984)
H. Grabert, P. Schramm, and G.-L. Ingold: Physics Reports 168, 115 (1988)
M. Lax: Phys. Rev. 129, 2342 (1963)
M. Lax: Phys. Rev. 157, 213 (1967)
B. R. Mollow: Phys. Rev. 188, 1969 (1969) Footnote 7
L. Onsager: Phys. Rev. 37, 405 (1931); 38, 2265 (1931)
G. W. Ford and R. F. OConnell Phys. Rev Lett. 77, 798 (1996); Ann. Phys.
276, 144 (1999); Optics Commun 179, 451 (2000)
A. Einstein: Ann. Phys. (Leipz.) 22, 180 (1907)
G. W. Ford, J. T. Lewis, and R. F. O’Connell, Ann. Phys. 252, 362 (1996)
G. W. Ford and R. F. O’Connell, Ann. Phys. 269, 51 (1998)
M. Lax, Optics Commun. 179, 463 (2000)
I. Prigogine, C. George, F. Henin, and L. Rosenfeld: Chem. Scripta 4, 5 (1973)



350

1.30

References

R. Hanbury-Brown and R. Q. Twiss: Nature 177, 27 (1956); 178, 1046 (1956);
Proc. R. Soc. Lond. A 242, 300 (1957); 243, 291 (1957)

Chapter 2

2.1
2.2
2.3
2.4

2.5
2.6
2.7

2.8

2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16
2.17
2.18
2.19

2.20
2.21
2.22
2.23
2.24
2.25
2.26

2.27

2.28
2.29
2.30
2.31

2.32
2.33

W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) pp. 347-357

H. Haken: Handbuch der Physik, Vol. XXV /2¢c, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970) pp. 57-58

M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) pp. 273-278

L. Allen and J. H. Eberly: Optical Resonance and Two-Level Atoms (Wiley,
New York, 1975) pp. 28-40

Reference [2.1] pp. 122-127; Reference [2.3] pp. 9-12

Reference [2.2] pp. 27-30; Reference [2.3] pp. 14-16, 230-233

There are subtleties in the derivation of the Hamiltonian for the atom-field
interaction which have given rise to a long-standing debate. For a recent con-
tribution to the debate and a review of the literature, see E. A. Power and T.
Thirunamachandran: J. Opt. Soc. Am. B 2, 1100 (1985)

T. F. Gallagher and W..E. Cook: Phys. Rev. Lett. 42, 835 (1979)

J. W. Farley and W. H. Wing: Phys. Rev. A 23, 5 (1981)

L. Hollberg and J. L. Hall: Phys. Rev. Lett. 53, 230 (1984)

G. S. Agarwal: Phys. Rev A 7, 1195 (1973)

Reference [2.1] pp. 250-251

V. G. Weisskopf and E. Wigner: Z. Phys. 63, 54 (1930)

Reference [2.1] pp. 281-283; Reference [2.3] pp. 20-23

R. J. Glauber: “Optical Coherence and Photon Statistics,” in Quantum Optics
and Electronics, ed. by C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gor-
don and Breach, London, 1965) pp. 78-84; in particular, consider Eq. (4.11)
with a sharply peaked (é-function) sensitivity function s(w)

J. Herschel: Phil. Trans. R. Soc. Lond., 143 (1845)

D. Brewster: Trans. of Edin., part II, 3 (1846)

H. A. Lorentz: The Theory of Electrons (Dover, New York, 1952)

W. Heitler: The Quantum Theory of Radiation (Oxford, London, 1954) Chap-
ter 1

Reference [2.3] Chapter I11; Reference [2.4] Chapter 1

Reference [2.19] pp. 196-204

R. J. Ballagh: Ph. D. Thesis, University of Colorado, Boulder, U.S.A. (1978)
B. R. Mollow: Phys. Rev. 188, 1969 (1969)

F. Y. Schuda, C. R. Stroud, Jr., and M. Hercher: J. Phys. B 7, L198 (1974)
F.Y. Wu, R. E. Grove, and S. Ezekiel: Phys. Rev. Lett. 35, 1426 (1975)

W. Hartig, W. Rasmussen, R. Schieder, and H. Walther: Z. Phys. A278, 205
(1976)

R. Hanbury-Brown and R. Q. Twiss: Nature 177, 27 (1956); 178, 1046 (1956);
Proc. Roy. Soc. Lond. A 242, 300 (1957); 243, 291 (1957)

D. F. Walls: Nature 280, 451 (1979)

R. Loudon: Rep. Prog. Phys. 43, 913 (1980)

H. Paul: Rev. Mod. Phys. 54, 1061 (1982)

B. R. Mollow: Phys. Rev. A 12, 1919 (1975); the relevant comments appear
below equation (4.15)

H. J. Carmichael and D. F. Walls: J. Phys. B 9, L43 (1976); 9, 1199 (1976)
H. J. Kimble, M. Dagenais, and L. Mandel: Phys. Rev. Lett. 39, 691 (1977)



2.34

2.35
2.36
2.37
2.38

2.39
2.40
2.41
2.42
2.43
2.44

References 351

J. D. Cresser, J. Hager, G. Leuchs, M. Rateike, and H. Walther: “Resonance
Fluorescence of Atoms in Strong Monochromatic Laser Fields,” in Dissipative
Systems in Quantum Optics, ed. by R. Bonifacio (Springer-Verlag, Berlin,
1982) pp. 21-59

I. I. Rabi: Phys. Rev. 51, 652 (1937)

H. J. Carmichael and D. F. Walls: J. Phys. A 6, 1552 (1973)

H. J. Carmichael and D. F. Walls: Phys. Rev. A 9, 2686 (1974)

M. Lewenstein, T. W. Mossberg, and R. J. Glauber: Phys. Rev. Lett. 59, 775
(1987)

M. Lewenstein and T. W. Mossberg: Phys. Rev. A 37, 2048 (1988)

F. Bloch: Phys. Rev. 70, 460 (1946)

C. Cohen-Tannoudji and S. Reynaud: J. Phys. B 10, 345 (1977)

H. Sambe: Phys. Rev. A 7, 2203 (1973)

J. M. Okuniewicz: J. Math. Phys. 5, 1587 (1974)

R. K. Eisenschitz: Matriz Algebra for Physicists (Plenum, New York, 1966)
Chapter 7

2.45 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963)

2.46 R. J. Glauber: Phys. Rev. 130, 2529 (1963)

2.47 H. J. Kimble and L. Mandel: Phys. Rev. A 13, 2123 (1976)

2.48 M. Dagenais and L. Mandel: Phys. Rev. A 18, 2217 (1978)

2.49 R. Short and L. Mandel: Phys. Rev. Lett. 51, 384 (1983)

2.50 H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice: Phys. Rev. A 39, 1200
(1989)

2.51 P. Zoller, M. Marte, and D. F. Walls: Phys. Rev. A 35, 198 (1987)

2.52 H. J. Carmichael, “Theory of Quantum Fluctuations in Optical Bistability,” in
Frontiers in Quantum Optics, ed. by E. R. Pike and S. Sarkar (Adam Hilger,
Bristol, 1986) pp. 120-203 [see Fig. 11(c)]

2.53 P. R. Rice and H. J. Carmichael: IEEE J. Quantum Electron. QE 24, 1351
(1988) (see Fig. 3)

2.54 A wide selection of early articles in this field can be found in the following
volumes: Frontiers in Quantum Optics, ed. by E. R. Pike and S. Sarkar (Adam
Hilger, Bristol, 1986); Quantum Optics IV, ed. by J. D. Harvey and D. F. Walls
(Springer-Verlag, Berlin, 1986); J. Mod. Opt. 34, Special Issue on “Squeezed
Light,” June 1987; J. Opt. Soc. Am. B 4, Feature Issue on “Squeezed States
of the Electromagnetic Field,” October, 1987

2.55 D. F. Walls and P. Zoller: Phys. Rev. Lett. 47, 709 (1981)

2.56 D. F. Walls: Nature 306, 141 (1983)

2.57 H. J. Carmichael: Phys. Rev. Lett. 55, 2790 (1985)

2.58 L. Mandel: Phys. Rev. Lett. 49, 136 (1982)

Chapter 3

3.1 H. Risken: The Fokker Planck Fquation (Springer-Verlag, Berlin, 1984)

3.2 E. P. Wigner: Phys. Rev. 40, 749 (1932)

3.3 R. J. Glauber: Phys. Rev. 131, 2766 (1963)

3.4 E. C. G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963)

3.5 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963)

3.6 R. J. Glauber: Phys. Rev. 130, 2529 (1963)

3.7 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) pp. 104-109

3.8 M. Sargent III, M. O. Scully, and W. E. Lamb Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) Chapter 15

3.9 G. Temple: J. London Math. Soc. 28, 134 (1953)



352 References

3.10 G. Temple: Proc. Roy. Soc. A 228, 175 (1955)

3.11 M. J. Lighthill: Fourier Analysis and Generalized Functions (Cambridge Uni-
versity Press, Cambridge, 1960)

3.12 L. Schwartz: Théorie des Distributions, Vol. I/II (Hermann, Paris, 1950/51;
2nd edition 1957/1959)

3.13 H. Bremermann: Distributions, Complex Variables, and Fourier Transforms
(Addison-Wesley, Reading, Massachusetts, 1965)

3.14 J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics
(Benjamin, New York, 1968) pp. 178-201

3.15 H. M. Nussenzveig: Introduction to Quantum Optics, (Gordon and Breach,
London, 1973) pp. 54-68

3.16 D. Zwillinger: Handbook of Differential Equations (Academic Press, Boston,
1989) pp. 325-330

3.17 W. Feller: An Introduction to Probability Theory and its Applications, Vol. 11
(Wiley, New York, 1966; 2nd edition 1971) Chapter XV

Chapter 4

4.1 K. E. Cahill and R. J. Glauber: Phys. Rev. 177, 1857 (1969); 177 1882 (1969)
4.2 G. S. Agarwal and E. Wolf: Phys. Rev. D 2, 2161 (1970); 2, 2187 (1970); 2,
2206 (1970)
4.3 P. D. Drummond and C. W. Gardiner: J. Phys. A 13, 2353 (1980)
4.4 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) pp. 138-150,168-176
4.5 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970 pp. 61-64
4.6 M. Hillery, R. F. O’Connell, M. O. Scully, E. P. Wigner: Phys. Rep. 106, 121
(1984)
4.7 J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics
(Benjamin, New York, 1968) pp. 128,129,178-195
4.8 H. M. Nussenzveig: Introduction to Quantum Optics (Gordon and Breach,
London, 1973) pp. 53-54
4.9 J. M. Normand: A Lie Group: Rotations in Quantum Mechanics (North Hol-
land, Amsterdam, 1980) Appendix D, Sect. D.2.2
4.10 H. Weyl: The Theory of Groups and Quantum Mechanics (Dover, New York,
1950) pp. 272-276
4.11 R. J. Glauber: Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 130, 2529 (1963);
131, 2766 (1963)
4.12 P. L. Kelly and W. H. Kleiner: Phys. Rev. 136, 316 (1964)

Chapter 5

5.1 A. D. Fokker: Ann. Phys. (Leipzig) 43, 310 (1915)

5.2 M. Planck: Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 325 (1917)

5.3 C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and
the Natural Sciences (Springer-Verlag, Berlin, 1983) pp. 47-53

5.4 N. G. van Kampen: Stochastic Processes in Physics and Chemistry (North-
Holland, Amsterdam, 1981)

5.5 H. Risken: The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984)

5.6 Reference [5.3] pp. 146-147; Reference [5.5] pp. 133-134

5.7 W. Horsthemke and R. Lefever: Noise-Induced Transitions. Theory and Ap-
plications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984)



5.8

References 353

N. G. van Kampen: Can. J. Phys. 39, 551 (1961); for further tutorial discussion
see Reference [5.3] pp. 250257, and Reference [5.4], Chapter IX — Chapter XI

5.9 H. A. Kramers: Physica 7, 284 (1940)
5.10 J. E. Moyal: J. R. Stat. Soc. 11, 151 (1949)
5.11 A. E. R. Woodcock and T. Poston: A Geometrical Study of the Elementary
Catastrophes (Springer-Verlag, Berlin, 1974)
5.12 R. Gilmore: Catastrophe Theory for Scientists and Engineers (Wiley, New
York, 1981) Chapter 6
5.13 See, for example, Reference [5.3] Chapter 9; Reference [5.4] pp. 304-311
5.14 R. K. Eisenschitz: Matriz Algebra for Physicists (Plenum, New York, 1966)
Chapter 7
5.15 M. M. Wang and G. E. Uhlenbeck: Rev. Mod. Phys. 17, 323 (1945)
5.16 H. T. H. Piaggio: Differential Fquations (Bell, London, 1965) Chapter XII
5.17 Reference [5.3] pp. 36-37; Reference [5.5] pp. 23-24
5.18 Z. Schuss: Theory and Applications of Stochastic Differential Equations (Wi-
ley, New York, 1980)
5.19 T. T. Soong: Random Differential Equations in Science and Engineering (Aca-
demic Press, New York, 1973)
5.20 See the discussions of Markoff processes in References [5.3-5.5, 5.18, 5.19]
5.21 Reference [5.3] pp. 70-73; Reference [5.4] pp. 17-18
5.22 K. Ito: Lectures on Stochastic Processes, Lecture Notes, Tata Inst. of Funda-
mental Res., Bombay, India, 1961
5.23 R. L. Stratonovich: SIAM J. Control 4, 369 (1966)
5.24 Reference [5.3] pp. 83-101
5.25 R. E. Mortensen: J. Stat. Phys. 1, 271 (1969)
5.26 N. G. van Kampen: J. Stat. Phys. 24, 175 (1981)
5.27 Reference [5.3] pp. 96-97; Reference [5.18] Chapter 5; Reference [5.19] pp. 183-
190
Chapter 6
6.1 H. Haken, H. Risken, and W. Weidlich: Z. Physik 206, 355 (1967)
6.2 H. Haken: Handbuch der Physik, Vol. XXV /2¢c, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970) pp. 64-65
6.3 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) pp. 375-390
6.4 C. W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and
the Natural Sciences (Springer-Verlag, Berlin, 1983) pp. 78,79,402
6.5 A. Einstein: Phys. Z. 18, 121 (1917)
6.6 M. Sargent III, M. O. Scully, and W. E. Lamb, Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) pp. 20-23
6.7 Min Xiao, H. J. Kimble, and H. J. Carmichael: Phys. Rev. A 35, 3832 (1987)
6.8 Min Xiao, H. J. Kimble, and H. J. Carmichael: J. Opt. Soc. Am. B 4, 1546
(1987)
6.9 R. R. Puri and S. V. Lawande: Phys. Lett. T2A, 200 (1979)
6.10 G. S. Agarwal: “Quantum Statistical Theories of Spontaneous Emission and
their Relation to Other Approaches,” Springer Tracts in Modern Physics, Vol.
70 (Springer-Verlag, Berlin, 1974) pp. 73-83
6.11 H. J. Carmichael: J. Phys. B 13, 3551 (1980); Phys. Rev. Lett. 43, 1106 (1979)
6.12 S. Sarkar and J. S. Satchell: Europhys. Lett. 3, 797 (1987)
6.13 R. H. Dicke: Phys. Rev. 93, 99 (1954)
6.14 J. M. Radcliffe: J. Phys. A 4, 313 (1971)



354 References

6.15 F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas: Phys. Rev. A 6, 2211
(1972)

6.16 R. Bonifacio, P. Schwendimann, and F. Haake: Phys. Rev. A 4, 854 (1971);
R. Bonifacio and L. A. Lugiato: Phys. Rev. A 12, 587 (1975)

6.17 F. Haake and R. J. Glauber: Phys. Rev. A 5, 1457 (1972); Phys. Rev. A 13,
357 (1976)

6.18 L. M. Narducci, C. A. Coulter, and C. M. Bowden: Phys. Rev. A 9, 829 (1974)

6.19 J. P. Gordon: Phys. Rev. 161, 367 (1967)

6.20 M. Gronchi and L. A. Lugiato: Lett. Nuovo Cimento 23, 593 (1978)

6.21 R. H. Lehmberg: Phys. Rev. A 2, 883 (1970)

6.22 Reference [6.10] pp. 25-38

6.23 E. Merzbacher: Quantum Mechanics (Wiley, New York, 1961) pp. 421-426

Chapter 7

7.1 H. Haken: Handbuch der Physik, Vol. XXV/2¢, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970)
7.2 W. H. Louisell: Quantum Statistical Properties of Radiation (Wiley, New York,
1973) Chapter 9
7.3 M. O. Scully and W. E. Lamb Jr.: Phys. Rev. Lett. 16, 853 (1966); Phys. Rev.
159, 208 (1967); 166, 246 (1968)
7.4 M. Sargent III, M. O. Scully, and W. E. Lamb Jr.: Laser Physics (Addison-
Wesley, Reading, Massachusetts, 1974) Chapter XVII
7.5 W. E. Lamb Jr.: Phys. Rev. 134, A1429 (1964)
7.6 Reference [7.2] Chapter 8; Reference [7.4] Chapter VIII
7.7 Reference [7.4] pp. 20-23
7.8 Reference [7.4] pp. 104,203
7.9 Reference [7.2] p. 288; Reference [7.4] p. 22
7.10 M. R. Young and S. Singh: Phys. Rev. A 35, 1453 (1987)
7.11 Reference [7.4] problems 17.13 and 17.14; P. Meystre and M. Sargent III:
FElements of Quantum Optics (Springer-Verlag, Berlin, 1991) pp. 469-483
7.12 1. S. Gradshteyn and I. M. Ryzhik: Tables of Integrals Series and Products
(Academic Press, New York, 1965) p. 930
7.13 A. Yariv: Introduction to Optical Electronics (Holt, Rinehart and Wilson, New
York, 1976) pp. 118-121
7.14 E. T. Jaynes and F. W. Cummings: Proc. IEEE 51, 89 (1963)
7.15 M. Tavis and F. W. Cummings: Phys. Rev. 170, 379 (1968); 188, 692 (1969)
7.16 H. J. Carmichael and D. F. Walls: Phys. Rev. A 9, 2686 (1974)
7.17 H. J. Carmichael: J. Opt. Soc. Am. B 4, 1588 (1987)
7.18 C. W. Gardiner and M. J. Collett: Phys. Rev. A 31, 3761 (1985)

Chapter 8

8.1 H. Haken: Handbuch der Physik, Vol. XXV /2c, ed. by L. Genzel (Springer-
Verlag, Berlin, 1970) pp. 154-156

8.2 E. N. Lorenz: J. Atmos. Sci. 20, 130 (1963)

8.3 Sparrow: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
(Springer-Verlag, New York, 1982)

8.4 H. Haken: Phys. Lett. 53A, 77 (1975)

8.5 N. B. Abraham, P. Mandel, and L. M. Narducci: “Dynamical Instabilities
and Pulsations in Lasers,” in Progress in Optics, Vol. XXV, ed. by E. Wolf
(North-Holland, Amsterdam, 1988) pp. 1-190



References 355

8.6 L. M. Narducci and N. B. Abraham: Laser Physics and Laser Instabilties
(World Scientific, Singapore, 1988)

8.7 Reference [8.1] pp. 159-168

8.8 H. Risken: The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984)

8.9 One possible definition for amplitude and phase operators is described by
Loudon: The Quantum Theory of Light, second edition (Oxford University
Press, Oxford, 1983) pp. 141-145. There has recently been much discussion
of phase in quantum optics; some of the recent literature is reviewed by J. H.
Shapiro and S. R. Shepard: Phys. Rev. A 43, 3795 (1991)



Index

Absorption cross-section, 279

AC Stark effect

— and temperature-dependent
frequency shifts, 34, 35, 43

Adiabatic elimination, in laser theory

— of atomic populations, 261

— of atomic variables, 306, 327-328

—— and system size expansion at laser

threshold, 326

—— close to threshold, 342

— of the field and polarization phase
difference, 343-344

— of the polarization, 316, 320-323

— of the polarization amplitude and
inversion, 341-342

— “slow” and “fast” variables, 325

— with nonradiative dephasing, 323,
344

Amplitude and phase operators, 334

Amplitude and phase variables, 329,
333, 336

Angular momentum, theory of, 218

Antibunching of photopulses, 65

Atomic coherent state, 221

Atomic coherent state representation,
233

Autocorrelation matrix, 171

Baker-Hausdorff theorem, 103

— applied, 111, 112, 139

Bistable system, 161-164

Bloch sphere, 52

Bloch state, see Atomic coherent state

Born approximation, 7

Brownian motion, 147, 151, 180

— and laser phase fluctuations above
threshold, 343

Cauchy-Euler procedure, 188
Cavity decay rate, 292
Cavity output field, 293-295

— first-order correlation function,
295296

— Heisenberg operator, 289

— spectrum, 27, 302-303

Chaotic solutions, to laser equations,
315

Chapman-Kolmogorov equation, 147,
155

Characteristic function

— equation of motion for, 96-98, 105,
199-202, 245-246

—— nonuniqueness of for a two-level

atom, 200

— for N two-level atoms, 222

— for a two-level atom, 196, 205

— for the electromagnetic field

~— antinormal-ordered, x ,, 102, 126

—— normal-ordered, x,;, 95, 124

—— relationship between x ., x4, and

Xg, 103, 112

—— square integrability of x4, 116

—— symmetric-ordered, x4, 110, 127

— for the single-mode homogeneously
broadened laser, 286

Characteristics, method of, 93, 167

Coherence

- first-order, 60

— second-order, 62

Coherent spin state, see Atomic
coherent state

Coherent state

— defined, 77

— properties of, 77-80

Collective atomic operator, see
Operator, collective

Commutation relation

— for annihilation and creation
operators, 4

— for collective atomic operators, 213

— for position and momentum
operators, 2



358 Index

— for pseudo-spin operators, 31
Commutator
— decay of, 2, 4
— preservation in time, 4, 19, 107, 289
Conditional probability density, 147,
179
Correlation
— between free field and source field,
296, 298-302
— between system and reservoir, 6
— between the field and polarization,
laser below threshold, 319
— like-atom, unlike-atom, 243, 244, 255
Correlation function
— electromagnetic field
—— first- and second-order defined, 19,
45, 48
—— for a lossy cavity mode in thermal
equilibrium, first-order, 27
—— for a lossy cavity mode in thermal
equilibrium, second-order, 28
—— for laser output field, first-order,
304, 323, 346
—— for laser output field, second-order,
324, 346
—— for resonance fluorescence, first-
order, 60
—— for resonance fluorescence, second-
order, 64
—— free-field, source-field, 296
—— second-order factorized as a product
of photon detection probabilities,
6264
— for a radiatively damped two-level
atom, 37
Correlation time
— for filtered thermal light, 28
— for reservoir in thermal equilibrium,
12
Covariance matrix, 170, 251, 319
Critical point, 161
Critical slowing down, 162
Cross-section, absorption, see Absorp-
tion cross-section
Cusp catastrophe, 163

é-function

— derivatives of, 87, 206

—— Gaussian distribution expanded in
terms of, 104, 225

— periodic, 345

Decay times, 77 and T3, 51

Density of states, 11

— electromagnetic field, 35

— for traveling-wave modes in one
dimension, 291

Density operator

— for statistically independent
reservoirs, 39

— reduced, 5

—— in thermal equilibrium, 18

— representation for, 81-83

—— diagonal in coherent states, see P

representation

— reservoir, 6

—— in thermal equilibrium, 9

Detailed balance, 272

Dicke state, see Eigenstate, of J, and
J?

Diffusion matrix

— factorization of, 191, 343

Diffusion process, 148

— nonlinear, 153, 154

Dipole coupling constant, 32, 234

Dipole matrix element, 30

Dipole radiation

— scattered field operator related to
source operator, 45-48

Distribution

— binomial

—— approximated by Gaussian

distribution, 253

— conditional, see Conditional
probability density

— Gaussian, 94, 155, 181

—— in system size expansion, 160, 252

— Schwartz, tempered, see Generalized
function

— two-time or joint, 132, 137

Dressed energies, 55

— relationship to quasienergies, 56

Dressed states, 55

Eigenstate

- of J, and J?, 218

—— as superposition of direct product

states, 219-221

—— degeneracy, 218-219

— of the annihilation operator, see
Coherent state

— of the inversion operator, 217

Einstein A coefficient, 35

Einstein B coefficient, 259-260

Einstein equations, see Rate equations,
Einstein

Electromagnetic field, quantized



— as a reservoir, 32

— operator, 45

—— free field, 46, 291

—— source field, 46, 291-293

—— source field does not commute with

free field, 292

Euler algorithm, see Cauchy-Euler

procedure

Fluctuations
— about steady state in resonance
fluorescence, 57
— critical, 162
— in stochastic differential equations,
178
— intrinsic, 156, 280
— laser above threshold
—— in the field and polarization phase
sum and difference, 343
—— in the polarization and inversion,
341
—— phase, 331-333, 337-340
— laser below threshold
—— in the atomic inversion, 318
—— in the laser field, 319
—— in the medium polarization, 319,
322-323
—— pump, 323
— linearized treatment of, see System
size expansion
— quantum
—— and nonlinearity, 279-280
—— and operator ordering, 107, 114
—— of order N~ ! for N two-level atoms,
243-244, 251
— source of in Fokker—Planck equation,
150, 152
— spectrum of, see Fokker—Planck
equation, linear, spectrum of
fluctuations
thermal, 18, 94, 107
—— destroy singular character of an
initial Fock state, 119
Fokker—Planck equation, 147-149
— diffusion term, 150
— drift term, 150
— equivalent stochastic differential
equation, 190-191
for a radiatively damped two-level
medium, 250
—— in the asymptotic limit ¢ — oo, 252
—— with nonradiative dephasing, 250

Index 359

— for coupled, damped harmonic
oscillators, 175

— for the damped harmonic oscillator

—— in the P representation, 91, 99

—— in the @ representation, 105

—— in the Wigner representation, 113

— for the single-mode homogeneously

broadened laser, 275, 277

—— above threshold, for fluctuations in
the field amplitude, 342

—— above threshold, for fluctuations in
the field phase, 344

—— above threshold, without adiabatic
elimination, 340

—— at threshold, 329

—— below threshold, 321

—— below threshold, without adiabatic
elimination of the medium
polarization, 318

—— far above threshold, 347

—— from self-consistent system size
expansion, 311

—— with nonradiative dephasing, 323,
329, 339, 344

— generalized, 155, 204

—— truncated Kramers—Moyal
expansion, 224

— linear, 148

—— autocorrelation matrix, 171-172,
176

—— autocorrelation matrix, equation of
motion for, 173

—— conditional distribution satisfying,
150, 168

—— covariance matrix, 170, 172-173

—— covariance matrix, equation of
motion for, 174

—— covariance matrix, steady-state, 175

—— in system size expansion, 159

—— means, equation of motion for, 173

—— means, time-dependent, 171

—— spectrum of fluctuations, 176-177

—— steady-state solution, 168

— nonlinear

—— drift and diffusion in, 152—-154

—— from system size expansion at a
critical point, 162

—— from truncated Kramers—Moyal
expansion, 164

—— steady-state solution, 153, 331

— one-dimensional

—— mean and variance, equations of
motion for, 149-150
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—— steady-state variance, 152

— potential conditions, 153
Frequency shift, see AC Stark effect
Functional, 87

Gaussian white noise, 185

Generalized function, 86-87, 206

Generating function, 253

Glauber—Sudarshan P representation,
see P representation

Green function, 91, 105, 113, 117, 132,
147, 166-168, 180, 228, 345

Haken representation, for two-level
atoms, see P representation
Hamiltonian
— harmonic oscillator, 2, 4
— in system-plus-reservoir approach to
dissipation, 5
—— for N radiatively damped two-level
atoms, 233
—— for a radiatively damped two-level
atom, 32
—— for atomic dephasing, 39
—— for the damped harmonic oscillator,
9
—— for the single-mode homogeneously
broadened laser, 280—283
—— with nonzero mean interaction in
the reservoir state Ro, 40
— resonance fluorescence, 45
— two-level atom, 30
— two-level atom coupled to an
electromagnetic field mode, 54
—— energy eigenvalues, 55
Hanbury-Brown-Twiss effect, see
Photon bunching
Harmonic oscillator
— coupled, 3, 175
Heisenberg equation of motion
— for a lossy cavity mode, 297
— for a two-level atom driven by a
classical field, 49
— for electromagnetic field modes, 46,
290
Heisenberg uncertainty relation
— decay of, 2
Homogeneous width, 261

Identical atoms, 212, 239-241

Interaction picture, 5, 15

Interference, between free field and
source field, 303

Inversion clamping (pinning), 263

Inversion states, 208, 214, 217, 247

— distribution over, 223

—— approximate and exact compared,
252-255

Jump process, 155, 158, 208-210,
247248
— shift operator, 159, 208, 311

Kramers—Moyal expansion, see
Fokker—Planck equation, generalized

Lamb shift, 34, 36
— and the rotating-wave approximation,
17, 34
Laser
— birth-death model for, 268272
— equations without fluctuations, 313
—— and the Lorenz equations, see
Lorenz equations
—— in amplitude and phase variables,
338
—— steady-state solutions, 313, 340
—— with nonradiative dephasing, 315,
339
Fokker—Planck equation, 275
— above threshold, for fluctuations in
the field amplitude, 342
—— above threshold, for fluctuations in
the field phase, 344
—— at threshold, 329
—— below threshold, 321
—— far above threshold, 347
—— steady-state solution, 331
—— with nonradiative dephasing, 323,
329, 339, 344
gain medium
— four-level model, 278, 347
— three-level model, 259, 265
— two-level model, 276
instabilities, 315
linewidth
— above threshold, 346
— below threshold, 324
— microscopic model for, 280
phase-space equation of motion, 287
photon number rate equation, 265
—— deficiencies of at and above
threshold, 330, 346
— pump parameter, 262, 266, 277
— control of, 278
rate equations, 259, 316

|

|



— Scully-Lamb theory of, 269-270, 278

— second threshold, 315

— spontaneous emission photon
number, 265, 278

— steady-state inversion, 261-263

- stochastic model for, 274-276

— threshold behavior, 262-263,
265-267, 314-315

—— of photon number distribution,
273-274

threshold region, defined, 266, 331,

347

Laser mode

— energy density in, 259-261

— photon number in, 262-263, 265-267

—— above threshold, 345

—— at threshold, 267, 274, 330

—— below threshold, without adiabatic

elimination of the medium
polarization, 320

—— birth-death equation for, 269

—— distribution of, 273-274

—— rate equation for, 265

— spontaneous emission rate into, 264

— stimulated emission rate into, 260

Lorenz equations, 315

Mandel @ parameter, 70
Markov approximation, 7, 11-14
Markov process, 181
Master equation, 6
— and the Rotating-wave approxima-
tion, 17
— for N independent radiatively
damped two-level atoms, 235
— for a radiatively damped two-level
atom, 34
—— with nonradiative dephasing, 43
— for resonance fluorescence, 50
— for the damped harmonic oscillator,
16
— for the single-mode homogeneously
broadened laser, 285
—— with nonradiative dephasing, 285
— in the Born approximation, 8, 234
— in the Born—Markov approximation,
7
—— as a generalized Liouville equation,
22
—— associated partial differential
equation, 129-130, 227
—— with subsystem interaction in Hsg,
48-51, 285

Index 361

— Lindblad form, 16

Metastable state, 165

Minimum uncertainty state, 77

Mixed state

— and permutational symmetry for
identical atoms, 240

— due to dissipation, 53

Mollow spectrum, see Resonance
fluorescence, incoherent spectrum

Noise, see Fluctuations

— additive, 186

multiplicative, 186

— quantum, in the laser, 276

— white, see Gaussian white noise
Noise-induced phase transitions, 154
Nonclassical state, 144

Operator
— annihilation, creation
— action on |a){al, 89
—— defined in terms of position and
momentum operators, 4
—— in the interaction picture, 9
— as a power series in antinormal order,
125, 135
— as a power series in normal order,
127, 135
— as a power series in symmetric order,
128
— atomic lowering, raising, 30-31
—— in the interaction picture, 32, 234
— collective, for N two-level atoms,
212-216, 228-229, 237
— dipole moment, 30
— electromagnetic field, see Electro-
magnetic field, operator
— matrix representation for, 30
— phase, see Amplitude and phase
operators
— pseudo-spin, 31, 197-199
Operator average
— antinormal-ordered, 102, 108
— normal-ordered, 95, 108
—— for collective atomic operators, 222,
233
—— for pseudo-spin operators, 196, 205
— symmetric-ordered, 111
— two-time, 22-24, 132, 135, 137, 141,
231, 299
—— and the Born—-Markov approxima-
tion, 23
Operator ordering
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— normal order, 82

— for collective atomic operators, 214
—— for pseudo-spin operators, 195
symmetric order, 110

— related to normal order, 111-112
— time order, 131

— Weyl order, 110

Optical Bloch equations, 51, 211, 309
— solutions to, 54

—— in steady state, 57
Ornstein—Uhlenbeck process, 192

|

P distribution
— as antinormal-ordered associated
function for the density operator, 126
— compared with classical probability
distribution, 81-83
— defined, 95
—— the single-mode homogeneously
broadened laser, 286
—— two-level atoms, 196
— for a coherent state, 83, 85
— for a damped coherent state, 93
— for a damped Fock state, 118, 119
— for a Fock state, 85, 87-88
— for a radiatively damped two-level
medium, 252
— for a thermal state, 85
— for two-level atoms, 206-207, 223
—— singular character in the inversion
variable, 208, 224-225
—— singular character in the polariza-
tion variable, 225-226
— non-positivity of, 119
— related to the Q and Wigner
distributions, 103, 104, 112
P representation, 76, 81, 88, 94, 101,
103
— and photoelectric detection theory,
144
— antinormal-ordered averages
evaluated in, 108
— need for generalized functions, 83-85,
207
— normal-ordered averages evaluated
in, 82, 95, 128
—— for the single-mode homogeneously
broadened laser, 287
—— for two-level atoms, 196, 222
— normal-ordered, time-ordered,
two-time averages evaluated in, 132
— two-time averages for two-level atoms
evaluated in, 230-232

— two-time averages of ordered power
series evaluated in, 135-137

Pauli spin operators, 29-31

Phase change, on transmission and
reflection at a mirror, 294

Phase-space equation of motion, see
Quantum-—classical correspondence,
phase-space equation of motion

Phase-space representation, see
Quantum-—classical correspondence,
P, @, and Wigner representations

Photodetection, 61

Photoelectron waiting-time distribution

— defined, 66

— for coherent scattering, 66-67

Photon

— antibunching, 19, 44, 65-74, 207

—— definitions of, 65, 69

— bunching, 19, 28, 324

counting statistics

—— sub-Poissonian, 69, 74

— flux, 61

— number, see Laser mode, photon
number in

—— mean, in thermal equilibrium, 11

Polarization

— damping, 39

— of a two-level atom, defined, 31

Population difference

— for a two-level atom, defined, 31

Population inversion, see Laser,
steady-state inversion

— impossibility of in driven two-level
atom, 53

Positive definite, semidefinite diffusion,
169

Q distribution

— as diagonal matrix element of the
density operator, 103

— as normal-ordered associated function
for the density operator, 126

— defined, 102

— for a coherent state, 106

— for a damped coherent state, 107

— for a damped Fock state, 121, 122

— for a Fock state, 103

— related to the P and Wigner
distributions, 103, 104, 112

QQ parameter, see Mandel ) parameter

Q representation, 101

— antinormal-ordered averages
evaluated in, 102, 128



— antinormal-ordered, reverse-time-
ordered, two-time averages evaluated
in, 137

— normal-ordered averages evaluated
in, 108

— two-time averages of ordered power
series evaluated in, 137-138

Quantum regression formula, 19-26

— and absence of correlation between
system and reservoir, 299

— applied, 27-28, 37-39, 59-60, 63-64,
303

— familiar statement of, 26

— formal statement in terms of
superoperators, 24

Quantum regression theorem, see
Quantum regression formula

Quantum-—classical correspondence, 76,
111, 114, 123, 144, 211

— associated function

—— antinormal-ordered, 124-126

—— for collective atomic operators, 226

—— normal-ordered, 126

—— related to operator power series,

125-128
—— symmetric ordered, 126
— difficulties with, 155, 211
— phase-space equation of motion, 129,
227
— differs from Fokker—Planck
equation, 204, 210

—— for N radiatively damped two-level
atoms, 246

—— for a radiatively damped two-level
atom, 202-204, 208-211

—— for the single-mode homogeneously
broadened laser, 287, 306

—— with nonradiative dephasing, 204,
247, 288, 311

— relationship between associated
functions, 127

Quasidistribution function, 75, 83

Quasimode, 19, 176

R representation, 81

Rabi frequency, 49

— modulation at, 53

Random telegraph process, 210
Random variable, 179, 180, 182, 184
Random walk, 183

Rate equations

— Einstein, 37, 210, 270

Index 363

— for populations in discrete inversion
states, 248
— laser, see Laser, rate equations
Reservoir
— correlation functions, 10-14, 41-42
—— and the Markov approximation, 8
—— at low temperatures, 17
— having one mode in the coherent
state |3), 293
— of two-level systems, 282
— operators, 7
—— having nonzero mean in the state
Ry, 40
—— in the Heisenberg equation of
motion for a lossy cavity mode,
297-298
—— in the interaction picture, 9, 32, 41,
234
— statistically independent, 235-236,
284
Resonance fluorescence
— and the Lorentz oscillator model, 43
— cooperative, 222
— incoherent spectrum, 44, 60
— photoelectron waiting-time distribu-
tion, 66, 68
— photon antibunching in, 44, 65-74
— radiated power, 58, 61
— squeezing in, 71-74
Ring cavity
— and collective atomic operators, 212
Rotating-wave approximation, 4

Saturation photon number, 262

— as system size parameter, 277-280

Scully-Lamb laser equation, see Laser,
Scully-Lamb theory of

Separation of variables, 92, 318, 340

Shift operator, see Jump process

Similarity transformation, 166

Small-noise approximation, 155

Spectrum

— as Fourier transform of autocorrela-

tion function, 57

blackbody, 303

— coherent and incoherent components,
defined, 57

~ electromagnetic field, 19

—— for a lossy cavity mode in thermal

equilibrium, 27
—— laser, see Laser, linewidth
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— of fluctuations, see Fokker—Planck
equation, linear, spectrum of
fluctuations

— of laser below threshold as modified
blackbody spectrum, 303-304

Spontaneous emission

— atomic correlation functions for,
38-39

— in laser theory, 264—-267, 323, 345

— spectrum, 38

Squeezed state, 144

— related to photon antibunching,
71-74

Squeezing, detection of, 73

Steady state

— as extremum of probability
distribution, 165

— stable, 161

— unstable, 161

—— decay of, 163

Stimulated emission, see Laser mode,
stimulated emission rate into

Stochastic differential equation, 185

— difference between Ito and
Stratonovich, 188-190

— equivalence between Fokker—Planck
equation and, 179-191

— for the single-mode homogeneously
broadened laser, 275, 277

—— above threshold, for fluctuations in

the field amplitude, 342
—— above threshold, for fluctuations in
the field phase, 344

—— at threshold, 329

—— below threshold, 321

Stochastic integral, Ito and
Stratonovich defined, 187

Superoperator, 22, 68, 75, 299

— associated differential operator, 130

Superradiance, superfluorescence, 222,
236

System size expansion, 155-160

— applied, 248-250, 305-312, 326-329,
333-340

— at a critical point, 161-162

—— laser threshold, 325-326

— limitations of, 162-164

— linearized treatment of fluctuations

—— divergence of fluctuations in, 161,

325
—— range of validity of, 331
— macroscopic law, 159, 250, 309

— quasi-linearization, above laser
threshold

—— range of validity of, 347

— role of energy (atom) density versus
photon (atom) number, 156-157

— scaling in

—— assumed for fluctuations, 157

—— assumed for macroscopic state, 156

—— determination of in laser theory,

306-312, 326, 328, 333-334, 337

—— N two-level atoms, 241, 248

—— of field amplitudes, 158-159

—— of time at a critical point, 162, 329

System size parameter, 156

— in laser theory, 305

Trace

— cyclic property of, 8

— of density operator, 19

— over reservoir in the Born—Markov
approximation, 23, 300, 301

Uncertainty principle, see Heisenberg
uncertainty relation

Vacuum fluctuations, 14

Wiener increment, 183

Wiener process

— as solution to differential equation,
185

— continuity of, 184

— defined, 180-181

— discrete-time moments of, 182

— in numerical simulations, 186

— nondifferentiability of, 183

— single, for statistically independent
fluctuations, 321

Wigner distribution

— as symmetric-ordered associated

function for the density operator, 127

defined, 110

for a coherent state, 113

— for a damped coherent state, 113

— for a damped Fock state, 123

— for a Fock state, 115

— non-positivity of, 115, 123

— normalization, 111

— related to the P and @ distributions,
112

Wigner representation, 101

— for two-level atoms, 232

— no need for generalized functions, 116



Index 365

symmetric-ordered averages — two-time averages evaluated in,
evaluated in, 110-111, 116-117, 138-142
128
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